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Abstract

We consider the problem of correcting the
posterior marginal approximations computed
by expectation propagation and Laplace ap-
proximation in latent Gaussian models and
propose correction methods that are simi-
lar in spirit to the Laplace approximation of
Tierney and Kadane (1986). We show that in
the case of sparse Gaussian models, the com-
putational complexity of expectation propa-
gation can be made comparable to that of
the Laplace approximation by using a parallel
updating scheme. In some cases, expectation
propagation gives excellent estimates, where
the Laplace approximation fails. Inspired by
bounds on the marginal corrections, we ar-
rive at factorized approximations, which can
be applied on top of both expectation propa-
gation and Laplace. These give nearly indis-
tinguishable results from the non-factorized
approximations in a fraction of the time.

1 Introduction

Following Rue et al. (2009), we consider the problem
of computing marginal probabilities over single vari-
ables in (sparse) latent Gaussian models. Probabilistic
models with latent Gaussian variables are of interest in
many areas of statistics, such as spatial data analysis
(Rue and Held, 2005), and machine learning, such as
Gaussian process models (e.g. Kuss and Rasmussen,
2005). The general setting considered in Rue et al.
(2009) as well as in this paper is as follows. The prior
distribution over the latent variables is a Gaussian ran-
dom field with a sparse precision (inverse covariance)
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matrix and the likelihood factorizes into a product of
terms depending on just a single latent variable. Both
the prior and the likelihood may depend on a small set
of hyper-parameters (say at most 6 in total). We are
interested in the posterior marginal probabilities over
single variables given all observations.

Rue et al. (2009) propose an integrated nested
Laplace approximation to approximate these poste-
rior marginal distributions. Their procedure consists
of three steps. 1) Approximate the posterior of the
hyper-parameters given the data and use this to de-
termine a grid of hyper-parameter values. 2) Ap-
proximate the posterior marginal distributions given
the data and the hyper-parameters values on the
grid. 3) Numerically integrate the product of the
two approximations to obtain the posterior marginals
of interest. The crucial contribution is the improved
marginal posterior approximation in step 2), based on
the approach of Tierney and Kadane (1986), that goes
beyond the Gaussian approximation and takes into ac-
count higher order characteristics of (all) likelihood
terms. Comparing their approach with Monte Carlo
sampling techniques on several high-dimensional mod-
els, they show that their procedure is remarkably fast
and accurate.

The main objective of the current paper is to see
whether we can improve upon the approach of Rue
et al. (2009). Expectation propagation, a method for
approximate inference developed and studied mainly
in the machine learning community, is then an ob-
vious candidate. It is well-known to yield approxi-
mations that are more accurate than the Laplace ap-
proximation (e.g. Minka, 2001; Kuss and Rasmussen,
2005). Furthermore, expectation propagation can still
be applied in cases where the Laplace approximation
is doomed to fail, e.g., when the log-posterior is not
twice-differentiable (Seeger, 2008). The typical price
to be paid is that of higher computational complex-
ity. However, we will see that, using a parallel instead
of a sequential updating scheme, expectation propa-
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gation is at most a (relatively small) constant factor
slower than the Laplace approximation in applications
on sparse Gaussian models with many latent variables.
Moreover, along the way we will arrive at further ap-
proximations (both for expectation propagation and
the Laplace approximation) that yield an order of mag-
nitude speed-up, with hardly any degradation of per-
formance.

Section 1.1 specifies the model and introduces nota-
tion, Section 2 introduces and compares several meth-
ods for correcting marginals given a fixed setting of
the hyper-parameters, Section 3 discusses the compu-
tational complexity of these methods when applied to
sparse models, and Section 4 treats integration over
hyper-parameters.

1.1 Sparse latent Gaussian models

In this section we introduce notation and define
the models under consideration. Let p (y|x,θ)
be the conditional probability of the observations
y = (y1, . . . , yn)T given the latent variables x =
(x1, . . . , xn)T and the hyper-parameters θ. We assume
that this likelihood factorizes over the latent variables:

p (y|x,θ) =
n∏
i=1

p (yi|xi,θ) .

The prior p (x|θ) over the latent variables is Gaussian,
e.g., a Gaussian process or a so-called thin plate spline
mimicking prior on a two-dimensional grid (Rue et al.,
2009). We call such a model “sparse”, when the preci-
sion (inverse covariance) matrix of the Gaussian prior
is sparse. Furthermore, we assume that the number
of hyper-parameters θ is relatively small, say at most
6. We will omit p (y|x,θ)’s and p (x|θ)’s dependence
on θ whenever it is not relevant, use p0 (x) as an alias
of the prior p (x|θ), and q (x) for an approximating
Gaussian distribution.

2 Posterior marginals conditioned
upon the hyper-parameters

2.1 Global approximations

In this section we will focus on approximating poste-
rior marginal distributions given a fixed setting of the
hyper-parameters θ, which is omitted from the nota-
tion. That is, our goal is to approximate

p (xi|y) =
1
Z
ti (xi)

∫
dx\i p0 (x)

∏
j 6=i

tj (xj) , (1)

where we used shorthand notation ti(xi) ≡ p(yi|xi)
and with normalization constant

Z =
∫
dx p0(x)

∏
i

ti(xi) , (2)

which in fact corresponds to the “evidence” p(y|θ)
that we need in order to compute the posterior p(θ|y).
In the following we will describe several approximation
procedures. Discussion of the corresponding computa-
tional complexities is postponed until Section 3.

As a first step, we construct a global Gaussian ap-
proximation q(x) of p(x), e.g., through expectation
propagation (EP) or using Laplace’s method. The ap-
proximation obtained through EP is of the form

q(x) =
1
Zq
p0(x)

∏
i

t̃i(xi) , (3)

where t̃(xi) are so-called Gaussian term proxies and
where Zq ensures proper normalization. A Gaussian
term proxy has the form of a Gaussian, but need not
be normalized nor normalizable, i.e., may have a neg-
ative precision. Expectation propagation iteratively
improves the term proxies one by one1. When updat-
ing the ith term proxy given all other term proxies,
the new term proxy t̃i(xi) is chosen such that∫

dxi {1, xi, x2
i }q\i(xi)t̃i(xi) =∫

dxi {1, xi, x2
i }q\i(xi)ti(xi) , (4)

with the “cavity” distribution, the Gaussian approxi-
mation with the ith term proxy left out,

q\i(x) ∝ p0(x)
∏
j 6=i

t̃j(xj) .

That is, we choose the new term proxy t̃i(xi) such
that the moments (up to second order) of “cavity
times term proxy” equal those of “cavity times actual
term”. The solution of this “moment matching” oper-
ation is typically found through numerical integration.
We refer to (Minka, 2005; Kuss and Rasmussen, 2005;
Seeger, 2008) for more information on (how to use)
EP for approximate inference in Gaussian processes
and other models.

The global Gaussian approximation based on
Laplace’s method is obtained by first finding the
mode m = argmaxx log p(x,y) , and then setting
the covariance matrix to the negative inverse of the
Hessian, H(x) = ∂2

∂x∂xT log p(x,y), evaluated at m.

1Below we will describe a parallel updating scheme
which, for sparse models, is a lot faster than the standard
sequential scheme.
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It is easy to see that this Hessian amounts to the
(sparse) precision matrix from the prior p0(x) plus
diagonal terms corresponding to second derivatives of
the log ti(xi) terms. Consequently, also the Gaussian
approximation resulting from Laplace’s method can
be written in the form (3) and, if desired, the corre-
sponding term proxies can be used for initialization of
the EP algorithm. The marginal q(xi) of the global
Gaussian approximation (3) can be considered our
lowest order approximation of the posterior marginal
distribution of interest. We will write p̃ep

i (xi) for the
Gaussian marginal following from the EP approxi-
mation and p̃la

i (xi) for the marginal following from
Laplace’s method. In the following, we will discuss
how to improve upon these global approximations.

2.2 Marginal corrections

Given a global Gaussian approximation q(x) of the
form (3) with corresponding term proxies, we can
rewrite (1) as

p (xi|y) =
Zq
Z

ti (xi)
t̃i (xi)

∫
dx\i q (x)

∏
j 6=i

tj (xj)
t̃j (xj)

(5)

=
Zq
Z

ti (xi)
t̃i (xi)

q (xi)
∫
dx\i q

(
x\i|xi

)∏
j 6=i

tj (xj)
t̃j (xj)

=
Zq
Z
εi(xi)q(xi)

∫
dx\i q

(
x\i|xi

)∏
j 6=i

εj(xj) ,

where we defined εi(xi) = ti(xi)/t̃i(xi).

Equation (5), which is still exact, shows that there are
two corrections to the Gaussian approximation q(xi):
one direct, local correction through εi(xi) and one
more indirect correction through the (weighted inte-
gral over) εj(xj)’s for j 6= i. The direct, local cor-
rection comes without additional cost and suggests a
second approximation,

p (xi|y) ≈ εi(xi)q(xi) ,

which will be denoted p̃ep-l
i (xi) and p̃la-l

i (xi) for
the approximations following the global EP and
Laplace approximation, respectively. The approxima-
tion p̃ep-l

i (xi) is the marginal of EP’s “tilted” distri-
bution qi(x) ∝ ti(xi)q\i(x) (e.g. Minka, 2001; Opper
et al., 2009).

To improve upon this approximation, we somehow
have to get a handle on the indirect correction

ci(xi) ≡
∫
dx\i q

(
x\i|xi

)∏
j 6=i

εj(xj) . (6)

The observation here is that, for each xi, we are in fact
back to the form (2): we have to estimate the normal-
ization constant of a sparse latent Gaussian model,

where q
(
x\i|xi

)
now plays the role of a sparse (n−1)-

dimensional Gaussian prior and the εj(xj) are terms
depending on a single variable. The idea is to choose a
grid of xi values, compute ci(xi) for each value of xi us-
ing our favorite method for computing normalization
constants, and numerically interpolate between the re-
sulting approximations. Running a complete proce-
dure, be it EP or Laplace’s method, for each xi is often
computationally too intensive and further approxima-
tions are needed to reduce the computational burden.

2.2.1 EP corrections

Let us write ε̃j(xj ;xi) for the term proxy of εj(xj) in
the context of approximating ci(xi). A full run of EP
for each xi may be way too expensive, so instead we
propose to make just one parallel step. Since the term
proxies of the global EP approximation are tuned to
make t̃j(xj) close to tj(xj), it makes sense to initial-
ize ε̃j(xj ;xi) to 1. Following the same procedure as
in (4), computing the new term proxy for term j then
amounts to choosing ε̃j(xj ;xi) such that∫

dxj {1, xj ,x2
j}q(xj |xi)ε̃j(xj ;xi) =∫
dxj {1, xj , x2

j}q(xj |xi)εj(xj) . (7)

Replacing the terms εj(xj) in (6) by their term prox-
ies ε̃j(xj ;xi) yields an estimate for ci(xi). The corre-
sponding approximation

p(xi|y) ≈ εi(xi)q(xi)
∫
dx\i q

(
x\i|xi

)∏
j 6=i

ε̃j(xj ;xi)

(8)
is referred to as p̃ep-1step

i (xi).

2.2.2 Laplace corrections

In our setting, the approximation proposed by Rue
et al. (2009) can be understood as follows. In principle,
one could, following Tierney and Kadane (1986), run
a Laplace approximation on

f(x\i;xi) ≡ q
(
x\i|xi

)∏
j 6=i

εj(xj) .

To do this, one would need to compute, for each value
of xi, the mode of f(x\i;xi) as well as (the deter-
minant of minus) the Hessian of log f(x\i;xi), evalu-
ated at this mode. We will refer to the corresponding
approximation as p̃la-tk

i (xi). Because finding the op-
timum of f(x\i;xi) is computationally rather expen-
sive, Rue et al. (2009) propose to replace the mode of
f(x\i;xi) by the mode of q(x\i|xi), i.e., the conditional
mean of the Laplace approximation, and to evaluate
the Hessian at this conditional mean. The correspond-
ing approximation, which we will refer to as p̃la-cm

i (xi),
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Figure 1: Various marginal corrections for a probit model with ti(xi) = Φ (4xi) and identical variances and correlations
in the prior p0, using expectation propagation (top row) and Laplace-type approximations (bottom row). The panels show
the corrections for a three-dimensional model with prior variances and correlations (v, c) = (1, 0.25) (left), (v, c) = (4, 0.9)
(middle) and for a 32-dimensional model (v, c) = (4, 0.95) (right).

is of the form (8), where now ε̃j(xj ;xi) follows from a
second-order Taylor expansion of log εj(xj) around the
mode (and thus mean) of q(xj |xi).

In order to further reduce computational effort, Rue
et al. (2009) suggest additional approximations that,
because they can only be expected to reduce the accu-
racy of the final approximation, will not be considered
in our experiments in Sections 2.3 and 4.

2.2.3 Bounds and factorized approximations

As we will discuss below, the computational bottle-
neck in the above procedures for approximating the
correction ci(xi) is not computing appropriate approx-
imations of the terms εj(xj), either through EP or
using Laplace’s method, but instead computing the
normalization of the resulting Gaussian form which
boils down to the computation of the determinant of a
sparse matrix. Here we propose a simplification, which
we motivate through its connection to bounds on the
marginal correction ci(xi).

Using Jensen’s inequality, we obtain the lower bound

ci(xi) ≥ exp

∑
j 6=i

∫
dxj q(xj |xi) log εj(xj)

 ≡ cli(xi) .
Following Minka (2005), we can also get an upper

bound:

ci(xi) ≤
∏
j 6=i

[∫
dxj q(xj |xi)εj(xj)n−1

]1/(n−1)

≡ cui (xi).

This upper bound will in many cases be useless because
the integral does not exist. The lower bound, which
corresponds to a mean-field-type approximation, does
not have this problem, but may still be somewhat con-
servative. We therefore propose the general family of
approximations

c
(α)
i (xi) =

∏
j 6=i

[∫
dxj q(xj |xi)εj(xj)α

]1/α
. (9)

It is easy to show that

cli(xi) ≤ c
(α)
i (xi) ≤ cui (xi) ∀ 0 ≤ α ≤ n− 1 ,

where α = 0 is interpreted as the limit α → 0. The
choice α = 1 makes the most sense: it gives exact re-
sults for n = 2 as well as when all xj ’s (indeed) happen
to be conditionally independent given xi. We refer to
the corresponding approximation as p̃ep-fact

i (xi).

Using (7), it is easy to see that p̃ep-fact
i (xi) corresponds

to p̃ep-1step
i (xi) if in (8) we would replace q(x\i|xi) by

the factorization
∏
j 6=i q(xj |xi), i.e., as if the variables

xj in the global Gaussian approximation are condition-
ally independent given xi. The same replacement in
the Laplace approximation yields the approximation
referred to as p̃la-fact

i (xi).
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Figure 2: Marginal corrections for a three-dimensional model with p (yi|xi, λ) = λe−λ|yi−xi|/2 (λ = 0.25, [y1, y2, y3] =
[−3, 0, 1]) and identical variances and correlations in p0, corresponding to a prior variance and correlation (v, c) = (9, 0.9).

2.2.4 Taylor expansions

To make the connection to the earlier work in (Op-
per et al., 2009), we expand the exact ci(xi) of (6) in
εj(xj) − 1 for all j 6= i. Keeping only lowest order
terms, we obtain

ci(xi) ≈ 1+
∑
j 6=i

∫
dxjq(xj |xi) [εj(xj)− 1] ≡ ctaylor

i (xi),

which coincides with the Taylor expansion of c(α)
i (xi)

of (9) for any α. An obvious approximation would be

pi(xi) ≈ qi(xi)εi(xi)ctaylor
i (xi) . (10)

The approximation proposed in (Opper et al., 2009)
goes one step further by Taylor expanding not only
εj(xj) for j 6= i, but also εi(xi) up to the same order,
which boils down to

pi(xi) ≈ q(xi) [εi(xi) + ctaylor
i (xi)− 1] ≡ p̃ep-opw

i (xi) .
(11)

Computing p̃ep-opw
i (xi) is as expensive as computing

p̃ep-fact(xi). Where p̃ep-opw
i (xi) can yield negative

probabilities, p̃ep-fact(xi) is nonnegative by construc-
tion. Furthermore, p̃ep-fact(xi) appears to be more
accurate (see below), if only because it prevents the
unnecessary step from (10) to (11).

2.3 Comparisons on toy models

To illustrate the correction methods, we take a probit
model with t (xi) = Φ (4xi), with Φ the Gaussian cu-
mulative density function, and a zero-mean prior p0

with covariance matrix Q−1 = v[(1 − c)I + c11T ].
The left and middle panels in Figure 1 show the
marginal corrections of the first component for a three-
dimensional model with (v, c) = (1, 0.25) and (v, c) =
(4, 0.9), respectively. The bars, in this and all other
figures, correspond to a large number of Monte Carlo
samples, either obtained through Gibbs or Metropolis

sampling, and are supposed to represent the gold stan-
dard. The local correction ep-l yields sufficiently ac-
curate approximations when the correlations are weak
(left-top), but is clearly insufficient when they are
strong (middle-top). The corrections ep-1step and
ep-fact yield accurate estimates and are almost indis-
tinguishable even for strong prior correlations. Only
when we increase the number of dimensions (here from
3 to 32) and with strong correlations (v, c) = (4, 0.95),
we can see small differences (right-top). As we can see
on Figure 1, ep-opw does slightly worse than ep-fact
and can indeed go negative.

It is known that the Laplace-type approximations does
not perform well on this model (e.g. Kuss and Ras-
mussen, 2005). The approximations tend to be accept-
able for weak correlations (bottom-left), with la-cm
and la-fact clearly outperforming la and la-l, but
are far off when the correlations are strong (bottom-
middle). The Laplace corrections suffer from essen-
tially the same problems as the global Gaussian ap-
proximation based on Laplace’s method: the mode and
the inverse Hessian badly represent the mean and the
covariance and fail to sufficiently improve it.

Expectation propagation can still be applied when the
Laplace approximation is doomed to fail. An example
is Bayesian linear regression with a double-exponential
prior (Seeger, 2008). Direct application of the Laplace
approximation makes no sense, because there is no lo-
cal curvature information available that properly rep-
resents the behavior of the function |x|. Figure 2 de-
scribes a toy model with the same characteristics. It
can be seen that the lowest order (Gaussian) EP ap-
proximation gets the mass right, but not the shape.
Local corrections already help a lot, and both factor-
ized and one-step EP corrections are practically indis-
tinguishable from the sampling results.

We compared the various methods on several other
toy models (not shown due to lack of space), leading
to similar observations. It is relatively easy to come
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up with models on which (all) Laplace-type approx-
imations fail and expectation propagation, in partic-
ular ep-1step and ep-fact are still fine. It is a lot
harder to find cases where the factorized approxima-
tions ep-fact and la-fact give quite different results
than the non-factorized and computationally more ex-
pensive ep-1step and la-cm: for this we really need
to go to high dimensions and strong correlations.

3 Inference in sparse models

In this section we review the computational complex-
ities of the Laplace approximation and expectation
propagation when applied to sparse Gaussian models,
i.e., models for which the n-dimensional precision ma-
trix Q of the Gaussian prior is sparse. Is expectation
propagation indeed orders of magnitude slower as sug-
gested in (Rue et al., 2009)?

3.1 Global approximations

The computational complexity for the Gaussian ap-
proximation based on both Laplace’s method and ex-
pectation propagation is dominated by several opera-
tions. 1) Computing the Cholesky factor, say L̃ of a
matrix Q̃, e.g., corresponding to the posterior approx-
imation p̃ep or p̃la, with the same sparsity structure as
the prior precision matrixQ. The computational com-
plexity, denoted cchol, in the worst case scales with n3,
but typically with nnzeros(Q)2/n, with nnzeros(Q)
the number of non-zeros in the precision matrix Q.
2) Computing the diagonal elements of the inverse of
Q̃. For sparse matrices, these can be computed effi-
ciently by solving the Takahashi equations (e.g. Eris-
man and Tinney, 1975; Rue et al., 2009), which take
the Cholesky factor L̃ as input. The computational
complexity, denoted ctaka, in the worst case scales with
n3, but typically scales with nnzeros(L)2/n. In prac-
tice, we experienced that it is significantly more expen-
sive than the Cholesky factorization, possibly due to
our implementation2. 3) Solving a triangular system of
the form L̃a = b, with corresponding computational
complexity ctria ∝ nnzeros(L).

To keep the number of non-zeros in the Cholesky fac-
tor to a minimum, we apply the approximate min-
imum degree reordering algorithm (Amestoy et al.,
1996), which is claimed to have the best average per-
formance (Ingram, 2006). Since the sparsity structure
is fixed, this reordering algorithm has to be run only
once, prior to running any other algorithm.

Laplace’s method. The maximum a-posteriori so-

2We used the Matlab implementation of the sparse
Cholesky factorization and a C implementation for solv-
ing the Takahashi equations.

lution required for Laplace’s method can be found,
for example, through a Newton method. Each New-
ton step requires one Cholesky factorization and the
solution of two triangular systems. To arrive at the
lowest-order marginals p̃la

i for all nodes i, we need the
diagonal elements of the covariance matrix, which can
be computed by solving the Takahashi equations us-
ing the Cholesky factor from the last Newton step.
So, in total, computing the lowest order marginals
p̃la
i for all nodes i using Laplace’s method scales with
nNewton

steps × (cchol + 2× ctria) + ctaka.

Expectation propagation. To update a term ap-
proximation t̃i (xi) according to Equation (4), we com-
pute q\i (xi) ∝ q (xi) /t̃i (xi) using the marginals q (xi)
from the current global approximation q (x) and re-
estimate the normalization constant and the first two
moments of ti (xi) q\i (xi). In standard practice, term
approximations t̃i are updated sequentially and all
marginal means and variances are recomputed using
rank one updates after term each update. Instead,
we adopt a parallel strategy, that is, we recompute
marginal means and variances only after we have up-
dated all term approximations t̃i, i = 1, . . . , n.

A parallel EP step boils down to: 1) compute the
Cholesky factorization of the current precision ma-
trix, 2) solve two triangular systems to compute the
current posterior mean and solve the Takahashi equa-
tions to compute the diagonal elements of the covari-
ance matrix, and 3) if necessary, use univariate Gauss-
Hermite numerical quadrature with nquad nodes to
compute the quantities in Equation (4). This adds
up to a computational complexity that scales with
nEP

steps × (cchol + 2× ctria + ctaka + n× nquad). After
convergence, EP yields the lowest order marginals p̃ep

i

for all nodes i.

Summarizing, because of the parallel scheme, we
use exactly the same computational tricks as with
Laplace’s method (Cholesky, Takahashi). Initializing
the term approximations in EP from the Laplace so-
lution and then doing a few EP steps to obtain better
estimates of the probability mass, makes EP just a
(small) constant factor slower than Laplace.

3.2 Marginal corrections

After running the global approximation, we are left
with some Gaussian q (x) with known precision ma-
trix, a corresponding Cholesky factor and single-node
marginals q(xi). We now consider the complexity of
computing a corrected marginal through the various
methods for a single node i, using ngrid grid points
(see the summary in Table 1).

The local corrections p̃la-l
i and p̃ep-l

i we get more or
less for free. All other correction methods require
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steps \ methods la-cm la-fact ep-1step ep-fact

q (xj |xi) ctria + n× ngrid ctria + n× ngrid ctria + n× ngrid ctria + n× ngrid

ε̃ (xj ;xi) n× ngrid n× ngrid n× ngrid × nquad n× ngrid × nquad

Norm. or det.-s cchol × ngrid n× ngrid cchol × ngrid n× ngrid

Table 1: Computational complexities of the steps for computing an improved marginal approximation for a particular
node i using the various methods. The frames highlight the complexities that typically dominate the computational
time. ctria, cchol, and ctaka refer to solving a sparse triangular system, a Cholesky factorization, and Takahashi equations,
respectively. ngrid refers to the number of grid points for xi and nquad to the number of quadrature points for xj .

the computation of the conditional densities q (xj |xi),
which amounts to solving two sparse triangular sys-
tems and (n− 1)× ngrid evaluations. To arrive at the
term approximations ε̃(xj ;xi), we need to compute
second order derivatives for the Laplace approxima-
tion and numerical quadratures for EP, which is about
nquad times more expensive. For la-fact, ep-fact,
and ep-opw, we then simply have to compute a prod-
uct/sum of n normalization terms. For la-tk, la-cm
and ep-1step, we need to compute the determinant
of an (n− 1)-dimensional sparse matrix, which costs a
Cholesky factorization.

4 Inference of the hyper-parameters

Until now, we considered estimating single-node
marginals conditioned upon the hyper-parameters. In
this section, we consider the estimation of the pos-
terior marginals that follow by integrating over the
hyper-parameters. For this we need the posterior of
the hyper-parameters given the observations, which is
approximated by p̃ (θ|y) ∝ p̃ (y|θ) p (θ), where p̃ (y|θ)
is the marginal likelihood approximation provided by
Laplace’s method or expectation propagation.

The basic idea is to compute the posterior mode of
p̃ (θ|y) as well as the Hessian at this mode (using fi-
nite differences), select a set of uniformly spaced grid
points along the scaled eigenvectors of this Hessian,
and use these to perform numerical quadrature using
the rectangle rule. We implemented a slight modifica-
tion of the method used by Rue et al. (2009), which
selects the grid points more efficiently (details to be
given in an expanded report).

Example. As an example for a sparse Gaussian model
we implemented the stochastic volatility model pre-
sented in (Rue et al., 2009). The data set consists
of 945 samples of the daily difference of the pound-
dollar exchange rate from October 1st, 1981, to June
28th, 1995. Similarly to Rue et al. (2009), we used
the first 50 observations. The observations yt given
the latent variables ηt are taken to be distributed
independently according to p (yt|ηt) = N (yt|0, eηt).

The latent field ηt is assumed to be the sum ηt =
ft+µ of a first-order auto-regressive Gaussian process
p (ft|ft−1, φ, τ) = N (ft|φft−1, 1/τ), with |φ| < 1, and
an additional Gaussian bias term p (µ) = N (µ|0, 1).
The prior on the hyper-parameter τ is taken to be
p (τ) = Γ (τ |1, 10) and a Gaussian prior N (0, 3) is
taken over φ′ = log ((1 + φ)/(1− φ)).

The results are shown in Figure 3. The Laplace and
EP approximation of the evidence are nearly indistin-
guishable (left), as are the posterior marginals of the
hyper-parameters (middle-left). Here EP is about a
factor 5 slower than Laplace. The posterior marginals
of f50 and µ obtained using the more involved meth-
ods (right half, bottom row) are practically indistin-
guishable from each other and the gold (sampling)
standard. This is not the case for the cheaper vari-
ants la, ep, and la-l, but is the case for ep-l (right
half, top row): apparently to obtain excellent posterior
marginals on this model, there is no need for (compu-
tationally expensive) higher-order corrections, but it
suffices to compute a single global EP approximation
per hyper-parameter setting and correct this for the
(non-Gaussian) local term.

5 Discussion

There are many options for further improvement, in
particular w.r.t. efficiency. The ideas behind the sim-
plified Laplace approximation of (Rue et al., 2009),
which aims to prevent the expensive computation of
a determinant for each xi, may well be applicable to
expectation propagation. However, if this indeed dom-
inates the computation times, the factorized approx-
imation proposed in this paper may well be a better
alternative. Incorporation of linear constraints on the
latent variables, although not considered in this paper,
should be relatively straightforward.

One of the main problems of expectation propagation
is that it is not guaranteed to converge and may run
into numerical problems. EP converged fine on the
problems considered in this paper, but even when it
does not, it can still be beneficial to start from the
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Figure 3: Plots of the posteriors for the stochastic volatility model in Section 4. The logarithm of posterior approximation
of the hyper-parameters with EP and Laplace’s method (left), their marginals (middle-left) and the posterior marginal
approximations of f50 and µ (right half) when integrated over the corresponding approximations of the hyper-parameters’
posterior. Dots show the hyper-parameters used for numerical integration; ellipses visualize the Hessian at the posterior
mode.

Laplace solution and make just a few steps to get a
better grip on the probability mass instead of relying
on the mode and the curvature.

For models with weak correlations and smooth non-
linearities, any approximation method gives decent re-
sults. It may well be possible to come up with cases
(strong correlations, hard nonlinearities), where any
deterministic approximation method fails. Most in-
teresting problems are somewhere in between, and for
those we can hardly tell how advanced and computa-
tionally intensive approximation method we need. The
heuristic suggested in (Rue et al., 2009), systematically
increase the complexity and stop when you do not ob-
tain further changes, appears risky. In particular when
going from the factorized to the non-factorized approx-
imations, it is often hard to see changes, but still both
approximations can be pretty far off. It would be in-
teresting to obtain a better theoretical understanding
of the (asymptotic) approximation errors implied by
the different approaches.
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