Reduced-Rank Hidden Markov Models

Sajid Siddiqi, Byron Boots, Geoffrey Gordon ; JMLR W&CP 9:741-748, 2010.

Abstract

Hsu et al.(2009) recently proposed an efficient, accurate spectral learning algorithm for Hidden Markov Models (HMMs). In this paper we relax their assumptions and prove a tighter finite-sample error bound for the case of Reduced-Rank HMMs, i.e., HMMs with low-rank transition matrices. Since rank-k RR-HMMs are a larger class of models than k-state HMMs while being equally efficient to work with, this relaxation greatly increases the learning algorithm's scope. In addition, we generalize the algorithm and bounds to models where multiple observations are needed to disambiguate state, and to models that emit multivariate real-valued observations. Finally we prove consistency for learning Predictive State Representations, an even larger class of models. Experiments on synthetic data and a toy video, as well as on difficult robot vision data, yield accurate models that compare favorably with alternatives in simulation quality and prediction accuracy.



Home Page

Papers

Submissions

News

Scope

Editorial Board

Announcements

Proceedings

Open Source Software

Search

Login



RSS Feed

Page last modified on Wed Mar 24 15:36 GMT 2010.

Copyright @ JMLR 2000. All rights reserved.