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Abstract

Penalized regression models are popularly used in high-dimensional data analysis
to conduct variable selection and model fitting simultaneously. Whereas success has
been widely reported in literature, their performances largely depend on the tuning
parameters that balance the trade-off between model fitting and model sparsity. Ex-
isting tuning criteria mainly follow the route of minimizing the estimated prediction
error or maximizing the posterior model probability, such as cross-validation, AIC and
BIC. This article introduces a general tuning parameter selection criterion based on a
novel concept of variable selection stability. The key idea is to select the tuning pa-
rameters so that the resultant penalized regression model is stable in variable selection.
The asymptotic selection consistency is established for both fixed and diverging dimen-
sions. The effectiveness of the proposed criterion is also demonstrated in a variety of
simulated examples as well as an application to the prostate cancer data.
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1 Introduction

The rapid advance of technology has led to an increasing demand for modern statistical

techniques to analyze data with complex structure such as the high-dimensional data. In

high-dimensional data analysis, it is generally believed that only a small number of variables

are truly informative while others are redundant. An underfitted model excludes truly

informative variables and may lead to severe estimation bias in model fitting, whereas an

overfitted model includes the redundant uninformative variables, increases the estimation

variance and hinders the model interpretation. Therefore, identifying the truly informative

variables is regarded as the primary goal of the high-dimensional data analysis as well as its

many real applications such as the health studies (Fan and Li, 2006).

Among other variable selection methods, penalized regression models have been popu-

larly used, which penalize the model fitting with various regularization terms to encourage

model sparsity, such as the lasso regression (Tibshirani, 1996), the smoothly clipped abso-

lute deviation (SCAD; Fan and Li, 2001), the adaptive lasso (Zou, 2006), and the truncated

l1-norm regression (Shen et al., 2012). In the penalized regression models, tuning parameters

are often employed to balance the trade-off between model fitting and model sparsity, which

largely affects the numerical performance and the asymptotic behavior of the penalized re-

gression models. For example, Zhao and Yu (2006) showed that, under the irrepresentable

condition, the lasso regression is selection consistent when the tuning parameter converges

to 0 at a rate slower than O(n−1/2). Analogous results on the choice of tuning parameters

have also been established for the SCAD, the adaptive lasso, and the truncated l1-norm

regression. Therefore, it is of crucial importance to select the appropriate tuning parameters

so that the performance of the penalized regression models can be optimized.

In literature, many classical selection criteria have been applied to the penalized regres-

sion models, including cross validation (Stone, 1974), generalized cross validation (Craven

2



and Wahba, 1979), Mallows’ Cp (Mallows, 1973), AIC (Akaike, 1974), BIC (Schwarz, 1978).

For instances, under certain regularity conditions, Wang et al. (2007) and Wang et al. (2009)

established the selection consistency of BIC for the SCAD, and Zhang et al. (2010) also

showed the selection consistency of generalized information criterion (GIC) for the SCAD.

Most of these criteria follow the route of minimizing the estimated prediction error or maxi-

mizing the posterior model probability. To the best of our knowledge, few criteria has been

developed directly focusing on the selection of the informative variables.

This article proposes a general tuning parameter selection criterion based on a novel

concept of variable selection stability. Similar stability measures have been studied in the

context of clustering (Ben-Hur et al., 2002; Wang, 2010) and variable selection (Meinshausen

and Buhlmann, 2010). The key idea is that if multiple samples are available from the

same distribution, a good variable selection method should yield similar sets of informative

variables that do not vary much from one sample to another. The similarity between two

informative variable sets is measured by Cohen’s kappa coefficient (Cohen, 1960), which

adjusts the actual variable selection agreement relative to the possible agreement by chance.

The effectiveness of the proposed selection criterion is demonstrated in a variety of simulated

examples and real applications. More importantly, its asymptotic selection consistency is

established, showing that the variable selection method with the selected tuning parameter

would recover the truly informative variable set with probability tending to one.

The rest of the article is organized as follows. Section 2 briefly reviews the penalized

regression models. Section 3 presents the idea of variable selection stability as well as the

proposed kappa selection criterion. Section 4 establishes the asymptotic selection consistency

of the kappa selection criterion. Simulation studies are given in Section 5, followed by a real

application in Section 6. Section 7 provides a direct extension of the proposed kappa selection

criterion. A brief discussion is provided in Section 8, and the Appendix is devoted to the

technical proofs.
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2 Penalized least squares regression

Consider the linear regression model

y = Xβ + ǫ =

p∑

j=1

βjx(j) + ǫ,

where y = (y1, · · · , yn)T , X = (x1, · · · ,xn)
T = (x(1), · · · ,x(p)) with xi = (xi1, · · · , xip)

T or

x(j) = (x1j , · · · , xnj)
T , β = (β1, · · · , βp)

T , E(ǫ) = 0 and cov(ǫ) = Σ. When p is large, it

is also assumed that only a small number of βj ’s are nonzero, corresponding to the truly

informative variables. In addition, both y and x(j)’s are centered, so the intercept can be

omitted in the regression model.

The general framework of the penalized regression models can be formulated as

argmin
β

1

n
‖y −Xβ‖2 +

p∑

j=1

pλ(|βj|), (1)

where ‖ · ‖ is the Euclidean norm, and pλ(|βj|) is a regularization term encouraging sparsity

in β. Widely used regularization terms include the lasso penalty pλ(θ) = λθ (Tibshirani,

1996), the SCAD penalty with p′λ(θ) = λ
(
I(θ ≤ λ) + (γλ−θ)+

(γ−1)λ
I(θ > λ)

)
(Fan and Li, 2001),

the adaptive lasso penalty pλ(θ) = λjθ = λθ/|β̂j| (Zou, 2006) with β̂j being some initial

estimate of βj, and the truncated l1-norm penalty pλ(θ) = λmin(1, θ) (Shen et al., 2012).

With appropriately chosen λn, all the aforementioned regularization terms are shown to

be selection consistent. Here a penalty term is said to be selection consistent if the probability

that the fitted regression model includes only the truly informative variables is tending to

one, and λ is replaced by λn to emphasize its dependence on n in quantifying the asymptotic

behaviors. In particular, Zhao and Yu (2006) showed that the lasso regression is selection

consistent under the irrepresentable condition when
√
nλn → ∞ and λn → 0; Fan and Li

(2001) showed that the SCAD penalty is selection consistent when
√
nλn → ∞ and λn → 0;
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Zou (2006) showed that the adaptive lasso penalty is selection consistent when nλn → ∞

and
√
nλn → 0; and Shen et al. (2012) showed that the truncated l1-norm penalty is also

selection consistent when λn satisfies a relatively more complex constraint.

Although the asymptotic order of λn is known to assure the selection consistency of

the penalized regression models, it remains unclear how to appropriately select λn in finite

sample so that the resultant model in (1) with the selected λn can achieve superior numerical

performance and attain asymptotic selection consistency. Therefore, it is in demand to devise

a tuning parameter selection criterion that can be employed by the penalized regression

models so that their variable selection performance can be optimized.

3 Tuning via variable selection stability

This section introduces the proposed tuning parameter selection criterion based on a novel

concept of variable selection stability. The key idea is that if we repeatedly draw samples

from the population and apply the candidate variable selection methods, a desirable method

should produce the informative variable set that does not vary much from one sample to

another. Clearly, variable selection stability is assumption free and can be used to tune any

penalized regression model.

3.1 Variable selection stability

For simplicity, we denote the training sample as zn. A base variable selection method

Ψ(zn;λ) with a given training sample zn and a tuning parameter λ yields a set of selected

informative variables A ⊂ {1, · · · , p}, called the active set. When Ψ is applied to various

training samples, different active sets can be produced. Supposed that two active sets A1

and A2 are produced, the agreement between A1 and A2 can be measured by Cohen’s kappa
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coefficient (Cohen, 1960),

κ(A1,A2) =
Pr(a)− Pr(e)

1− Pr(e)
. (2)

Here the relative observed agreement between A1 and A2 is Pr(a) = (n11 + n22)/p, and the

hypothetical probability of chance agreement Pr(e) = (n11 + n12)(n11 + n21)/p
2 + (n12 +

n22)(n21 + n22)/p
2, with n11 = |A1 ∩A2|, n12 = |A1 ∩Ac

2|, n21 = |Ac
1 ∩A2|, n22 = |Ac

1 ∩Ac
2|,

and | · | being the cardinality of a set. Note that −1 ≤ κ(A1,A2) ≤ 1, where κ(A1,A2) = 1

when A1 and A2 are in complete agreement with n12 = n21 = 0, and κ(A1,A2) = −1 when

A1 and A2 are in complete disagreement with n11 = n22 = 0 and n12 = n21 = p/2. Based on

(2), the variable selection stability is defined as follows.

Definition 1 The variable selection stability of Ψ(·;λ) is defined as

s(Ψ, λ, n) = E
(
κ(Ψ(Zn

1 ;λ),Ψ(Zn
2 ;λ))

)
, (3)

where the expectation is taken with respect to Zn
1 and Zn

2 , two independent and identically

training samples of size n, and Ψ(Zn
1 ;λ) and Ψ(Zn

2 ;λ) are two active sets obtained by applying

Ψ(·;λ) to Zn
1 and Zn

2 , respectively.

By definition, −1 ≤ s(Ψ, λ, n) ≤ 1, and large value of s(Ψ, λ, n) indicates a stable variable

selection method Ψ(·;λ). Note that the definition of s(Ψ, λ, n) relies on the unknown pop-

ulation distribution, therefore it needs to be estimated based on the only available training

sample in practice.

3.2 Kappa selection criterion

This section proposes an estimation scheme of the variable selection stability based on cross

validation, and develops a kappa selection criterion to tune the penalized regression models

by maximizing the estimated variable selection stability. Specifically, the training sample zn
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is randomly partitioned into two subsets zm1 and zm2 with m = ⌊n/2⌋ for simplicity. The base

variable selection method Ψ(·;λ) is applied to two subsets separately, and then two active

sets Â1λ and Â2λ are obtained, and s(Ψ, λ,m) is estimated as κ(Â1λ, Â2λ). Furthermore,

in order to reduce the estimation variability due to the splitting randomness, multiple data

splitting can be conducted and the averaged estimated variable selection stability over all

splittings is computed. The selected λ is then the one maximizing the averaged estimated

variable selection stability. The details of the proposed kappa selection criterion are given

as follows.

Algorithm 1 (kappa selection criterion) :

Step 1. Randomly partition (x1, · · · ,xn)
T into two subsets z∗b1 = (x∗b

1 , · · · ,x∗b
m)

T and

z∗b2 = (x∗b
m+1, · · · ,x∗b

2m)
T .

Step 2. Obtain Â∗b
1λ and Â∗b

2λ from Ψ(z∗b1 , λ) and Ψ(z∗b2 , λ) respectively, and the variable

selection stability of Ψ(·;λ) in the b-th splitting is estimated as

ŝ∗b(Ψ, λ,m) = κ(Â∗b
1λ, Â∗b

2λ).

Step 3. Repeat Steps 1-2 for B times. The averaged estimated variable selection stability

of Ψ(·;λ) is then

ŝ(Ψ, λ,m) = B−1

B∑

b=1

ŝ∗b(Ψ, λ,m).

Step 4. Compute ŝ(Ψ, λt, m) for a sequence of λt’s, and set λ̂ = minλt
{λt : λt ∈ Λ̂n} with

Λ̂n =
{
λ :

ŝ(Ψ, λ,m)

maxλt
ŝ(Ψ, λt, m)

≥ 1− αn

}
.

Note that the treatment in Step 4 is necessary since some informative variables may have

relatively weak effect compared with others. A large value of λ may produce an active set

that consistently overlooks the weakly informative variables, which leads to an underfitted
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model with large variable selection stability. To assure the asymptotic selection consistency,

the thresholding value αn in Step 4 needs to be small and converges to 0 as n grows. Setting

αn = 0.1 in the numerical experiments yields satisfactory performance based on our limited

experience. Furthermore, the sensitivity study in Section 5 suggests that αn has very little

effect on the selection performance when it varies in certain range.

In Steps 1-3, the estimation scheme based on cross-validation can be replaced by other

data re-sampling strategies such as bootstrap or random weighting, which do not reduce the

sample size in estimating Â∗b
1λ and Â∗b

2λ, but the independence between Â∗b
1λ and Â∗b

2λ will

no longer hold. Furthermore, since the true model is assumed to be sparse and containing

at least some informative variables, any λ leading to an active set with all variables or no

variable will be excluded from the comparison by setting the corresponding variable selection

stability as −1.

4 Asymptotic selection consistency

This section presents the asymptotic selection consistency of the proposed kappa selection

criterion. Without loss of generality, we assume that only the first p0 < p variables are

informative, and denote the truly informative variable set as AT = {1, · · · , p0} and the

uninformative variable set as Ac
T = {p0 + 1, · · · , p}. Furthermore, we denote rn ≺ sn if rn

converges to 0 at a faster rate than sn, rn ∼ sn if rn converges to 0 at the same rate as sn,

and rn � sn if rn converges to 0 at a rate not slower than sn.

4.1 Consistency with fixed p

To establish the asymptotic selection consistency with fixed p, the following technical as-

sumptions are made.

8



Assumption 1: There exist rn and sn such that the base variable selection method is

selection consistent if rn ≺ λn ≺ sn. That is,

P (Âλn
= AT ) ≥ 1− ǫn, for some ǫn → 0.

Assumption 2: For rn in Assumption 1, if λn � rn, the base variable selection method

is overfitted in that P
(
AT ⊆ Âλn

)
→ 1 and there exists a constant c0 > 0 such that for

sufficiently large n,

P
(
AT ∪ {j} ⊆ Âλn

)
≥ c0, for any j ∈ Ac

T . (4)

In Assumption 1, rn and sn specify an asymptotic working interval for λn so that the base

variable selection method is selection consistent. Assumption 2 is necessary since it implies

a natural order of the variable selection stability with respect to λn and it excludes the

degenerate variable selection methods that always produce the same Âλn
regardless of the

training sample. The inequality (4) can be replaced by a slightly stronger assumption that

the distribution of {X(j), j ∈ Ac
T} is exchangeable and the base variable selection method is

no worse than random guessing (Meinshausen and Buhlmann, 2010).

Note that Assumptions 1 and 2 are mild in that they are satisfied by many popular

variable selection methods. For instances, Lemma 1 shows that Assumptions 1 and 2 are

satisfied by the lasso regression, the SCAD, and the adaptive lasso. The assumptions can also

be verified for other methods such as elastic-net (Zou and Hastie, 2005), adaptive elastic net

(Zou and Zhang, 2009), group lasso (Yuan and Lin, 2006), and adaptive group lasso (Wang

and Leng, 2008).

Lemma 1 Assumptions 1 and 2 are satisfied by the lasso regression and the SCAD with

rn = n−1/2 and sn = o(1) under the assumptions in Zhao and Yu (2006) or Fan and Li

(2001), and by the adaptive lasso with rn = n−1 and sn = n−1/2 under the assumptions in

Zou (2006).
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Given that the base variable selection method is selection consistent with appropriately

selected λn’s, Theorem 1 shows that the proposed kappa selection criterion is able to identify

such λn’s.

Theorem 1 Under Assumptions 1 and 2, any variable selection method in (1) with λ̂n

selected as in Algorithm 1 with αn ≻ ǫn is selection consistent. That is, as n → ∞,

P (Âλ̂n
= AT ) −→ 1.

Theorem 1 claims the asymptotic selection consistency of the proposed kappa selection

criterion when p is fixed, which indicates that, with probability tending to one, the selected

active set by the resultant variable selection method with tuning parameter λ̂n contains only

the truly informative variables. It is worthy pointing out that as long as αn converges to 0

not too fast, the kappa selection criterion is guaranteed to be consistent. Therefore, the value

of αn is expected to have little effect on the performance of the kappa selection criterion,

which agrees with the sensitivity study in Section 5.

4.2 Consistency with diverging pn

In high-dimensional data analysis, it is of interest to study the asymptotic behavior of the

proposed kappa selection criterion with diverging pn, where p0 may also diverge with n. To

accommodate the diverging pn scenario, the technical assumptions are modified as follows.

Assumption 1a: There exist rn and sn such that if rn ≺ λn ≺ sn the base variable

selection method is selection consistent in that

P (Âλn
= AT ) ≥ 1− ǫn,

where ǫn ≺ p−1
n c0(pn), and c0(pn) is defined as in Assumption 2a.
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Assumption 2a: For rn in Assumption 1, if λn � rn, the base variable selection method

is overfitted in that P
(
AT ⊆ Âλn

)
→ 1 and for sufficiently large n,

P
(
AT ∪ {j} ⊆ Âλn

)
≥ c0(pn) > 0, for any j ∈ Ac

T , (5)

where c0(pn) is allowed to converge to 0 as pn diverges.

Compared with the previous assumptions in Section 4.1, Assumption 1a is slightly stronger

than Assumption 1 in that it requires the base variable selection method to be selection con-

sistent at a rate faster than p−1
n c0(pn), and Assumption 2a is weaker than Assumption 2 as

c0(pn) is allowed to converge to 0.

Theorem 2 Under Assumptions 1a and 2a, any variable selection method in (1) with λ̂n as

selected in Algorithm 1 with αn → 0 and ǫn/αn ≺ p−1
n c0(pn) is selection consistent.

Theorem 2 shows the asymptotic selection consistency of the proposed kappa selection

criterion with diverging pn, where the diverging speed of pn is bounded as in p−1
n c0(pn) ≻

ǫn and depends on the base variable selection method. For example, the exchangeability

assumption in Meinshausen and Buhlmann (2010) implies Assumption 2a with c0(pn) ≥ p−1
n ,

and thus p−1
n ≻ ǫ

1/2
n is sufficient for Assumption 1a. In addition, Zhao and Yu (2006) showed

that Assumption 1a is satisfied by the lasso regression with rn = nk/2p
1/2
n , sn = n(1−g1+g2)/2

and ǫn = O(pnn
kλ−2k

n ), where the error term is assumed to have finite 2k-th moment and

pn = o(n(g2−g1)k) with 0 ≤ g1 < g2 ≤ 1. However, it is relatively difficult to verify Assumption

1a for other variable selection methods with diverging pn as their convergence rate ǫn’s are

not explicitly specified (Fan and Peng, 2004; Huang et al., 2008).
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5 Simulations

This section examines the effectiveness of the proposed kappa selection criterion in simulated

examples. Its performance is compared against a number of popular competitors, includ-

ing Mallows’ Cp (Cp), BIC, 10-fold cross-validation (CV), and generalized cross validation

(GCV). Their formulations are given as follows,

Cp(λ) =
SSE

nσ̂2
+

2d̂f

n
, (6)

BIC(λ) =
SSE

nσ̂2
+

log(n)d̂f

n
, (7)

CV (λ) =
10∑

s=1

∑

(yk,xk)∈T−s

(
yk − xT

k β̂
(s)(λ)

)2
, (8)

GCV (λ) =
SSE

n(1− d̂f/n)2
, (9)

where SSE = ‖y − Xβ̂‖2, σ̂2 is an estimated σ2 based on the saturated model, and d̂f is

estimated as the number of nonzero variables in β̂(λ) (Zou et al., 2007). In (8), T s and T−s

are the training and validation sets in CV, and β̂(s)(λ) is the estimated β using the training

set T s and tuning parameter λ. The optimal λ̂ is then selected as the one that minimizes

the corresponding Cp(λ), BIC(λ), CV (λ), or GCV (λ), respectively.

To assess the performance of each selection criterion, we report the percentage of se-

lecting the true model over all replicates, as well as the number of correctly selected ze-

ros and incorrectly selected zeros in β̂(λ̂). The final estimate β̂(λ̂) is obtained by re-

fitting the standard least squares regression based only on the selected informative vari-

ables. We then compare the prediction performance through the relative prediction error

RPE = E
(
xT β̂(λ̂)− xTβ

)2
/σ2 (Zou, 2006).
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5.1 Scenario I: fixed p

The simulated datasets (xi, yi)
n
i=1 are generated from the model

y = xTβ + ǫ =

8∑

j=1

x(j)βj + ǫ,

where β = (3, 1.5, 0, 0, 2, 0, 0, 0)T , x(j) and ǫ are generated from standard normal distribution,

and the correlation between x(i) and x(j) is set as 0.5
|i−j|. This example has been commonly

used in literature, including Tibshirani (1996), Fan and Li (2001), and Wang et al. (2007).

For comparison, we set n = 40, 60 or 80 and implement the lasso regression, the adaptive

lasso and the SCAD as the base variable selection methods. The lasso regression and the

adaptive lasso are implemented by package ‘LARS’ (Efron et al., 2004) and the SCAD is

implemented by package ‘ncvreg’ (Breheny and Huang, 2011) in R. The tuning parameter

λ’s are selected via each selection criterion, optimized through a grid search over 100 grid

points {10−2+4l/99; l = 0, . . . , 99}. The number of splittings for the kappa selection criterion

is B = 20. Each simulation is replicated 100 times, and the percentage of selecting the true

active set, the averaged number of correctly selected zeros (C) and incorrectly selected zeros

(I), and the relative prediction error (RPE) are summarized in Tables 1-2 and Figure 1.

Tables 1-2 and Figure 1 about here

Evidently, the proposed kappa selection criterion delivers superior performance against

its competitors in terms of both variable selection accuracy and relative prediction error. As

shown in Table 1, the kappa selection criterion (Ks) has the largest probability of choosing

the true active set and consistently outperforms other selection criteria, especially when the

lasso regression is used as the base variable selection method. As the sample size n increases,

the percentage of selecting the true active set is also improving, which confirms the selection

consistency in Section 4.

13



Table 2 shows that the kappa selection criterion yields the largest number of correctly

selected zeros in all scenarios, and it yields almost perfect performance for the adaptive lasso

and the SCAD. In addition, all selection criteria barely select any incorrect zeros, whereas

the kappa selection criterion is relatively more aggressive in that it has small chance to

shrink some informative variables to zeros for the lasso regression. All other criteria tend

to be conservative and include some uninformative variables, so the numbers of correctly

selected zeros are significantly less than 5.

Besides the superior variable selection performance, the kappa selection criterion also de-

livers accurate prediction performance and yields small relative prediction error as displayed

in Figure 1. Note that other criteria, especially Cp and GCV, produce large relative predic-

tion errors, which could be due to their conservative selection of the informative variables.

To illustrate the effectiveness of the kappa selection criterion, we randomly select one

replication with n = 40 and display the estimated variable selection stability as well as the

results of detection and sparsity for various λ’s for the lasso regression. The detection is

defined as the percentage of selecting the truly informative variables, and the sparsity is

defined as the percentage of excluding the truly uninformative variables. In Figure 2, it

is clear that there is a positive relevance between the variable selection stability and the

values of detection and sparsity. More importantly, the selection performance of the kappa

selection criterion is very stable against αn when it is small. In specific, we apply the kappa

selection criterion on the lasso regression for αn = { l
100

; l = 0, . . . , 30} and compute the

corresponding averaged RPE over 100 replications. As shown in the last panel of Figure 2,

the averaged RPEs are almost the same for αn ∈ (0, 0.13), which confirms the theoretical

results in Section 4.

Figure 2 about here
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5.2 Scenario II: diverging pn

Next we compare all the selection criteria in the scenario with diverging pn with a similar

simulation model as in Scenario I, except that β = (5, 4, 3, 2, 1, 0, · · · , 0)T and pn = [
√
n].

More specifically, four cases are examined: n = 100, pn = 10; n = 200, pn = 14; n =

400, pn = 20; and n = 800, pn = 28. A similar simulation example is also studied in

Tibshirani (1996). The percentage of selecting the true active set, the averaged number of

correctly selected zeros (C) and incorrectly selected zeros (I), and the relative prediction

error (RPE) are summarized in Tables 3-4 and Figure 3.

Tables 3-4 and Figure 3 about here

The proposed kappa selection criterion still outperforms other competitors in both vari-

able selection and prediction performance. As illustrated in Tables 3-4, the kappa selection

criterion delivers the largest percentage of selecting the true active set among all the selection

criteria, and achieves perfect variable selection performance for the adaptive lasso and the

SCAD, and for the lasso regression with n ≥ 400. Furthermore, as shown in Figure 3, the

kappa selection criterion yields the smallest relative prediction error across all cases.

6 Real application

In this section, we apply the kappa selection criterion to the prostate cancer data (Stamey et

al., 1989), which were used to study the relationship between the level of log(prostate specific

antigen) (lpsa) and a number of clinical measures. The dataset consisted of 97 patients who

had received a radical prostatectomy, and eight clinical measures were log(cancer volume)

(lcavol), log(prostate weight) (lweight), age, log(benign prostaic hyperplasia amount) (lbph),

seminal vesicle invasion (svi), log(capsular penetration) (lcp), Gleason score (gleason) and

percentage Gleason scores 4 or 5 (pgg45).
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The dataset is randomly split into two halves: a training set with 67 patients and a

test set with 30 patients. Similarly as in the simulated examples, the tuning parameter λ’s

are selected through a grid search over 100 grid points {10−2+4l/99; l = 0, . . . , 99}. Since it

is unknown whether the clinical measures are truly informative or not, the performance of

all the selection criteria are compared by computing their corresponding relative prediction

errors (RPE) on the test data in Table 5.

Table 5 about here

As shown in Table 5, the proposed kappa selection criterion yields the sparsest model and

achieves the smallest relative prediction errors for the lasso regression and the SCAD, while

the relative prediction error for the adaptive lasso is comparable to the minima. Specifically,

the lasso regression and the SCAD with the kappa selection criterion include lcavol, lweight,

lbph and svi as the informative variables, and the adaptive lasso with the kappa selection

criterion selects only lcavol, lweight and svi as the informative variables. As opposed to the

sparse regression models produced by other selection criteria, the variable age is excluded

by the kappa selection criterion for all base variable selection methods, which agrees with

the findings in Zou and Hastie (2005).

7 Extended selection criterion

In this section, we present a direct extension by combining the kappa selection criterion and

the conventional cross-validation, which does not require the pre-specified thresholding value

αn in Algorithm 1.

To compute the cross-validation error, for Z∗
1 = {(y∗1, x∗

1), · · · , (y∗m, x∗
m)} and Z∗

2 =

16



{(y∗m+1, x
∗
m+1), · · · , (y∗n, x∗

n)}, we define

CV (Z∗
1 , Z

∗
2 ;λ) = n−1

(
m∑

i=1

(y∗i − x∗′
i β̂2λ)

2 +

n∑

i=m+1

(y∗i − x∗′
i β̂1λ)

2

)
, (10)

where β̂1λ and β̂2λ are obtained based on Z∗
1 and Z∗

2 , respectively. The details of the extended

selection criterion proceed as follows.

Algorithm 2 (extended selection criterion):

Steps 1-2. The same as those in Algorithm 1.

Step 3. Calculate CV (Z∗b
1 , Z∗b

2 ;λ) as in (10).

Step 4. Repeat Steps 1-3 for B times and obtain the following ratio,

ês(λ) =

B∑

b=1

κ(Â∗b
1λ, Â∗b

2λ)
/ B∑

b=1

CV (Z∗b
1 , Z∗b

2 ;λ). (11)

Step 5. Compute ês(λ) for a sequence of λ’s and select λ̂ = argmaxλ ês(λ).

The criterion (11) does not require the thresholding value αn since it will get small when λ

deviates from the true value. In specific, small λ leads to small variable selection stability as

discussed in Section 3, whereas large λ over-penalizes the model and may exclude some truly

informative variables, and thus leads to large cross-validation error. To demonstrate the

effectiveness of the extended selection criterion, we repeat the simulated example Scenario

I for n = 40 on the lasso regression. The percentage of selecting the true active set, the

averaged number of correctly selected zeros (C) and incorrectly selected zeros (I), and the

averaged RPE are summarized in Table 6. Figure 4 reports the results of detection and

sparsity for various λ’s as well as the extended selection criterion in (11) on the same sample.

Table 6 and Figure 4 about here

As expected the extended selection criterion is more conservative in variable selection
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than the kappa selection criterion because of the influence of cross-validation. It performs

slightly worse than the kappa selection criterion, but much better than other criterions.

8 Discussion

This article proposes a novel tuning parameter selection criterion based on the concept of

variable selection stability. Its key idea is to select the tuning parameter so that the resultant

variable selection method is stable in selecting the informative variables. The proposed

criterion delivers superior numerical performance in a variety of simulated examples and

real applications. Its asymptotic selection consistency is also established for both fixed and

diverging dimensions. Furthermore, it is worth pointing out that the idea of stability is

general and can be naturally extended to a broader framework of model selection, such as

the penalized nonparametric regression (Xue et al., 2010) and the penalized clustering (Sun

et al., 2012).

Appendix: technical proofs

Proof of Lemma 1: We prove Lemma 1 for (1) the lasso regression, (2) the adaptive lasso,

and (3) the SCAD, respectively.

(1): The lasso regression. The proof follows immediately after some existing results in

literature. When n1/2λn → ∞ and λn → 0, Assumption 1 is satisfied by the lasso regression

under the irrepresentable condition following Zhao and Yu (2006) and Yuan and Lin (2006),

and Assumption 2 is satisfied by the lasso regression following Zou (2006) and Bach (2008).

(2): The adaptive lasso. First, Zou (2006) showed that the adaptive lasso is selection

consistent when nλn → ∞ and
√
nλn → 0, so Assumption 1 is satisfied.
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To verify Assumption 2, we denote β∗ as the true coefficient, β = β∗ + u√
n
, and

Ψn(u) =
∥∥∥y −

p∑

j=1

x(j)

(
β∗
j +

uj√
n

)∥∥∥
2

+ nλn

p∑

j=1

∣∣∣β∗
j +

uj√
n

∣∣∣
|β̂L

j |
.

where β̂L
j is the estimator from the lasso regression. Let ûn = argminΨn(u), β̂n = β∗ + ûn√

n
,

and Vn(u) = Ψn(u)−Ψn(0) with

Vn(u) = uT
(XTX

n

)
u− 2ǫTX√

n
u+

√
nλn

p∑

j=1

√
n
(∣∣∣β∗

j +
uj√
n

∣∣∣− |β∗
j |
)

|β̂L
j |

.

Note that X
T
X

n
→ C, ǫTX√

n

d→ W T ∼ N(0,ΣC), and nλn → a with 0 ≤ a < ∞ implies

√
nλn → 0. Following similar treatment as in Zou (2006),

√
nλn

√
n(|β∗

j+
uj√
n
|−|β∗

j |)/|β̂L
j |

p→ 0

when β∗
j 6= 0, and

√
n(|β∗

j +
uj√
n
| − |β∗

j |) = |uj| when β∗
j = 0.

If a = 0, the asymptotic normality of β̂L
j implies that nλn

|√nβ̂L
j |

p→ 0 when β∗
j = 0, and then

it follows from the Slutsky’s theorem that

Vn(u)
d→ uTCu− 2W Tu.

Therefore, ûn
d→ C−1W , which implies that P (j ∈ Âλn

) → 1 for all j ∈ {1, · · · , p}, and thus

Assumption 2 is satisfied.

If 0 < a < ∞, the asymptotic normality of β̂n still holds, which implies that P (AT ⊆

Âλn
) → 1. It then suffices to consider the event j /∈ Âλn

for any j ∈ Ac
T . Note that when

j /∈ Âλn
, the Karush-Kuhn-Tucker (KKT) conditions imply that

∣∣∣2xT
(j)(y −Xβ̂n)

∣∣∣ ≤ n
λn

|β̂L
j |
.
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In addition,
2xT

(j)(y−Xβ̂n)√
n

=
xT
(j)X

√
n(β∗ − β̂n)

n
+

2xT
(j)ǫ√
n

,

By the asymptotic normality of β̂n and X
T
X

n
→ C, the Slutsky’s theorem implies that

2xT
(j)X

√
n(β∗− β̂n)/n

d→ N(0,∆1) for some ∆1, and 2xT
(j)ǫ/

√
n

d→ N(0, 4‖x(j)‖2Σ2
jj). There-

fore, as nλn → a with 0 < a < ∞,

P
(
j /∈ Âλn

)
≤ P

(∣∣∣2xT
(j)(y−Xβ̂n)

∣∣∣ ≤ n
λn

|β̂L
j |

)

= P
(∣∣∣

2xT
(j)X

√
n(β∗ − β̂n)

n
+

2xT
(j)ǫ√
n

∣∣∣|
√
nβ̂L

j | ≤ nλn

)
≤ 1− c1,

for some constant c1. Therefore, Assumption 2 is satisfied with c0 < c1.

(3): The SCAD. First, Fan and Li (2001) showed that the SCAD is selection consistent

when
√
nλn → ∞ and λn → 0, so Assumption 1 is satisfied.

Next, we show that the SCAD will be overfitted when
√
nλn → a with 0 ≤ a < ∞. By

Theorem 1 of Fan and Li (2001), β̂n is a
√
n-consistent estimate of β∗ when λn → 0, and

hence that P (AT ⊆ Âλn
) → 1. It then suffices to consider the event j /∈ Âλn

for any j ∈ Ac
T .

In fact, the SCAD minimizes

Q(β) =
∥∥∥y −

p∑

j=1

x(j)βj

∥∥∥
2

+ n

p∑

j=1

pλn
(|βj|), (12)

where the penalty term satisfies p′λ(θ) = λ
(
I(θ ≤ λ) + (γλ−θ)+

(γ−1)λ
I(θ > λ)

)
for some γ > 2 and

θ > 0. For any β ∈ {β : ‖√n(β̂n − β)‖ ≤ c2}, then

∂Q(β)

∂βj

= −2xT
(j)(y−Xβ) + np

′

λn
(|βj |)sgn(βj)

= −nλn




2xT
(j)

X
√
n(β∗−β)

n
+

2xT
(j)

ǫ
√
n√

nλn
− p

′

λn
(|βj|)sgn(βj)

λn


 ,
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whereXTX/n → C, ‖√n(β∗−β)‖ ≤ ‖√n(β∗−β̂n)‖+‖√n(β̂n−β)‖ is bounded in probability,

and 2xT
(j)ǫ/

√
n

d→ N(0, 4‖x(j)‖2Σ2
jj). In addition, p

′

λn
(|βj|)/λn = I(θ ≤ λn) +

(γλn−θ)+
(γ−1)λn

I(θ >

λn) ≤ 1. Therefore, as
√
nλn → a with 0 ≤ a < ∞,

P



∣∣∣∣∣∣

2xT
(j)

X
√
n(β∗−β)

n
+

2xT
(j)

ǫ
√
n√

nλn

∣∣∣∣∣∣
>

∣∣∣∣∣
p
′

λn
(|βj|)sgn(βj)

λn

∣∣∣∣∣




= P

(∣∣∣∣∣
2xT

(j)X
√
n(β∗ − β)

n
+

2xT
(j)ǫ√
n

∣∣∣∣∣ >
√
nλn

p
′

λn
(|βj|)
λn

)
→





c2, if a > 0

1, if a = 0,

for some constant c2 > 0. Therefore, if a > 0, there exists a constant c0 ≥ 0 such that with

a positive probability c0,

∂Q(β)

∂βj
< 0 when 0 < βj < Mn−1/2; (13)

∂Q(β)

∂βj
> 0 when −Mn−1/2 < βj < 0, (14)

with M sufficient large such that P
(
sup‖u‖=M Q

(
β∗ + (n−1/2 + an)u

)
> Q(β∗)

)
→ 1 and

an = max{p′

λn
(|β∗

j |) : β∗
j 6= 0}, which implies that P (β̂j 6= 0) ≥ c0 for sufficiently large n. If

a = 0, with probability tending to 1,

∂Q(β)

∂βj

< 0 when −Mn−1/2 < βj < Mn−1/2, (15)

and hence P (β̂j 6= 0) → 1. Therefore, Assumptions 2 is satisfied by the SCAD with rn =

n−1/2 and sn = o(1). This ends the proof of Lemma 1. �

Additional Notations: Note that any variable selection method is trivially stable if it

always selects the complete variable set or the empty variable set, however it violates the

assumption that the true active set is neither the complete set nor the empty set. In Algo-

rithm 1, the variable selection stabilities of such trivial methods are set as −1 and thus will
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never be selected. Therefore, it suffices to focus on the set of λ’s that lead to non-degenerate

variable selection methods. Specifically, for some fixed constant δ > 0, define

Λn =
{
λ : P (Âλ 6= ∅) ≥ δ and P (Âλ 6= {1, . . . , p}) ≥ δ

}
,

and a set of λ’s that lead to non-degenerate stable variable selection methods as

Λ̃n =
{
λ ∈ Λn : P

(
ŝ(Ψ, λ,m) ≥ 1− ηn

)
≥ 1− ξn for some ηn → 0 and ξn → 0

}
, (16)

where m = ⌊n
2
⌋ and the probability P is taken with respect to the training sample.

Lemma 2 For λn defined as in Assumption 1, the resultant variable selection method is

selection consistent in that P (Âλn
= AT ) ≥ 1− ǫn for some ǫn → 0, then for any ηn ≻ ǫn,

P
(
ŝ(Ψ, λn, m) ≥ 1− ηn

)
≥ 1− 2ǫn/ηn,

and hence that λn ∈ Λ̃n.

Proof of Lemma 2: For clarity, we denote λn satisfying Assumption 1 as λ∗
n, and then

the selection consistency implies that P (Âλ∗

n
= AT ) ≥ 1 − ǫn for some ǫn → 0. We further

denote Â∗b
1λ∗

n
and Â∗b

2λ∗

n
as the corresponding active sets obtained from two sub-samples at

the b-th random splitting. Then the estimated variable selection stability based on the b-th

splitting can be bounded as

P
(
ŝ∗b(Ψ, λ∗

n, m) = 1
)
= P

(
Â∗b

1λ∗

n
= Â∗b

2λ∗

n

)
≥ P

(
Â∗b

1λ∗

n
= AT

)2
≥ (1− ǫn)

2 ≥ 1− 2ǫn.

By the fact that 0 ≤ ŝ∗b(Ψ, λ∗
n, n) ≤ 1,

E
(
ŝ(Ψ, λ∗

n, m)
)
= E

(
B−1

B∑

b=1

ŝ∗b(Ψ, λ∗
n, m)

)
= E

(
ŝ∗b(Ψ, λ∗

n, m)
)
≥ 1− 2ǫn.
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In addition, since 0 ≤ ŝ(Ψ, λ∗
n, n) ≤ 1, and the Markov inequality yields that

P
(
1− ŝ(Ψ, λ∗

n, m) ≥ ηn

)
≤

E
(
1− ŝ(Ψ, λ∗

n, m)
)

ηn
≤ 2ǫn

ηn
,

which implies the desired result immediately. �

Lemma 2 shows that if a variable selection method is selection consistent, its variable

selection stability converges to 1 in probability. It also assures that there always exists λn

such that the resultant variable selection method is stable and non-degenerate.

Proof of Theorem 1: Let rn ≺ λ∗
n ≺ sn, Assumption 1 implies that P (Âλ∗

n
= AT ) ≥ 1−ǫn

for some ǫn → 0, and Lemma 2 implies that λ∗
n ∈ Λ̃n. Denote λ̃n = m̃inλ{λ : λ ∈ Λ̃n} with

m̃in representing minimization up to a constant, and hence that λ̃n � λ∗
n. Then we prove

Theorem 1 in two steps. Step 1 shows that the variable selection method with λ̃n is selection

consistent, and step 2 assures that P (λ̃n ∼ λ̂n) → 1 with λ̂n being defined as in Algorithm

1. The desired result follows immediately after these two steps.

Step 1 is proved by contradiction. If the variable selection method with λ̃n is not selection

consistent, then by Assumption 1 we have λ̃n ⊁ rn or λ̃n ⊀ sn. Without loss of generality, we

assume that the limits of r−1
n λ̃n and s−1

n λ̃n exist (where the limit of s−1
n λ̃n can be infinity),

since otherwise we can focus on the corresponding convergent subsequences r−1
nm

λ̃nm
and

s−1
nm

λ̃nm
. Then λ̃n ⊁ rn implies that (1) r−1

n λ̃n → a ≥ 0, and λ̃n ⊀ sn implies that (2)

s−1
n λ̃n → b > 0, where b can be infinity. We now show that both (1) and (2) will lead to

contradictions.

If case (2) occurs, λ̃n � sn ≻ λ∗
n, which contradicts with the fact that λ̃n � λ∗

n.

If case (1) occurs, by Assumption 2, there exists a constant c0 > 0 such that for any

j ∈ Ac
T , P

(
AT ∪ {j} ⊆ Âλ̃n

)
≥ c0 for sufficiently large n. In addition, there also exists

j1 ∈ Ac
T such that P

(
j1 /∈ Âλ̃n

)
≥ c3 > 0 when n is sufficiently large, since otherwise
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P
(
Âλ̃n

= {1, . . . , p}
)
→ 1 which contradicts with the fact that λ̃n ∈ Λn. Therefore,

P
(
Â∗b

1λ̃n
6= Â∗b

2λ̃n

)
≥ P

(
j1 /∈ Â∗b

1λ̃n
, j1 ∈ Â∗b

2λ̃n

)
≥ c0c3,

for sufficiently large n, where the last inequality follows from the fact that the two sub-

samples are independent.

Since Â∗b
1λ̃n

6= Â∗b
2λ̃n

implies that ŝ∗b(Ψ, λ̃n, m) ≤ c4 with c4 = maxA1 6=A2 κ(A1,A2) ≤ p−1
p

where A1,A2 ⊂ {1, · · · , p}, we have for sufficiently large n,

P
(
ŝ∗b(Ψ, λ̃n, m) ≤ c4

)
≥ c0c3.

Therefore, for any B > 0 and sufficiently large n,

E
(
ŝ(Ψ, λ̃n, m)

)
= E

(
B−1

B∑

b=1

ŝ∗b(Ψ, λ̃n, m)
)
= E

(
ŝ∗1(Ψ, λ̃n, m)

)
≤ 1− c0c3(1− c4),

which is a constant strictly less than 1. By the Markov inequality, for any ηn → 0,

P
(
ŝ(Ψ, λ̃n, m) ≥ 1− ηn

)
≤

E
(
ŝ(Ψ, λ̃n, m)

)

1− ηn
≤ 1− c0c3(1− c4)

1− ηn
→ 1− c0c3(1− c4). (17)

This contradicts with the fact that P
(
ŝ(Ψ, λ̃n, m) ≥ 1− ηn

)
≥ 1− ξn for some ξn → 0. This

ends the proof of step 1.

Next we show that P (λ̃n ∼ λ̂n) → 1. On one hand, setting αn → 0 and αn ≻ ǫn in

Algorithm 1 yields that

ŝ(Ψ, λ̂n, m) ≥ (1− αn)max
λ

ŝ(Ψ, λ,m) ≥ (1− αn)ŝ(Ψ, λ∗
n, m).
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Then by Lemma 2 and the fact that αn ≻ ǫn, P
(
ŝ(Ψ, λ∗

n, m) ≥ 1−αn

)
≥ 1− 2ǫn

αn
. Therefore,

P
(
ŝ(Ψ, λ̂n, m) ≥ (1− αn)(1− αn)

)
≥ 1− 2ǫn

αn
.

Since (1− αn)
2 ≥ 1− 2αn, αn → 0 and ǫn/αn → 0, we have P (λ̂n ∈ Λ̃n) → 1, which implies

that P (λ̂n � λ̃n) → 1.

On the other hand, since λ̃n = m̃inλ{λ : λ ∈ Λ̃n} and αn → 0,

P
( ŝ(Ψ, λ̃n, m)

maxλ ŝ(Ψ, λ,m)
≥ 1− αn

)
= P

(
ŝ(Ψ, λ̃n, m) ≥ (1− αn)max

λ
ŝ(Ψ, λ,m)

)

≥ P
(
ŝ(Ψ, λ̃n, m) ≥ 1− αn

)
→ 1,

and hence that P (λ̃n ∈ Λ̂n) → 1, which implies that P (λ̃n � λ̂n) → 1. Therefore, step 2 is

proved, and Theorem 1 follows immediately after steps 1 and 2. �

Proof of Theorem 2: In the diverging pn case, we denote the set of λ’s that lead to

non-degenerate stable variable selection methods as

Λ̃pn =
{
λ ∈ Λn : P

(
ŝ(Ψ, λ,m) ≥ 1−ηn

)
≥ 1−ξn for some ηn → 0 and ǫn ≺ ξn ≺ p−1

n c0(pn)
}
,

where Λ̃pn depends on the dimension pn. We further denote λ̃pn = m̃inλ{λ : λ ∈ Λ̃pn} with

m̃in representing minimization up to a constant.

First, since ǫn ≺ p−1
n c0(pn), it implies that there always exists ηn → 0 such that ǫn ≺

ǫn/ηn ≺ p−1
n c0(pn), and thus λ∗

n ∈ Λ̃pn by Lemma 2. Next, we prove Theorem 2 in the same

two steps as in the proof of Theorem 1. Step 1 shows that the variable selection method

with λ̃pn is selection consistent, and step 2 assures that P (λ̃pn ∼ λ̂n) → 1 with λ̂n being

defined as in Algorithm 1.

Both steps can be shown similarly as in the proof of Theorem 1 after some slight modifi-

cation. In fact, Step 1 can be showed by deriving similar contradictions, except that in (17),
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since c4 ≤ pn−1
pn

,

P
(
ŝ(Ψ, λ̃pn, m) ≥ 1− ηn

)
≤ 1− c0(pn)c3(1− c4)

1− ηn
≤ 1− p−1

n c0(pn)c3
1− ηn

,

which still leads to contradiction with the fact that λ̃pn ∈ Λ̃pn. Step 2 can be shown similarly

by setting αn → 0 and ǫn/αn ≺ p−1
n c0(pn) in Algorithm 1, which yields that P

(
ŝ(Ψ, λ̂n, m) ≥

(1− αn)(1− αn)
)
≥ 1− 2ǫn

αn
, and

P
( ŝ(Ψ, λ̃n, m)

maxλ ŝ(Ψ, λ,m)
≥ 1− αn

)
≥ P

(
ŝ(Ψ, λ̃n, m) ≥ 1− αn

)
→ 1.

This ends the proof of Theorem 2. �
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Table 1: The percentages of selecting the true active set for various selection criteria in
simulation 1.

n Penalty Ks Cp BIC CV GCV

Lasso 0.63 0.16 0.29 0.09 0.16
40 Ada lasso 0.98 0.53 0.75 0.63 0.52

SCAD 0.98 0.55 0.81 0.76 0.52

Lasso 0.81 0.16 0.35 0.14 0.17
60 Ada lasso 0.99 0.52 0.87 0.65 0.52

SCAD 1 0.58 0.88 0.76 0.56

Lasso 0.89 0.16 0.38 0.09 0.16
80 Ada lasso 0.99 0.56 0.88 0.77 0.56

SCAD 0.99 0.62 0.89 0.75 0.61

Table 2: The averaged numbers of correctly selected zeros (C) and incorrectly selected zeros
(I) for various selection criteria in simulation 1.

Ks Ks Cp Cp BIC BIC CV CV GCV GCV

n Penalty C I C I C I C I C I

Lasso 4.58 0.01 3.26 0 3.68 0 2.66 0 3.25 0
40 Ada lasso 4.98 0 4.16 0 4.59 0 4.25 0 4.15 0

SCAD 4.99 0.01 4.11 0 4.63 0 4.39 0 4.06 0

Lasso 4.8 0 3.12 0 4 0 2.85 0 3.13 0
60 Ada lasso 4.99 0 4.17 0 4.84 0 4.35 0 4.17 0

SCAD 5 0 4.15 0 4.84 0 4.37 0 4.12 0

Lasso 4.88 0 3.01 0 4.05 0 2.66 0 3 0
80 Ada lasso 4.99 0 4.19 0 4.84 0 4.49 0 4.19 0

SCAD 4.99 0 4.23 0 4.83 0 4.45 0 4.22 0
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Table 3: The percentages of selecting the true active set for various selection criteria in
simulation 2.

n pn Penalty Ks Cp BIC CV GCV

Lasso 0.89 0.11 0.22 0.09 0.11
100 10 Ada lasso 1 0.58 0.89 0.70 0.58

SCAD 1 0.58 0.89 0.80 0.57

Lasso 0.96 0.02 0.09 0 0.02
200 14 Ada lasso 1 0.41 0.93 0.80 0.42

SCAD 1 0.43 0.91 0.77 0.43

Lasso 1 0.04 0.07 0.01 0.04
400 20 Ada lasso 1 0.3 0.87 0.72 0.29

SCAD 1 0.37 0.88 0.72 0.37

Lasso 1 0 0.03 0 0
800 28 Ada lasso 1 0.22 0.94 0.77 0.22

SCAD 1 0.34 0.98 0.76 0.34

Table 4: The averaged numbers of correctly selected zeros (C) and incorrectly selected zeros
(I) for various selection criteria in simulation 2.

Ks Ks Cp Cp BIC BIC CV CV GCV GCV

n pn Penalty C I C I C I C I C I

Lasso 4.88 0 2.80 0 3.37 0 2.60 0 2.80 0
100 10 Ada lasso 5 0 4.34 0 4.84 0 4.45 0 4.34 0

SCAD 5 0 4.32 0 4.84 0 4.64 0 4.30 0

Lasso 8.96 0 5.52 0 6.70 0 5.13 0 5.53 0
200 14 Ada lasso 9 0 7.71 0 8.92 0 8.37 0 7.73 0

SCAD 9 0 7.59 0 8.89 0 8.37 0 7.58 0

Lasso 15 0 9.52 0 11.78 0 9.24 0 9.52 0
400 20 Ada lasso 15 0 12.48 0 14.83 0 14.10 0 12.47 0

SCAD 15 0 12.60 0 14.81 0 14.06 0 12.59 0

Lasso 23 0 16.50 0 19.44 0 16.39 0 16.40 0
800 28 Ada lasso 23 0 19.95 0 22.94 0 22.54 0 19.95 0

SCAD 23 0 19.59 0 22.98 0 22.28 0 19.59 0
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Table 5: The selected active sets and the relative prediction errors (RPE) for various selection
criteria in the prostate cancer example.

Penalty Ks Cp BIC CV GCV

Active Lasso 1,2,4,5 1,2,3,4,5,6,7,8 1,2,4,5 1,2,3,4,5,7,8 1,2,3,4,5,6,7,8
Set Ada lasso 1,2,5 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5,6,7,8 1,2,3,4,5

SCAD 1,2,4,5 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5,6,7,8 1,2,3,4,5

Lasso 0.734 0.797 0.734 0.807 0.797
RPE Ada lasso 0.806 0.825 0.825 0.797 0.825

SCAD 0.734 0.825 0.825 0.797 0.825

Table 6: The percentage of selecting the true active set, the averaged number of correctly
selected zeros (C) and incorrectly selected zeros (I), and the relative prediction error (RPE)
of Algorithm 2 (Extended) compared with that of Algorithm 1 (Ks).

Algorithms Percentage C I RPE (s.d.)

Ks 0.63 4.58 0.01 0.088 (0.021)
Extended 0.45 4.16 0 0.100 (0.012)
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Figure 1: Relative prediction errors (RPE) for various selection criteria in simulation 1,
where ‘K’, ‘Cp’, ‘B’, ‘C’ and ‘G’ represent the kappa selection criterion, Mallows’ Cp, BIC,
CV and GCV, respectively.
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Figure 2: The detection and sparsity of the lasso regression with the kappa selection criterion
in simulation 1 are shown on the top, and the sensitivity of α to the relative prediction error
is shown on the bottom.
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Figure 3: Relative prediction errors (RPE) for various selection criteria in simulation 2,
where ‘K’, ‘Cp’, ‘B’, ‘C’ and ‘G’ represent the kappa selection criterion, Mallows’ Cp, BIC,
CV and GCV, respectively.
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Figure 4: The detection and sparsity of the lasso regression with the extended selection
criterion (denoted as Extended) in Algorithm 2 .
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