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Abstract

To quickly achieve good performance, reinforcement-legrralgorithms for acting in large
continuous-valued domains must use a representationsthatf suf ciently powerful to capture
important domain characteristics, and yet simultanecaisbyvs generalization, or sharing, among
experiences. Our algorithm balances this tradeoff by uaiatpchastic, switching, parametric dy-
namics representation. We argue that this model charaetea number of signi cant, real-world
domains, such as robot navigation across varying terraia.pkve that this representational as-
sumption allows our algorithm to be probably approximatslyrect with a sample complexity that
scales polynomially with all problem-speci ¢ quantitiescluding the state-space dimension. We
also explicitly incorporate the error introduced by appneate planning in our sample complexity
bounds, in contrast to prior Probably Approximately Cor@AC) Markov Decision Processes
(MDP) approaches, which typically assume the estimated M@Pbe solved exactly. Our experi-
mental results on constructing plans for driving to workngsieal car trajectory data, as well as a
small robot experiment on navigating varying terrain, dastmte that our dynamics representation
enables us to capture real-world dynamics in a suf cient negirio produce good performance.

Keywords: reinforcement learning, provably ef cient learning

1. Introduction

Reinforcement learning (RL) (Sutton and Barto, 1998) has had some dsiypeereal-world suc-
cesses, including model helicopter ying (Ng et al., 2004) and expévaoe backgammon players
(Tesauro, 1994). Two of the key challenges in reinforcement leaarmgcaling up to larger, richer
domains, and developing principled approaches for quickly learningrforpewell. Our interest
lies in developing algorithms for large continuous-valued environments dimgyroblems such as
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learning the best route to drive to work, or how a remote robotic rovelezan to traverse different
types of terrain. To perform learning ef ciently in such environmentswileassume that the world
dynamics can be compactly described by a small set of simple parametric nmadisgs one for
driving on highways and another for driving on small roads. We willvprthat this assumption
allows our algorithm to require an amount of experience that only scalgagnially with the
state space dimension. We will also empirically demonstrate that these assuraptioaalistic for
several real world data sets, indicating that our Continuous-Offdatéteement Learning (CORL)
algorithm may be well suited for large, high-dimensional domains.

A critical choice in the construction of a reinforcement-learning algorithmois to balance
between actions that gather information about the world environment (axiplo) versus actions
that are expected to yield high reward given the agent's current estifates world environment
(exploitation). In early work, algorithms such as Q-learning were showetimrm optimally in the
limit of in nite data (Watkins, 1989), but no nite-sample guarantees werevmn. More recently
there have been three main branches of model-based reinforcememtde@search concerned
with the exploration problem. The rst consists of heuristic approachasesof which perform
very well in practice, but lack performance guarantees (for examplg dad Stone 2007). The
second branch strives to perform the action that optimally balances etiptosad exploitation at
each step. Such Bayesian approaches include the model parameterdhiesidate space of the
problem. Poupart et al. (2006) assumed a fully observed discrete gtate and modeled the un-
derlying model parameters as hidden states, effectively turning the prafble a continuous-state
partially observable Markov decision process (POMDP). Castro ascupr(2007) also assumed
a fully observed discrete state space but represented the model pasaaseteunts over the dif-
ferent transitions and reward received, thereby keeping the prdilgnmobservable. Doshi et al.
(2008) considered a Bayesian approach for learning when the @istete space is only partially
observable, and Ross et al. (2008) considered learning in a partiEbrged continuous-valued
robot navigation problem. Approaches in the Bayesian RL frameworkntoninherent complex-
ity problems and typically produce algorithms that only approximately solve thrgiettaptimality
criteria.

In our work we will focus on achieving near optimality, making precise guaes on when,
and with what probability, it will be achieved. This type of approach to mrgment learning
was commenced by Kearns and Singh (2002) and Brafman and Terftizef@@®2) who created
algorithms that were guaranteed to achieve near optimal performancelurt alsmall number of
samples, with high probability. We will refer to work in this line of research@®ebably approx-
imately correct” (PAC-MDP), as introduced by Strehl et al. (2006), ailddiscuss it further in
the sections that follow. One of the appealing aspects of this area overeaiBa RL approach is
that it allows one to make precise statements about the ef ciency and penfioce of algorithms:
if the MDP or POMDP used in the Bayesian RL approach could be solvettlgxgith an infor-
mative prior, then this approach would likely outperform PAC-MDP apginea. However, when a
Bayesian RL problem is only approximately solved or when the prior informasiancorrect, it is
unknown how far the resulting solution is from the optimal behavior. Oukwes within this third
PAC-MDP approach, and draws upon the past advances made in thefdsitcluding our own
initial work in this area (Brunskill et al., 2008). The current work makesgai cant theoretical
generalization of our initial results which requires different proof téghes, and presents a number
of new experiments and discussions.
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Within the PAC-MDP line of research, there has been little work on directlysidening
continuous-valued states. One exception is the work of Strehl and Littn@@8)2who consid-
ered learning in continuous-valued state-action spaces. Their warknadghat a single dynamics
representation was shared among all states, and that the noise pardnietatymamics represen-
tation was known. The focus of their paper was slightly different than tineent work, in that the
authors presented a new online regression algorithm for determiningevioeigh information was
known to make accurate predictions.

An alternate approach to handling continuous state spaces is to discretygmatieeinto a grid.
This step enables prior PAC-MDP algorithms such as R-max (Brafman amkfiboltz, 2002) to
be applied directly to the discretized space. However, their represersatisaworld may not fully
exploit existing structure. In particular, such a representation regthia¢she dynamics model for
each state-action tuple is learned independently. Since each state-antiwavezentirely different
dynamics, this approach has a great deal of representational gdaveever, as there is no sharing
of dynamics information among states, it has a very low level of generalizati@ontrast, the work
of Strehl and Littman (2008) and the classic linear quadratic Gaussialateguonodel (Burl, 1998)
assume that the dynamics model is the same for all states, greatly restrictirgptesentational
power of these models in return for higher generalization and fast lgarnin

Recently, there have been several approaches that explore the nrimlahel @f representational
power and generalization ability. Jong and Stone (2007) assumed thgndmids model between
nearby states was likely to be similar, and used an instance-based dpfreatve a continuous-
state RL problem. Their experimental results were encouraging but neetluad guarantees were
provided, and the amount of data needed would typically scale exponentidilyhe state-space
dimension. A stronger structural assumption is made in the work of Lef el.ef2007), which
focused on domains in which the discrete state space is divided into a spéesf §tates within the
same type were assumed to have the same dynamics. The authors proadygbdtrepresentation
can require signi cantly less experience to achieve good performamtpared to a standard R-
max algorithm that learns each state-action dynamics model separately.

Our work draws on the recent progress and focuses on contiraiatgs-discrete-action, typed
problems. By using a parametric model to represent the dynamics of eadlisafrete set of types,
we sacri ce some of the representational power of prior approadtef( et al., 2007; Brafman
and Tennenholtz, 2002) in return for improved generalization, but stdlne much more exible
representation than approaches that assume a single dynamics modedhbatisacross all states.
In particular, we prove that restricting our representational poweblesaur algorithm to have a
sample complexity that scalpslynomiallywith the state-space dimension. An alternate approach
is to place a uniformly spaced grid over the state space and solve the prosiegnthe existing
algorithms from Lef er et al. (2007) or Brafman and Tennenholtz (2002owever, this strategy
results in an algorithm whose computational complexity scales exponentially \gitstake-space
dimension.

Our algorithm involves a subroutine for solving a continuous-state MDRjtkacurrent model
estimates. Outside of special cases like the linear Gaussian quadratidaoegutdblem (Burl,
1998), planning cannot be performed exactly for generic contingtate-MDPs. Therefore we ex-
plicitly incorporate the error introduced by approximate planning in our saogotglexity bounds.
This is in contrast to prior PAC-MDP approaches, which typically assumegtimated MDP can
be solved exactly.
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In particular, our dynamics representation is a simple noisy offset modetevthe next state
is presumed to be a function of the prior state, plus an offset and somsi@adsstributed noise.
The offset and Gaussian parameters are assumed to be speci ed bpehefiyhe state and action
a, thereby allowing all states of the same type to share dynamics parameteestavioally,

L= s+ by + ey (1)

wheresis the current statelis the next stateey N (0; Sy) is drawn from a zero-mean Gaussian
with covarianceS,;, andbyg is the offset.

In our experimental section we rst demonstrate our algorithm on the stdfitlaPuddleWorld
problem of Boyan and Moore (1995). We next illustrate the importanceashileg the variance
of different types by an example of an agent with a hard time deadline. Titeekample is a
simulated decision problem in which an agent is trying to learn the best rautigifing to work.
The simulator uses real car-trajectory data to generate its trajectories. lmattexperiment, a real
robot car learns to navigate varying terrain. These experiments demaenttat the noisy offset
dynamics model, while simple, is able to capture real world dynamics for tworgiffelomains
suf ciently adequately to allow the agent to quickly learn a good strategy.

At a high level, our work falls into the category of model-based reinforecgdearning algo-
rithms in which the MDP model (Equation 1) can K&VIK-learned(Li et al., 2008; Li, 2009),
and thus it is ef cient in exploring the world. The Knows Whats It Knows/NKK) framework is
an alternate learning framework which incorporates characteristics &frtmbly Approximately
Correct (PAC) learning framework, which will be discussed furthéolweand the mistake bound
framework. Though our theoretical development will follow a PAC-stylerapch, the KWIK
framework provides another justi cation of the soundness and effaotiss of our algorithm.

The focus of this paper is on the sample complexity of the CORL algorithm. CQRunaes
an approximate MDP planner to solve the current estimated MDP, and ksuehaapproximate
planners with guarantees on the resulting solution involve a discretizatorethats in an expo-
nential tiling of the state space. In such cases the computational complexit@RE @vill scale
exponentially with the number of dimensions. However, the experimentdigefmonstrate that
CORL exhibits computational performance competitive with or better than exiagipgaches.

The rest of the paper proceeds as follows. In Section 2, we will briégsguks the background
to our work and then present the CORL algorithm. Section 3 presents auetival analysis of our
algorithm. In Section 4 we present experimental results, and in Section brvetude and discuss
future work.

2. A Continuous-state Offset-dynamics Reinforcement Learer

This section introduces terminology and then presents our algorithm, CORL.

2.1 Background

The world is characterized by a continuous-state discounted MBPHS; A; p(ss;a); R;d where
S RN is theN-dimensional state spacA,is a set of discrete actiong(s]s;a) is the transition
dynamicsg?2 [0;1) is the discount factor and: S A! [0;1] is the reward function. In addition
to the standard MDP formulation, each staig associated with a single observable tygeT. The
total number of types islr and the mapping from states to tyggs T is assumed to be known.
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PROVABLY EFFICIENT LEARNING WITH TYPED PARAMETRIC MODELS

Algorithm 1 CORL
1. Input: N (dimension of the state spagd), (humber of actions)Nr (number of types)R
(reward model)g (discount factor)Ng (minimum number of samples per state-action pair)
2: Set all type-action tupleld;ai to be unknown and initialize the dynamics models (see text) to
create an empirical known-type MDP modé .

3: Start in a statep.

4: loop

5. Solve MDPMk using approximate solver and denote its optimal value functio@:by

6:  Select actiora= argmax Q(s;a).

7:  Increment the appropriate; count (wherd is the type of state).

8:  Observe transition to the next stafe

9: If ny exceeddNy then markig;ti as “known” and estimate the dynamics model parameters
for this tuple.

10: end loop

The dynamics of the environment are determined by the current stateaygeactiora taken:
p(sisia) = N (shs+ bar; Sar):

Therefore, types partition the state space into regions, and each regesoigated with a particular
pair of dynamics parameters.

In this work, we focus on when the reward model is providaad the dynamics model parame-
ters are hidden. The parameters of the dynamics mbgedndS,;, are assumed to be unknown for
all typest and actions at the start of learning. This model is a departure from prior related work
(Abbeel and Ng, 2005; Strehl and Littman, 2008), which focuses onra general linear dynamics
model but assumes a single type and that the variance of the 8gisgknown. We argue that
in many interesting problems, the variance of the noise is unknown and estirttatingpise may
provide the key distinction between the dynamics models of different types.

In reinforcement learning, the agent must learn to select an aztijren its current state At
each time step, it receives an immediate rewabdsed on its current stateThe agent then moves
to a next states’ according to the dynamics model. The goal is to learn a pglics! A that
allows the agent to choose actions to maximize the expected total reward itagilvee The value
of a particular policyp is the expected discounted sum of future rewards that will be receaiged f
following this policy, and is denotedP(s) = Ep[éjzogjrjjso = g], whererj is the reward received
on thej-th time step andy is the initial state of the agent. Let be the optimal policy, and its
associated value function e (s).

2.2 Algorithm

Our algorithm €.f., Algorithm 1) is derived from the R-max algorithm of Brafman and Tennen-
holtz (2002). We rst form a set dift;ai tuples, one for each type-action pair. Note that each tuple

1. As long as the reward can be KWIK-learned (Li et al., 2008) themehelts are easily extended to when the reward
is unknown. KWIK-learnable reward functions include, for instancay€sian, linear and tabular rewards.

2. For simplicity, the reward is assumed to be only a function of state in thisrp#ps straightforward to extend our
results to the case when the reward function also depends on the action take
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corresponds to a particular pair of dynamics model paramétessSqi: A tuple is considered to

be “known” if the agent has been in typand taken actioa a numbeiNy times. At each time step,

we construct a new MDWik as follows, using the same state space, action space, and discount fac-
tor as the original MDP. If the number of times a tuple has been experienge, greater than or
equal toNg, then we estimate the parameters for this dynamics model using maximum-likelihood
estimation:

3 Nat .
b = A 9), @
Nat y _

é.rlﬁtl(ﬁo S bat)(sl0 S bat)T

Sa
Nat

3)

where the sum ranges over all state-action pairs experienced for Wigdype ofs wast, the
action taken was, andslowas the successor state. Note that while Equation 3 is a biased estimator,
it is also popular and consistent, and becomes extremely close to the unbs&tiseate when the
number of samplesy; is large. We choose it because it makes our later analysis simpler.

Otherwise, we set the dynamics model for all states and the action assoititedis type-
action tuple to be a transition with probability 1 back to the same state. We also maalifgvtard
function for all states associated with an unknown type-action taple,i so that all state-action
valuesQ(s,;ay) have a value o¥max (the maximum value possible=1 @)). We then seek to
solve M. This MDP includes switching dynamics with continuous states, and we ane afa
no planners guaranteed to return the optimal policy for such MDPs in glen€ORL assumes
the use of an approximate solver to provide a solution for a MDP. Thera aagiety of existing
MDP planners, such as discretizing or using a linear function approximatehwe will consider
particular planner choices in the following sections. At each time step, the elgeoses the action
that maximizes the estimate of its current approximate value accord@g o= argmax Q:(s;a).
The complete algorithm is shown in Algorithm 1.

3. Learning Complexity

In this section we will rst introduce relevant background and then mtewa formal analysis of the
CORL algorithm.

3.1 Preliminaries and Framework

When analyzing the performance of an RL algoritAqthere are many potential criteria to use. In
our work, we will focus predominantly on sample complexity with a brief mentiocoofiputational
complexity. Computational complexity refers to the number of operations teeby the algorithm
for each step taken by the agent in the environment. We will follow Kaka@@3Rand ussample
complexityas shorthand for theample complexity of exploratiorit is the number of time steps
at which the algorithm, when viewed as a non-stationary pgicis note-optimal at the current
state; that isQ (s;a) QP(s;a) > ewhereQ is the optimal state-action value function a@8l is
the state-action value function of the non-stationary pgicizollowing Strehl et al. (2006), we are
interested in showing, for a givarandd, that with probability at least 1 d the sample complexity
of the algorithm is less than or equal to a polynomial function of MDP paraseiéote that we
only consider the number of samples to ensure the algorithm will learn acdtexa near-optimal
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policy with high probability. As the agent acts in the world, it may be unlucky exgukrience a
series of state transitions that poorly re ect the true dynamics due to noise.

Prior work by Strehl et al. (2006) provided a framework for analyzimg sample complexity
of R-max-style RL algorithms. This framework has since been used inadatber papers (Lef er
et al., 2007; Strehl and Littman, 2008) and we will also adopt the same agpréVe rst briey
discuss the structure of this framework.

Strehl et al. (2006) de ned an RL algorithm to be greedy if it choosesdti®ato be the one
that maximizes the value of the current staf@ = argmax,,Q(s;a)). Their main result goes as
follows: let A(g;d) denote a greedy learning algorithm. Maintain a Ksbf “known” state-action
pairs. At each new time step, this list stays the same unless during that time stestate-action
pair becomes known. MDRIk is the agent's current estimated MDP, consisting of the agent's
estimated models for the known state-action pairs, and self loops and optimigicise(as in our
construction described in the prior section) for unknown state-actios.p®IDP My is an MDP
which consists of the true (underlying) reward and dynamics models fokrtben state-action
pairs, and again self loops and optimistic rewards for the unknown stiter@airs. To be clear,
the only difference between MDMIk and MDP M is that the rst uses the agent's experience
to generate estimated models for the known state-action pairs, and the siseartie true model
parametersp is the greedy policy with respect to the current state-action vaygsobtained by
solving MDPM: V,\L;K is the associated value function Qg and may equivalently be viewed as
the value of policyp computed using the estimated model parametés.is the value of policyp
computed using the true model parameters. Assumesthiatid are given and the following three
conditions hold for all states, actions and time steps:

1. Q(sa) Qylsa) e
2. V,\aK(s) Vi (9 e

3. The total number of times the agent visits a state-action tuple that is Koisitbounded by
z(e;d) (thelearning complexity

Then, Strehl et al. (2006) show for any MDW, A(e;d) will follow a 4e-optimal policy from its
initial state on all bulN;qt time steps with probability at least 12d, whereN;qt4 is polynomial in
the problem's parametetg(e; d); 3; %; 1—1@]).

The majority of our analysis will focus on showing that our algorithm ful lis slkeeéhree criteria.
In our approach, we will de ne the known state-action pairs to be all tistese-actions for which
the type-action pairt(s);ai is known. We will assume that the absolute values of the components
in Sy are upper bounded by a known constBgtwhich is, without loss of generality, assumed to
be greater than or equal to 1. This assumption is often true in practice. Nd¢edbe determinant
of matrix D by detD, the trace of a matrio by tr(D), the absolute value of a scaldby jdj and

the p-norm of a vectow by kvkp. Full proofs, when omitted, can be found in the Appendix.

3.2 Analysis

Our analysis will serve to prove the main result:

Theorem 1 For any givend andein a continuous-state noisy offset dynamics MDP withtypes
where the covariance along each dimension of all the dynamics modeatsimgleéd by Bs;Bs],
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on all but Neta time steps, our algorithm will follow de-optimal policy from its current state with
probability at leastl 2d, where Nyq is polynomial in the problem parametefisl; jAj; Nr; —é; %;

1—19; 1=;Bs) wherel  is the smallest eigenvalue of the dynamics covariance matrices.

Proof To prove this, we need to demonstrate that the three criteria of Strehl 20@6)(hold. The
majority of our effort will focus on the second criterion. This criterion stdtet the value of states
under the estimated known-state MID'R must be very close to the value of states under the known-
state MDPM that uses the true model parameters for all known type-action pairsoVe tiis we
must bound how far away the model parameters estimated from the aggrtsemce can be from
the true underlying parameters, and how this relates to error in the resudting function. We
must also consider the error induced by approximately solving the estimat@MAD Achieving
a given accuracy level in the nal value function creates constrainteam close the estimated
model parameters must be to the true model parameters. We will illustrate havcibrestraints
relate to the amount of experience required to achieve these constrdiigén furn will give us an
expression for the number of samples required for a type-action pair kadwen, or the learning
complexity for our algorithm. Once we have proved the second criterion Weligcuss how the
other two conditions are also met.

Therefore we commence by formally relating how the amount of experienrel{er of transi-
tions) of the agent corresponds to the accuracy in the estimated dynamiespacmeters.

Lemma 2 Given anye;d> 0, then after T= 122'2285 transition sampless; a; ) with probability at

leastl %d, the estimated offset paramefazrcomputed by Equation 2, and estimated covariance

parameterss;j, computed by Equation 3, will deviate from the true parameteasds;; by at most
e Pkb bk, € 1 JandPr(maxjSi sij e 1 4

Proof T will be the maximum of the number of samples to guarantee the above bouniie for
offset parametep and the number of samples needed for a good estimate of the variance fgarame
We rst examine the offset parameter:

Lemma 3 Given anye;d> 0, de ne Ty = 3’:2255. If there are T transition samplegs;a;s?), then

with probability at leastl % the estimated offset parametﬁ,r computed by Equation 2, will

deviate from the true offset parameterby no more thare along any dimension d; formally,

P(maxskby baky %) .

Proof From Chebyshev's inequality, we know

. . e s2N
PG(s% sd) bdj =) 5’7;

wheresgq andsg are the value of theth state and variance of the offset along dimensiprespec-
tively. Using the fact that the variance of a sumTgfi.i.d. variables is just, multiplied by the
variance of a single variable, we obtain

T 2
. 0 . e TbSdN
P % sqa) Toba Tob—=
1 E.l(Sd Sd) Tobaj Tp N) 28
sgN.

.~ . e
Pr(jbg  bgj FFN) -n)?-
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We require the right-hand side above be at m\%sand solve forTy:
_3sIN?
= e

We know that the variance along any dimension is bounded abo®g Bp we can substitute this
in the above expression to derive a bound on the number of samplesequir

3BsN?
de?

Tp

Lemma 3 immediately implies a bound on thg norm between the estimated offset parameter
vector and the true offset parameter vector, as follows:

Lemma 4 Given anye;d > O,ifPr(ma>(jjb~d bgj p%) %,thenpr(kf) bk, € %.

Proof By a union bound, the probability that any of the dimensions exceeds an estireaor of at

mostp% is at most%. Given this, with probability at least 1% all dimensions will simultaneously
have an estimation error of less tha% and from the de nition of the L2 norm this immediately

implies thatkb bk, e. .
We next analyze the number of samples needed to estimate the covariamegedyg.c

Lemma5 Assumenaxdjf)d bgj efore< 1=4. Givenanyd> 0,deneTs = 12(';':255. If there are

Ts transition sample$s, a; <), then with probability at mo%, the estimated covariance parameter

§ij, computed by Equation 3, deviates from the true covariance paramgtby more thare over

all entries ij; formally,Pr(max.jjSi; sijj €) %.

We provide the proof of Lemma 5 in the appendix: brie y, we again use €$la/'s inequality
which requires us to bound the variance of the sample covariance.

Combining Lemmas 4 and 5 gives a condition on the minimum number of samplesalgces
to ensure, with high probability, that the estimated parameters of a particu&attpn dynamics
model are close to the true parameters. Without loss of generality, ag&umé, then

3N2Bg 12N2B2  12N2B2.

T = maxt T,; Tsg = max 2d & 24

From Lemma 2 we now have an expression that relates how much expetieragent needs
in order to have precise estimates of each model parameter. We next restdlilish the distance
between two dynamics models which have different offset and covararameters. This distance
will later be important for bounding the value function difference betweergtimated model MDP
M and the true model MDRI.

Following Abbeel and Ng (2005), we choose to use the variational disthetween two dy-
namics model® andQ:
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z

Ghar(P(): Q) = = JPX) QUi

N

In our algorithm b, andS; are the true offset parameter and covariance matrix of the Gaussian
distribution, andb, and S, are the offset parameter and covariance matrix estimated from data.
Since we can guarantee that they can be made arbitrarily close (elemehtwésgill be able to
bound the variational distance between two Gaussians, one de ned witluéhgarameters and the
other with the estimated parameters. The real-valued, positive eigenvifBeamdS, are denoted
byl:i 12 In>0andl § 19 | % > 0, respectively. Because of symmetry and
positive de niteness 05; andS,, | ; andl iomust be real as well as positive. Since all eigenvalues
are positive, they are also the singular values of their respective matrices

Lemma 6 Assumenax;jSi(i;j) S(i;j)j e andNe S;' , < 1, then,

S

_ , iib1  bajj N2e 2NSBse
dar(N (€ sbiS)N(S §bySy)) |—2”2+ T m
N N

Proof We will useN (b;S) as an abbreviation faX (s gjb;S). Then

dvar(N (b1;S1); N (b2;S2))  dvar(N (b1;S1); N (b2; S1)) + dvar(N (b2;S1); N (b2; S2))
_ Ji(N(ba;S1);N (b2;S1))ija , (N (b2;S1); N (b2: S2))ija

g 2 q 2

20k (N (b1;S1) kN (b2;S1))+  2dki (N (b2;S1) kN (b2;S2))

where ¢/ (k) is the Kullback-Leibler divergence. The rst step follows from the trienigequality
and the last step follows from Kullback (1967) (included for completenedsinma 14 in the
appendix).

The KL divergence between twé-variate Gaussians has the closed form expression

de (N (b SOKN (b2iS2)= = (b by)TS, by b+ 9244 515, Ny
2 detS;
Substituting this expression into the above boundigpwe get
S
9 delSz

dvar(N (b1:S1);N (b2;S2)) (b1 by)TS; by b))+ In +r S,'S N (4)

delSl

Our proof relies on bounding both terms of Equation 4. Note that this esipreseduces (up to a
constant) to the bound proved by Abbeel and Ng (2005) when the eariafknown.
We now start with the rst term of Equation 4.

Lemma?7
1

(b1 b2)TS;*(b1 by) i

jibr  bajj:
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Proof First note that sinc, * is a Hermitian matrix,
(ba b2)TS; (b1 by)
jiba b2)ji3
is a Rayleigh quotient which is bounded by the maximum eigenvali bf The eigenvalues of

Sl1 are precisely the reciprocals of the eigenvalueS0fTherefore, the Rayleigh quotient above
is at most™-:

..b b..2
(b1 b)7S; (b by 22

We now provide lemmas that bound the components of the second term dfdicdiaproofs are
provided in the appendix.

Lemma 8 If max;;jSi(i;j) Sq(i;j)j eforanyl i;j N,then
2
In dEtSZ Ne i+ i+ + i Nie:
detS; 1 12 I'N N

Lemma 9 If max;;jSi(i;j) S(isj)j eandNe Sl1 1< 1 then

2N3eB
tr S,1s N —
2 >t 12 (N)L5I e
Combining the results of Lemmas 7, 8, and 9 completes the proof of Lemma 6. |

Note this bound is tight when the means and the variances are the same.

At this point we can relate the number of experiences (samples) of th¢ gandistance
measure between the estimated dynamics model (for a particular type-aatidhgearue dynamics
model.

We now bound the error between the state-action values of the true MDH i@dsolved
exactly and the approximate state-action values of our estimated modeMgRtained using an
approximate planner, as a function of the error in the dynamics model estinihiess a departure
from most related PAC-MDP work which typically assumes the existence &raing oracle for
choosing actions given the estimated model.

Lemma 10 (Simulation Lemma)Let My = iSA; p1(j ; );R;d and M = iSA; p2(j; );R;d be

two MDPS with dynamics as characterized in Equation 1 and non-negative rewasdaded
above by 1. Given ae (where0< e Vpnay), assume that for all state-action tuplés a),
dvar(pr(jsia); p2(js;@) (1 ¢2e=(2g) and the error incurred by approximately solving a MDP,
de ned asepjan is also at mos(1 9)%e=(29) (to be precisegpian = jjV Viiy (1 92e(29
whereV is the value computed by the approximate solver).pLké a policy that can be applied

to both My and Mb. Then, for any stationary policy, for all states s and actions §Q(s;a)

Qg(s; a)j e Wherng denotes the state-action value obtained by using an approximate MDP
solver on MDP M and @ denotes the true state-action value for MDR dr policy p.

3. For simplicity we present the results here without reference to typgsattice, each dynamics parameter would be
subscripted by its associated MDP, type, and action.
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Proof LetDg = max;ajQ(s;a) (jg(s; a)j and de ne\7§ to be the approximate value of poligy
computed using an approximate MDP solver on M2, andV{ be the exact value of poligy on
MDP M;. Note that since we are taking the max over all acti@gsis also equal to or greater than
maxsjVP(s) \75’(3)]. Let Lp,(sys;a) denote an approximate backup for MIM3.

Since these value functions are the xed-point solutions to their resgeB¥man operators,
we have for everys; a) that

jQi(s;a) dg<s;a>jz .
=  Rsa+g pusisaVvP(Hded Rsa)+g  Lp(sisaVP(sHdsd
7 SVAS] s
g Sozspl(S‘]S;a)Vf(scb Lpa(sis @VP(s)ds
Z
g SOzslol(s(isa)VI’(s() pu(s)s; VE(D + pu(sisaVE(s) Lpa(sisaVvP(shds
Z

9 s pu(sisa)(VP(s) VR(H)+ pu(sIsa)VR()  pa(sis a)VE(s)
+ Zr>z(8‘18;a)\7£’(3‘) Lp2(s)s; a)VB(s) dsoz

9 pusisa(VP(S) VR(SNdSL +g  (pu(sisa)  paAsisa)VE(Hds
S ®s

Z
+g é)zspz(s(iS;a)\N/f(S‘ﬁ Lpa(sis; @V (s)ds

where the nal expression was obtained by repeatedly adding andastibty identical terms and
using the triangle inequality. This expression must hold for all se#esl actions, so it must also

hold for the maximum error over all states and actions:

Z Z
maxmaxjQi(sa) Qb(sa)j g Q@(S‘is:a)Dst%g S((le(s(}s:a) p2(s]s; @) VP(s)d<
Z

tg  PASIs@VR(S)  Lpxslsa)Vi(s) df
Do 9gb+g ’ o (PsIs ) paAsis @) VE(s)ds
+g ’ e P2EISAVES)  Lpa(sis@VR(s) de
90+ QVimax Zmpl(scis; a) paAsisa)dd
+g ’ o PRSISAVEE)  Lpa(sls@VR(s) de’

90y + Vmadvar(P1(s1s a); p2(sis @) + g&ian
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where we have again used the triangle inequality. Therefore

DQ g[b"' g\/maxdvar+ O&lan

var
0T ¢ + J&lan,

19 19
where we have uset},, as shorthand fotya(p1(s3s; a); p2(sys; a))

We have now expressed the error in the value function as the sum oftinelee to the model
approximation and the error due to using an approximate MDP planner. W&rassumptions in
the lemma, the result immediately follows. |

We can now use the prior lemmas to prove Theorem 1. First we need to exandeewhat
conditions the two assumptions of the Simulation Lemma hold. The rst assumptioires that
dvar(pr(jsa); p2(js;@) (1 g2e=(2g) for all state-action tuples. From Lemma 6 this holds for
a particular type-action tuple (which encompasses all state-action tuples thieestate belongs to
that type) if

S
jiba bajia N2e+ 2N3Bse (1 92
—?p—i — , — . 5
I'n In 14 (N)Y®max;jsi; sijil n 29 ®)
and
mijaxj§ij Sijj & (6)

We can ensure Equation 5 holds by splitting the error into three terms:

b, biky (1 g2

I'n 4g
N2e (1 g%
In 32¢
ON3Bge (1 g%
13 (N)Ymax;jSij sijil n 32

Given these three equations, and Equation 6, we can obtain bounds emdhé the dynamics
parameter estimates:

. 24 05
kb bk, (“i)glellﬂ (7)
& sy (L9
rnijaXJS” Sij) W (8)
rnijaXJS” S|JJ l@zNng +( 1 g)4e2(N)1:5| N . (9)

Assuméthatl y 1,N> 1andBs 1. In this case the upper bound in Equation 9 will be at
least as small as the upper bounds in Equations 7 and 8.

4. This is just a simplifying assumption and it is trivial to show the bounds aeha similar polynomial dependence
on the parameters if the assumptions do not hold.

1967



BRUNSKILL, LEFFLER, LI, LITTMAN AND ROY

We therefore require that the ermm the model parameters be bounded by

(1 9*3

16N3Bs + (1 g*e(N)L3l (10)

e

(from Equation 9). Lemma 2 provides a guarantee on the number of saﬂhplegﬁ required
to ensure with probability at least 1g that all the model parameters have error of negh order
to ensure that the model parameters for all actions and types simultanadustigi§ criteria with
probability d, it is suf cient to require thatg = d=(jAjNt), from the union bound. We can then
substitute this expression fgrand Equation 10 into the expression for the number of saniples

12N2B2 _ 12N?jAJNT B2 (160°N3Bs + N5l (1 g)%e?)?.

(1 g% d (1 gsedl
162N3Bs+(1 g)*e2(N)I5I y  JAINT

T=

Given this analysis, the rst assumption of the Simulation Lemma holds with priitysdit least
1 dafter
N&j ANy BZ

© @ g%d(in)?

samples.

The second assumption in the Simulation Lemma requires that we have accesdidPa
planner than can produce an approximate solution to our typed-offsandgs continuous-state
MDP. At least one such planner exists if the reward model is Lipschitz aomisy under a set of
four conditions, Chow and Tsitsiklis (1991) proved that the optimal valnetfanV, of a discrete-
state MDP formed by discretizing a continuous-state MDP @¢e)-length (per dimensioR)grid
cells is ane-close approximation of the optimal continuous-state MDP value functiorgtddrby
V.

Ve Vijix e

The rst condition used to prove the above result is that the rewardtifumés Lipschitz-
continuous. In our work, the reward function is assumed to be givethis@ondition is a prior
condition on the problem speci cation. The second condition is that theiti@mgunction is piece-
wise Lipschitz continuous. In other words, the transition model is Lipschiteicuous over each
of a set of nite subsets that cover the state space, and that the bguretareen each subset re-
gion is piecewise smooth. For each type and action our transition model isssi@adlistribution,
which is Lipschitz-continuous, and there are a nite number of differepes$yso it is piecewise
Lipschitz-continuous. As long as our domain ful lls our earlier stated assiomphat there are
a nite number of different type regions, and the boundaries betweeh ag piecewise smooth,
then Chow and Tsitsiklis's second assumption is satis ed. The tla'rd conditibratshe dynamics
probabilities represent a true probability measuyre that sums to gmésf]s; a) = 1), though the
authors show that this assumption can be relaxeg ffsis;a) 1 and the main results still hold.

5. More speci cally, the grid spacinlyy must satisfyhg IST%Z andhg ﬁ whereK is the larger of the Lipschitz

constants arising from the assumptions discussed in the texKaaddK, are constants discussed in Chow and
Tsitsiklis (1991). For smak anyhg satisfying the rst condition will automatically satisfy the second condition.
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In our work, our dynamics models are de ned to be true probability modeiewCand Tsitsiklis's
nal condition is that there must be a bounded difference between angawtrols. In our case we
consider only nite controls, so this property holds directly. Assuming theard model ful lls the
rst condition, our framework satis es all four conditions made by Chavdd sitsiklis, and we can
use their result. ,

By selecting xed grid points at a regular spacing%%e, and by requiring that there exist at
least one grid point placed in each contiguous single-type region, wensame that the maximum
error in the approximate value function compared to the exactly solved vahetidn is at most

a zg)ze. This provides a mechanism for ensuring the second assumption of the amillamma

holds. In other words, if the grid width used is the minimun"iagg)—ze and the minimum contiguous
length of a single-type region, then the resulting value function using thisetisapproximate

. 2 . . .
planner is no more thaﬁ%e—worse in value than the optimal exact planner for the continuous-

state MDP®

Type-action tuples with at lea$tsamples are de ned to be “known.” From the analysis above,
the estimated dynamics model for such types hadg,avalue from the true known type-action
dynamics model of at mogilL.  g)%e=(2g). All unknown type-action tuples are de ned to be self-
loops. Therefore the dynamics models of our known-type, estimated dysM@iP M relative to
a known-type MDP with the true dynamics parametdgshave ad, s, of zero for all the unknown
type-action tuples (since these are always de ned as self loops) andsa{1 ¢)%e=(2g) for all
the known type-action tuples. Hence the rst assumption of the Simulation Lenuhls.hThe
second assumption of the Simulation Lemma is ful lled given the analysis in the jpai@graph.
Given these two assumptions are satis ed, the Simulation Lemma guarantetigethpproximate
value of our known-type MDmk under its greedy policp (p(s) = argmax Qy, (s,a)) is e-close
to the optimal value of the known-type MDP with the true dynamics parambterander policy
p: jj\7,5 Vi Ji¥ e This ful lls condition 2 of Strehl et al. (2006).

The rst condition of Strehl et al. (2006) can be re-expressed as:

Q(sa) Qu(sa=(Q(sa) Qw(sa)+(Qu(sa) Qu(sa) e

We start by considering the rst expressidp,(s,a) Qw,(s;a). If all type-action pairs are known,
thenMg is the same as the original MDP, and this expression equals 0. If somediipe-pairs
are unknown, then the value of states of that type, associated with that,dgmme¥/ . under
MDP M. As all known type-action pairs have the same reward and dynamics nsotle ariginal
MDP, this implies that the valu®y, must be either equal or greater th@n, since all the value
of all unknown state-actions is at least as greaQjj. as their real valu&® . For this reason,
Q (sa) Qwm(sa) isalways less than or equal to 0.

We next consideQu,(s;a) Qy, (s;@). The variational distanck,r between the dynamics
models ofMk and Mk for all unknown type-action tuples is zero, because all the dynamics of
unknown tuples are self loops. As discussed aboveghebetween all known type-action tuples
is at mos(1 g)%e=(2g). We can then apply the Simulation Lemma to guaranteg/@fgi(s; a)

Q%I (s;a)] e Asaresult, the rst condition of Strehl et al. (2006) holds.
he third condition limits the number of times the algorithm may experience an umktype-
action tuple. Since there are a nite number of types and actions, this quartibyiisled above by

6. The condition of the extent of a typed region is a requirement in ordensare that the discrete-representation
doesn't skip over a smaller region of a different type, that may haliferent optimal policy.
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Na:NrjAj, which is a polynomial in the problem parametésjAj; Nr; 1; 2; 1—19; i~ Bs): Therefore,

our algorithm ful lls the three speci ed criteria and the result follows. |

3.3 Discussion

Prior PAC-MDP work has focused predominantly on discrete-state,afiésaction environments.
The sample complexity of the R-max algorithm by Brafman and Tennenholt2)2g@les with the
number of actions and the square of the number of discrete states, siffeeemtidynamics model
is learned for each discrete state-action tuple. In environments in whicls statee same type
share the same dynamics, Lefer et al. (2007) proved that the samplelexitgpscales with the
number of actions, number of discrete states, and number of types. Aggtitainumber of types
is typically much less than the number of states, this can result in signi cantigrfesarning, as
Lef er et al. (2007) demonstrate empirically. However, daugsapplication of either technique to a
continuous-state domain involves uniformly discretizing the continuous-gtate sThis procedure
that results in a number of states that grows exponentially with the dimension sthtkespace. In
this scenario the approaches of both Brafman and Tennenholtz (2662)ed er et al. (2007)
will have a sample complexity that scales exponentially with the state space dimehsiogh the
approach of Lef er et al. (2007) will scale better if there are a small nemnadb types.

In contrast, the sample complexity of our approach scales polynomially in théeng of ac-
tions and types as well as state space dimension, suggesting that it is mooéedoiténigh di-
mensional environments. Our results follow the results of Strehl and Littn@8§2who gave an
algorithm for learning in continuous-state and continuous-action domaih&dlssa sample com-
plexity that is polynomial in the state space dimension and the action space dime@siowork
demonstrates that we can get similar bounds when we use a more powerduhids representa-
tion (allowing states to have different dynamics, but sharing dynamics withisgme types), learn
from experience the variance of the dynamics models, and incorporagertinelue to approximate
planning.

Our analysis presented so far considers the discounted, in nite-holézoning setting. How-
ever, our results can be extended tolthstep nite horizon case fairly directly using the results of
Kakade (2003). Brie y, Kakade considers the scenario where ailegalgorithmA is evaluated in
a cyclingH-step periods. Thel-step normalized undiscounted valdeof an algorithm is de ned
to be the sum of the rewards received during a partiddistep cycle, divided byi. Kakade de-
nes A to bee-optimal if the value over a state-action trajectory, until the end of the culrtestep
period, is withine of the optimal valuéJ. Using this alternate de nition of value requires a modi -
cation of the Simulation Lemma which results in a boundgrof (H  1)Vimadvar+(H 1) €pjan.

In short, theg=(1 ¢) terms has been replaced with 1. The earlier results on the number of
samples required to obtain good estimates of the model parameters areget;hamd the nal
result follows largely as before, except we now have a polynomialraigrece on the horizod of
the undiscounted problem, compared to a polynomial dependence on therdifactor Eg.

Finally, though our focus is on sample complexity, it is also important to brie yster com-
putational complexity. To ensure the approximate planner produces higblyade results, our
algorithm's worst-case computational complexity is exponential in the numistatsf dimensions.
While this fact prevents it from being theoretically computationally ef cient, ia tiext section we
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present experimental results that demonstrate our algorithm performemygillically compared to
a related approach in a real-life robot problem.

4. Experiments

First we demonstrate the bene t of using domain knowledge about thetsteuaf the dynamics
model on the standard reinforcement-learning benchmark, PuddleV@ay&uG and Moore, 1995).
Then we illustrate the importance of explicitly learning the variance paramdtirs dynamics in a
simulated “catching a plane” experiment. This is in contrast to some pastagh@®which assume
the variance parameters to be provided, such as Strehl and Littman (2008)

Our central hypothesis is that offset dynamics are a simple model thahazyg approximate
several real world scenarios. In our third experiment, we applied lgorithm to a simulated
problem using in which an agent needs to learn the best route to drivertq aod used date
collected from real cars to simulate the dynamics. In our nal experimerdppdied our algorithm
to a real-world robot car task in which the car most cross varying tercanpét and rocks) to reach
a goal location.

CORL requires a planner to solve the estimated continuous-state MDP. Rjamcontinuous-
state MDPs is an active area of research in its own right, and is known oy hard (Chow and
Tsitsiklis, 1989). In all our experiments we used a standard techniqued Matae Iteration (FVI),
to approximately solve the current MDP. In FVI, the value function is regmeed explicitly at only a
xed set of states. In our experiments these xed states are uniformiyespam a grid over the state
space. Planning requires performing Bellman backups for each grid pogntalue function over
points not in this set is computed by function interpolation. We used Gaussiaelfunctions as the
interpolation method. Using suf ciently small kernel widths relative to the spof the grid points
will make the approach equivalent to using a nearest neighbour sthdidaretization. However,
there are some practical advantages in coarse grids to more smooth methudspoiation. We
discuss this issue in more depth in the next section.

In each experimentyy was tuned based on informal experimentation.

4.1 Puddle World

Puddle world is a standard continuous-state reinforcement-learnintepraftroduced by Boyan
and Moore (1995). The domain is a two-dimensional square of width 1 witlbwaipuddles, which
consist of the area of radiusl0around two line segments, one fr@1;0:75) to (0:45;0:75) and
the other from(0:45;0:4) to (0:45;0:8). The action space consists of the four cardinal directions.
Upon taking an action the agent move8®in the speci ed cardinal direction with added Gaussian
noiseN (0;0:001 1), wherel is a two-by-two identity matrix. The episode terminates when the
agent reaches the goal region which is de ned as the area in whigh 1:9. All actions receive
areward of 1 unless the agent is inside a puddle, in which case it then receives ia refiva400
times the distance inside the puddle. Figure 1 provides a graphical depittioa puddle world
environment.

We expect CORL will outperform prior approaches on this problem fari@asons. The rst
is that we assume the reward is given. However even if the reward modehigl@d, most past
work still has to learn the dynamics model for this world, which is still a signitcandertaking.
The second reason is a feature of the CORL algorithm: its dynamics modethesadditional
information that the dynamics for one action for all states of the same typeearicial. Here there
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¥

Figure 1: Puddle world. The small square with a star in it denotes the ggiahteThe black ovals
represent the puddles and the black line represents a sample partiabtyagg@n agent
navigating around this world.

is only a single type, so CORL must learn only 4 sets of transition parameter$poeach action.
Our goal here is simply to demonstrate that this additional information can leadriocantly
faster learning over other more general techniques.

Puddle world has previously been used in reinforcement-learning compsfiand our eval-
uation follows the procedure of the second bakeoff (Dutech et al., 2008) initially generated
50 starting locations, and cycled through these when initializing each epi&aad episode goes
until the agent reaches the goal, or has taken 300 actions. We repuaitsrifom taking the av-
erage reward within fty sequential episodes (so the rst point is theraye reward of episodes
1-50, the second point is the average of episodes 51-100, etc.).t\Ng $& be 15, and solved the
approximate MDP model using Fitted Value Iteration with Gaussian kernetiéumsc The kernel
means were spaced uniformly in a 20x20 grid across the state spacg @@&munits), and their
standard deviation was set to 0.01. Note that in the limit as the standard degia¢i®to 0 the func-
tion interpolation becomes equivalent to nearest neighbour. Neaigbboer is the interpolation
method used in the approximate continuous-state MDP solver by Chow ani@liBs{i991) which
provides guarantees on the resulting value function approximation. Howskce computational
complexity scales exponentially with the grid discretization, practical applicainmequire the use
of coarse grids. In this case, we found that using a smoother functiopaf¢ion method empiri-
cally outperformed a nearest neighbour approach. In particulaQuvelfthat a kernel width, which
is a measure of the standard deviation, @fl0gave the best empirical performance. This value lies
in the middle of kernel widths which are smaller than the variance of the dynanudsls and the
grid spacing and those widths larger than the grid spacing and dynamicésmode

We compare our results to the reported results of Jong and Stone 6@ R-max and to
Lagoudakis and Parr (2003)'s Least Squares Policy Iteration (L'SFitted R-max is an instance-
based approach that smoothly interpolates the dynamics of unknown sititpsaviously observed
transitions, and takes a similar approach for modeling the reward funct®l ik a policy iteration
approach which uses a linear basis function representation of the staezalues, and uses a set
of sample transitions to compute the state-action values.

7. Both results reported come from the paper of Jong and Stone (2007)

1972



PROVABLY EFFICIENT LEARNING WITH TYPED PARAMETRIC MODELS

. Number of episodes
Algorithm - —g5——756 T 200 | 400
CORL 199 184 20:3 187
Fitted R-max| 130 20 20 20
LSPI 500 330 310 80

Table 1: PuddleWorld results. Each entry is the average reward/episogiged during the prior
50 episodes. Results for the other algorithms are as reported by JoSgaared(2007).

Onthe rst50 episodes, Fitted R-max had an average reward of appaitdy 130, though on
the next 50 episodes it had learnt suf ciently good models that it reai¢hadymptotic performance
of an average reward of approximatel20. In contrast, CORL learned a good model of the world
dynamics within the very rst episode, since it has the advantage of krgpthiat the dynamics
across the entire state space are the same. This meant that CORL penigt@dall subsequent
episodes, leading to an average reward on the rst 50 episoded @D. Least Squares Policy
Iteration (Lagoudakis and Parr, 2003) learned slower than Fitted RHResults are summarized in
Table 1.

It is worth a short remark on the comparability of the reported results, & &8d Fitted R-
max were run without knowing the reward model. LSPI's performance deterministic reward
reinforcement-learning problem such as PuddleWorld will be identical toeitBopnance in the
known-reward case, as the rewards in the sampled transitions will bertteisaeither situation.
Given this, assuming known reward, as we do for CORL, will not chahgeLSPI results. In
contrast we do expect that Fitted R-max will be slightly faster if it does ned balearn the reward
model. This is because a wider interpolation width can be selected if the resdardwn and only
the dynamics are unknown, since all states share the same dynamics. édasvew in this case,
Fitted R-max will be approximating the Gaussian dynamics by a set of obsearesitions, and so
it appears likely that CORL will still be faster than Fitted R-max since CORL rassuthe (true)
parametric representation of the transition model.

In summary, given the reward function, CORL can learn a good dynamicelnextremely
quickly in PuddleWorld, since the dynamics are typed-offset with a single. tyffhis additional
information enables CORL to learn a good policy for puddle world much faiséer Fitted R-max
and LSPI. This experiment illustrates the advantage of CORL when thétimandynamics are
known to be identical across the state space, and to follow a noisy offskimo

4.2 Catching a Plane

We next consider some examples with multiple types. Thousands of peopleshoon internet

maps or GPS units to do ef cient trip planning, and better traf ¢ predictionrisagea of recent
research (Horvitz et al., 2005). In many street systems, there exignbemnwf different classes
of road types according to the designated speed limits associated with thdse Thiese different
road types are often also associated with different variances. Forpdxawhile highways have
mean speeds that are faster than small side streets, highways typicalls hemelarge variance;
rush hour highway speeds may often be slower than smaller side streets.

1973



BRUNSKILL, LEFFLER, LI, LITTMAN AND ROY

] i}
c——

S ' Yo

| Be

g any e

=ai —'g% _-: ===

o

(B R uesRly

} e
i
W, Ui

=

H

5

Figure 2: Motivating example where an agent must drive from a startitocédesignated with an
S) to a goal area (shown with a highlighted rectangle) in time for a deadlikecam
choose to take large high speed and variance roads, or slower sneticearoads.

In our rst experiment we considered a scenario in which learning thimrae is critical: an
agent must learn the best way to drive to an airport in time to catch a planinilarsreal-world
environment is depicted in Figure 2. The agent starts from home and cenditie directly along
a small side street, or cross over to the left or right to reach a main highiMag. agent goes
forward more quickly on the highway (with a mean offset of 2 units), buthiggway also has a
high variance of @19. In contrast, on the small side streets the agent goes forward motg &ow
mean offset of 1 unit) but with very small variance@0001). The state space is four dimensional,
consisting of the agent's currertandy location, its orientation, and the amount of time that has
passed. On each step ve minutes pass. The agent can drive in a BArbgidn: outside of this is
considered to be too far awéyf the agent exits this region it receives a reward df. The cost for
each step is 0:05, the reward for reaching the airport in time for check ir ik and the cost for
not making the airport in time is 1. The discount factor is set toQl N4 was set to 10. An episode
starts when the agent takes its rst step and lasts until the agent reaehgsath exits the allowed
region, or reaches the time at which check in for the plane closes. The stgets at location;B
facing north, and must gure out a way to reach the goal region whieing6:5 8:5;15.5-17.5].
To solve the underlying MDP, tted value iteration was used. The xed poivése regularly spaced
grid points with 15 across the x dimension, 20 across the y dimension, 4 dioergagles, and 21
time intervals. This yielded over 25,000 xed points.

The correct path to take depends on the amount of time left. Here we explwee different
deadline scenarios: when the agent has 60 minutes remakimmingLatg 70 minutes remaining
(JustEnough or 90 minutes remaining until check in closes for the plaRenhingEarly. In all
three scenarios, the agent learned a good enough model of the dynaithics15 episodes to
compute a good policy. Note that using aveadiscretization of the space with the FVI xed points
as states and applying R-max would be completely intractable, as a differeet mould have to
be learned for each of over 25,000 states. We display results for adl saenarios in Table 2. In

8. Note that this could be a reasonable assumption in some cases, sucbradoctors had to stay within a certain
radius of a hospital when on call.
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Figure 3: (a) Simulated world map showing example environment. (b) Worldetivinto a set of
discrete types. Agent starts at driveway (black circle) and tries to E@wod route to
reach work. (c) An example section of a car trajectory (constructed &set of GPS
locations).

theRunningLatescenario the agent learned that the side streets are too slow to allow it teavier
the airport in time. Instead it took the higher variance highway which enéliteseach the airport
in time in over half the episodes aftlk; is reached for all types: its average reward 84833
and it takes on average 56.62 minutes for it to reach the airpottustEnoughhe agent learned
that the speed of side streets is suf ciently fast for the agent to readirfart consistently in time,
whereas the higher speed and variance highway would result in thefagieg to reach the check
in time in some cases. Here the agent always reached the goal andseaeiaverage reward of
0:45. In theRunningEarlyscenario, the agent has enough time so that it can take either route and
reliably reach the airport in time. In this scenario it learned to always takaigivay, since in
expectation that route will be faster. The average reward here w629

This simulation serves to illustrate that our algorithm can quickly learn to perfeell, in
situations in which learning the variance is critical to ensure good perfaaan

4.3 Driving to Work

In our second experiment we again consider a simulated trip routing probigwe now generate
transitions in the simulator by sampling from real traf ¢ data distributions. leragent must learn
the best series of actions to drive from home to work in a small simulated wsetl Kigure 3(a)
and 3(b)). The state consists of the current coordingtg3 and the orientation of the agent. There
are three road types and each road type is associated with a differeiftudien of speeds. The

Scenario Deadline (min)| Mean Reward/Episode Mean Time to Reach Goal (mir)
RunningLate 60 0:4833 56.62

JustEnough 70 0.45 60

RunningEarly 90 0.4629 58.6

Table 2: Catching a plane: results afié¢ has been reached for all types.
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Figure 4: A histogram of car speeds on small roads that is used to ¢etrarssitions on road type
2 and the estimated dynamics model parameters found during the experiment

distributions were obtained from the CarTel project (Eriksson et al.8R0thich consists of a set
of car trajectories from the Boston, Massachusetts area. GPS locatidtisng stamps are stored
approximately every second from a eet of 27 c@r# section from one car trajectory is shown
in Figure 3(c). Using this data set we extracted car trajectories on antateefighway, small
side streets and a local highway: these constitute types 1, 2 and 3 reslyeictithe simulation
world. Each car trajectory consisted of a setb{GPS+time data points, which was converted
into a set ofD 1 transitions. Each transition in the simulation was sampled from these real-
world transitions; for example, transitions in the simulator on road type 2 veenpled from real-
world transitions on small side streets. Transitions from all three road types all rescaled by
the same constant in order to make the distances reasonable for the simwdtetP wrigure 4
displays a histogram of rescaled transitions associated with small side .s{féetsgure shows
that the speed distribution for small side streets was not Gaussian: trek dipgéution for the
other two street types was also not Gaussian. In particular, in no tragectared does the car ever
go backwards, whereas in some Gaussian models there will be small fitglzdlihis occurring.
In this experiment we sought to investigate how well a noisy offset moddtldanction in this
environment, and the bene t of directly modelling different types of roagach transition in the
simulated environment was sampled from the histogram of speeds assedgiht#ue road type at
the agent's current position. Therefore, the data from the simulator isrdioshe real environment
than to the Gaussian distributions assumed by the learning algorithm.
The agent received a reward of 1 for reaching the work parking 16105 for each step, and

1 if it left the local area. Each episode nished when the agent eithehezhthe goal, left the
local area, or had taken 100 steps. An agent can go left, right orlstatigach step. The transition
induced by a straight action was determined by the road type as speci eé prithr paragraph,
and going left or right changed the orientation of the agent by 90 degvitle a very small amount
of noise. The number of samples needed until a type-action tuple is kidyyrwas set to be 20.
The discount factor was 1. The agent was always started in the santehoand was allowed
to learn across a set of 50 episodes. Results were averaged a@nasmés of 50 episodes per

9. See more information about the projechit://cartel.csail.mit.edu/
10. We also removed outlier transitions, as extremely fast speeds/traasitare likely to be errors in the log le.
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Figure 5. Reward versus episode. (a) Compares CORL with 3 types &yuklo Q-learning.
Results are averaged over 20 rounds (50 episodes per round).bErs show 95% con-
dence intervals. (b) Shows Q-learning with 500 episodes per rowataged over 100
rounds.

round. In one experiment the agent was given full knowledge of tleetivorld types, and learned

a different dynamics model for each type and action. In the secondise the agent assumed
there was only a single type and learned a dynamics model for each actoalsécompared our
approach t@-learning over a uniformly-spaced discrete grid over the environmentanighgreedy
policy. We used a discretization that was identical to the xed points used ittélievalue iteration
planner of CORL. Points were mapped to their nearest neighbors. Qirgaequires specifying
two parameters: the learning radewhich determines how much to adjust the state-action value
estimates after each update, anghich speci es how often to take a random action instead of the
action that maximizes the current Q values. In this experirments set to 1.0 and decreased by
multiplying by a factor of 0.9999 at each st€pWe seteto be 0.1.

The CORL results are displayed in Figure 5(a). This gure displays tare®uraging results.
The rstis that in both CORL algorithms the agent learned to consistenthyhrérscgoal: the only
way that the agent can receive a reward greater thais to reach the goal, and all con dence inter-
vals lie above 1 for all episodes after 10, indicating that the agent in both cases wessstiglly
reaching the goal. This is promising because even though the underlynagnitys models were not
exactly Gaussian noisy offset dynamics, a noisy offset model apprtigimaas suf cient for the
agent to learn a good policy in this environment. The estimated parameterstednfiguone type
and action are displayed in Figure 4.

The second result is that the policy found by the agent that models all types differently
resulted in signi cantly higher reward than modeling the world with a single tyjseperformance
suffered initially because it takes longer to learn a model of the world dyrsarhig from about
episode 10-50 modelling all types separately resulted in signi cantly higheand per episode
than modelling all types as the same. Table 3 displays the average rewastha@proaches on
episodes 10-50. These results demonstrate that traf ¢ data does aliffidriént speed distributions

11. We tried different decay factors for thegparameter but found that this worked better than decaginwre rapidly.
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Algorithm Average reward/episode
CORL with 3 types 0.27

CORL with 1 type 0.00
Q-learning 3:2485

Table 3: Average reward on episodes 10-50 for the driving to woakngte.

on different types of roads, and that by considering such diffe®i@ORL can improve route
directions even in a small simulated example.

The third result is that both CORL algorithms signi cantly outperforn@@tearning: again see
Table 3 for comparing the short term performanc@déarning to the CORL algorithm. This is not
surprising sinc&-learning is a model-free approach that trades off speed of computatictgp in
return for not requiring consistency between its state values througtektaeward and dynamics
models. Here in particular there is a large amount of structure in the domaiQ-katning cannot
use.Q-learning does eventually begin to consistently reach the goal but this isfiatyabout 500
episodes, more than an order of magnitude longer than the CORL algorithkn®tawl a good
policy. These results are displayed in Figure 5(b). Such results argumtkituations where data
is costly to gather, using a model can be extremely helpful.

4.4 Robot Navigation Over Varying Terrain

We also tried our algorithm in a real-life robotic environment involving a nawgatask where
a robotic car must traverse multiple surface types to reach a goal locathia.eXperiment is a
second example where a nhoisy offset dynamics model provides a sufycgood representation of
the real-world dynamics to allow our algorithm to learn good policies. We coedparthe RAM-
Rmax algorithm (Lef er et al., 2007), a provably ef cient RL algorithnrfearning in discrete-state
worlds with types. The authors demonstrated that, by explicitly representngtiks, they could
get a signi cant learning speedup compared to R-max, which learnsaaepdynamics model
for each state. The RAM-Rmax algorithm represents the dynamics modelaisistgpf possible
next outcomes for a given type. CORL works directly with continuousealstates, resulting
in the improved sample complexity discussed earlier. This is achieved thr@sgmang a xed
parametric representation of the dynamics, which is a less exible model teamthused in RAM-
Rmax. In this experiment we were interested in whether our representadi®still rich enough
to capture the real world dynamics involved in varying terrain traversal.al investigated the
computational load of CORL compared to RAM-Rmax, since by restrictingepresentation size
we hoped to also achieve computational savings.

In this experiment we ran a LEGD Mindstorms NXT robot (see Figure 6(b)) on a multi-
surface environment. A tracking pattern was placed on the top of the aoldain overhead camera
was used to determine the robot's current position and orientation. Theimlostm@wn in Fig-
ure 6(a), consisted of two types of terrain: rocks embedded in wax aadpated area. The goal
was for the agent to begin in the start location (indicated in the gure by mwarand end in the
goal without going outside the environmental boundaries. The rewagds Wi for going out of
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(@) (b)

Figure 6: (a) Image of the environment. The start location and orientationrisethaith an arrow.
The goal location is indicated by the circle.(b) LEGCOrobot.

bounds;+ 1 for reaching the goal, and0:01 for taking an action. Reaching the goal and going out
of bounds ended the episode and resulted in the agent getting moved biaelstart location?

Due to the close proximity of the goal to the boundary, the agent needscarate dynamics
model to reliably reach the goal. Part of the dif cultly of this task is that the astiovere going
forward, turning left, and turning right. Without the ability to move backwatis robot needed to
approach the goal accurately to avoid falling out of bounds.

For the experiments, we compared our algorithm (“CORL") and the RAM-Ralgorithm
(“RAM™). The xed points for the tted value iteration portion of our algorith were set to the
discretized points of the RAM-Rmax algorithm. Both algorithms used an EDISONédmagmen-
tation system to uniquely identify the current surface type. The rewarctitn was provided to
both algorithms.

The state space is three dimensionaly position and orientation. Our algorithm implementa-
tion for this domain used a full covariance matrix to model the dynamics varidrarethe RAM-
Rmax agent, the world was discretized to a forty-by-thirty-by-ten stateespaour algorithm, we
used a function approximator of a weighted sum of Gaussians, as asbsariBection 2. We used
the same number of Gaussians to represent the value function as the thieestaite space used in
the discretized algorithm, and placed these xed Gaussians at the sameriecdtie variance over
the x andy variables was independent of each other and of orientation, and westse 16. To
average orientation vectors correctly (so thd80 degrees and 18@o not average to 0) we con-
verted orientationg to a Cartesian coordinate representakigr cog0q);Yq = sin(q). The variance
over these two was set to be 9 for each variable (with zero covariaRoepur algorithm and the
RAM-Rmax algorithm, the value df;; was set to four and ve, respectively, which was determined
after informal experimentation. The discount factor was set to 1.

Figure 7(a) shows the average reward with standard deviation forcdahble algorithms over
three runs. Both algorithms are able to receive near-optimal reward @msgstent basis, choosing

12. A video of the task can be seerhtip://people.csail.mit.edu/emma/corl/SuccessfulRun .mov andhttp:
/Ipeople.csail. mit.edu/emma/corl/SuccessfulRun.wmv
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Figure 7: (a) Reward received by algorithms averaged over three Esror bars show one standard
deviation. (b) Total time taken by algorithms averaged over three runer Ears show
one standard deviation.

similar paths to the goal. Our dynamics representation is suf cient to allowIgorithm to learn
well in this real-life environment.

In addition, by using a xed size (parametric) dynamics representatiorgdhmputational time
per episode of our algorithm is roughly constant (Figure 7(b)). In thdeémentation of RAM-
Rmax, the computational time grew with the number of episodes due to its dynamies$ reoik-
sentation. This suggests that using a xed size dynamics representatidraea signi cant com-
putation bene ts. Overall CORL performed well in this domain, both in termsewofard achieved
and computation required.

5. Conclusion and Future Work

In this paper we have presented CORL, an algorithm for ef ciently legrtoract in typed, continuous-
state environments. CORL has a sample complexity that scales polynomially wittatbesgace
dimension and the number of types: this bound also directly incorporatesrthielae to approxi-
mate planning. Experiments on a simulated driving example using real wortthtarand a small
robot navigation task, suggest that noisy offset dynamics are aisaoflg rich representation to
allow CORL to perform well in some real-world environments.

Due to the approximate MDP planning, we cannot currently guarantee blythgmial sample
complexity and polynomial computational complexity. There are a number ehtexdvances
in continuous-state MDP planning (Kocsis and Szepas2006; Kveton and Hauskrecht, 2006;
Marecki and Tambe, 2008) as well as alternate approaches suchwagsdearch techniques. In
the future it would be interesting to investigate whether there exist alternateé panners that
can providee-close approximations to the exact solutions with a computational complexity that
scales polynomially with the number of state dimensions. Such approachés eviable CORL
to achieve the appealing goal of polynomial dependence on the numbatetisnension for both
sample complexity and computational complexity.
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Finally, the bounds provided remain overly large for many practical agwita We are broadly
interested in developing technigues that can tighten the gap between theditatiounds and those
needed for practical performance in real-world reinforcement legrnin

Acknowledgments

B. Lef er, L. Liand M. Littman were partially supported by NSF DGE 054%] a DARPA Transfer
Learning grant and a National Science Foundation (NSF) Divisionfofrimation and Intelligent
Systems (1IS) grant. E. Brunskill and N. Roy were supported by NSFutider Grant #0546467.
Special thanks to Jacob Eriksson, Hari Balakrishnan, Samuel Madaenthe rest of the MIT
CarTel team for generously providing access to their data set. We glsecéte the gracious time
of the reviewers in helping us improve this work.

Appendix A.

Lemma 5Assumena>gj5d bgyj efore< 1=4. Givenanyd> 0,deneTs = 1221;35. If there are

Ts transition sample$s, a; <), then with probability at mo%, the estimated covariance parameter

Sij, computed by Equation 3, deviates from the true covariance paramgtby more thare over

all entries ij; formally,Primax jSi; sijj €) %.

Proof Firstrecall thasi; represents the covariance between dimensiandj. We are interested in

the probability that the estimated covaria§gediffers from the true parametsy;j: Pr(jsi;  Sijj

e). From Chebyshev's inequality, we can bound this expression as

Var(§ij)
€

Pr(jsij sijj € ; (11)

whereVar(S;;) is the variance of the sample variance.

We therefore require an upper bound on the variance of the sampleacma We will derive

a bound on this below in the general case of the covariance between tiableax andy both of
which are Gaussian distributed.

Var(Sy) = ElSy Sxy)?]

1,3

15
E4 ?a(xk )_()(yk )_/) Sxy 5
S k=1

wherex andy are the respective sample means, and in the second line we have writter out th
de nition of the sample covariance. We can then use the linearity of expectatiderive

l;l;s Is

za a E[(x« X(Xm XYk Y)(Ym Y]

S k=1m=1

Var(Syy)

15
25xyT*a El(xn X(Ym W]+ El(Sx)?
S k=1

1 Ts Ts

= & aEl D0m A NOm N (5x)?

S k=1nF1
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where the second line follows from the de nition of the covariasgg We next divide the summa-
tion into two expressions, whean= k and wherm& Kk, and use the property that the expectation of
independent variables is the product of their expectations:

Var(s) = TEIX D20k D+ e R WIEIm R ] (5x)°
= TEl 90 D+ D e)? (o)

We can now use the Cauchy-Schwarz inequality on the rst term to get

q
Varsy)  © El DUEI 9+ 2 Disn)? (s
19 To(Ts 1)

T ElOuch b E[Yict by 1y W+ T(S)z(y)z (s%)°

14 — - - —
T (Bt BsH(X B2+ (X m)(3sfy+ 6sHY W)2+(Y W)Y

S
Ts(Ts 1
+ %(Sxy)2 (Sxy)2
S
where we have used the fact that the fourth central moment of a Gadsstidbution is 32, in the

nal line. Next we make use of the assumptions tBatis an upper bound to all covariance matrix
elements and the bound on the maximum error in the parameter offset estimates:

(¢'+66Bs + 3B) | Ts(Ts 1)
Ts T2

Var(s >2<y) (Sxy) 2 (s xy) 2

4B2
Ts
where the last line follows because< 1=4 andBs 1. We can then substitute this result into
Equation 11 which yields
482
eTs

P(Si; sijj €

To ensure that this bound holds simultaneously with probatﬁlitgr all N? covariance matrix
elements it suf ces by the union bound to require that each covariartcg exceeds its expected
value by more thame with probability at mostm‘\’l—z:

487 d
eTs  3N2°

Re-arranging yields the bound for the required number of samples:

12N2B2

Ts de

1982



PROVABLY EFFICIENT LEARNING WITH TYPED PARAMETRIC MODELS

Lemma 81f max;jjS.(i;j) $Sq(i;j)j eforanyl i;j N,then

detS; 1 1 1 N2e

In e + —
detS; 1 1> I N N

Proof Dene E= S, S;. Clearly, E is symmetric since botl$; and S, are symmetric. Its
eigenvalues are denoted py y» Yy N, Which are real (but can be negative or positive).
First, it is known that

N N
detS;= QI & detS;= QI

i=1 i=1
Therefore,
detS, Njo N0
In =nO-L=3In-:
detS; i(=)1| i igl i

From Gesgorin's theorem (Horn and Johnson, 1986, Theorem 6.1.1), thevailges ofE must
be small as the elements Bfare small. Speci cally, eacly; must lie in one of then Gersgorin
discs:

81 j N:Dj=fx2Rjjx E(j;})i a EG:iYe
%]
It follows immediately that
N
i &IEGD Ne
=1
as every component i liesin[ e €].
On the other hand, from Weyl's theorem (Horn and Johnson, 198&rEm 4.3.1), we have

yi 12 1 yw

We have just proved that boji1j andjy nj are at mosNe, and thus

19 1, Ne
Consequently,
19 1i+ Ne Ne
=1+ —
I i I i | i
Therefore, we have
dets, & 190 X% Ne & Ne (N)2e
In =aln-t In 1+ — —
detS; igl [ 9.1 i igl [ I'n
where the second to last inequality uses the inequalfti4nx) xforx O. |

The following lemmas will be useful to prove Lemma 9.

1983



BRUNSKILL, LEFFLER, LI, LITTMAN AND ROY

Lemma 11 (Lemma 2.7.1 and Theorem 2.7.2 from Golub and Van Loan 19%&)ppose Ax b
and (A+ DA)y = b+ Db with kDAK ekAk and kDbk ekbk. If ek(A) < 1, then A+ DA is
nonsingular, and
ky xk 2ek(A)
kxk 1 ek(A)’

wherek k can be any , matrix/vector norm, ané(A) = KAk A 1 is the corresponding condition
number.

Lemma 12 (A trace inequality of von Neumann 19371)et A and B be two symmetric matrices of
order n, whose singular values axe  Xo Xn Oandz; 2z Zn 0, respectively.
Then
n
jtr(AB)j & xizi:
i=1

Lemma 13 Suppose the covariance matfx is non-singular; that is its eigenvaluég : | y > 0.
Then

1 N

1 _
tr §° = T

I'N
1l

0 .19”2

=

maxS, *(i; ) i
p_
1 P—. g N
isin NS i =
Proof We prove the three upper bounds one by one:

1. Itis a known fact that the trace ofa matrlx equals the sum of |ts elgemzaTlhme rst equality

2. This inequality follows from the de nition ofjS; Ljj1: it is the maximum absolute row sum
of the matrixS,; ! and therefore is not less than the largest absolute component of the. matrix

3. Itis known thatjAjj1 P NijjAjj2 for anyN N matrix A (see, eg. theorem 5.6.18 in Horn
and Johnson 1986). On the other haj8, Lj2 equals the largest eigenvalue&blfl, which
o 1
is =
I'n

[
Lemma 91f max;jSu(i;j) Sa(i;j)i eandNe S;* | < 1, then

2N3eB;

1 .

Proof Thei-th row (or column) ofSl1 is the solution to the system of linear equatioSgx = g
whereg hasN 1 zero components except a 1 in thiln component. Similarly, theth row (or
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column) ofS, Lis the solution tdBy = g. SinceS; andS; differ by at moste in every component,

we have
kS: Szkl Ne

kSik,  KSik,'

For convenience, denote the right-hand side abowe Hyfollows from Lemma 11 that

2¢k ( Sl) kal .

kx  yk; 1 ek(s) |

The above inequality holds for aN possiblee values. Note thakx yk; is the absolute sum of
thei-th row (or column) 01811 S, lfore. Lety, yo yn 0 be the singular values of
S, S, From Gesgorin's theorem, it follows that for ail

ZG(k(Sl) _ ZG(k(Sl) 1
Yi méaxkx YK, W(Sl)mgxkxkl— o) ST (12)
wherek(S;) = kSik Sl1 the condition number d8;. We can now complete the proof:
tr S,’S1 N=1tr (S, S;hHS (13)
N
avili (14)
i=1
2¢%(S1) St N
LAl (15)
2¢k(s) St
= 1
MNe s, (S1) (17)
= — = < {r
1 Ne st ,
ON2Bge S, 2
= (18)
1 Ne S~ |
3
2N°eBs (19)

ORI

The rst equality (Equation 13) is due to the identity 8; 1S, = tr(1)= N, and the rstinequality
(Equation 14) is a direct application of von Neumann's inequality (Lemma #}wcan be used
since the eigenvalués are also the singular values in this case. The second inequality (Equation 15
follows from the result of Equation 12, the second equality (Equationd@s by the de nition of
matrix traces, and the third equality (Equation 17) is obtained by noting{8aj = kSik; S; ! 1
Since each term in the covariance matrix is known to be bounddg} ligen the trace is bounded
by NBs which allows us to generate the fourth equality (Equation 18). The nalltésobtained
using the result of Lemma 13.

[ |
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Lemma 14 (Theorem from Kullback 1967) et ;; and p be two probability density functions
de ned overX. De ne
W= fx2 Xjpi(x) p(x)g:

If p1 and p are both measurable (integrable) oWt then
1 2
dk (P1k p2) 3 kpr  p2ki:
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