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Abstract

Learning linear combinations of multiple kernels is an appealing strategy when the right choice
of features is unknown. Previous approaches to multiple kernel learning (MKL) promote sparse
kernel combinations to support interpretability and scalability. Unfortunately, thisℓ1-norm MKL is
rarely observed to outperform trivial baselines in practical applications. To allow for robust kernel
mixtures that generalize well, we extend MKL to arbitrary norms. We devise new insights on the
connection between several existing MKL formulations and develop two efficientinterleavedopti-
mization strategies for arbitrary norms, that isℓp-norms withp≥ 1. This interleaved optimization is
much faster than the commonly used wrapper approaches, as demonstrated on several data sets. A
theoretical analysis and an experiment on controlled artificial data shed light on the appropriateness
of sparse, non-sparse andℓ∞-norm MKL in various scenarios. Importantly, empirical applications
of ℓp-norm MKL to three real-world problems from computational biology show that non-sparse
MKL achieves accuracies that surpass the state-of-the-art.

Data sets, source code to reproduce the experiments, implementations of the algorithms, and
further information are available athttp://doc.ml.tu-berlin.de/nonsparse_mkl/ .
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1. Introduction

Kernels allow to decouple machine learning from data representations. Finding an appropriate data
representation via a kernel function immediately opens the door to a vast world of powerful machine
learning models (e.g., Schölkopf and Smola, 2002) with many efficient and reliable off-the-shelf
implementations. This has propelled the dissemination of machine learning techniques to a wide
range of diverse application domains.

Finding an appropriate data abstraction—or even engineeringthe bestkernel—for the problem
at hand is not always trivial, though. Starting with cross-validation (Stone, 1974), which is probably
the most prominent approach to general model selection, a great many approaches to selecting the
right kernel(s) have been deployed in the literature.

Kernel target alignment (Cristianini et al., 2002; Cortes et al., 2010b) aimsat learning the entries
of a kernel matrix by using the outer product of the label vector as the ground-truth. Chapelle
et al. (2002) and Bousquet and Herrmann (2002) minimize estimates of the generalization error of
support vector machines (SVMs) using a gradient descent algorithm over the set of parameters. Ong
et al. (2005) study hyperkernels on the space of kernels and alternative approaches include selecting
kernels by DC programming (Argyriou et al., 2008) and semi-infinite programming (Özögür-Akyüz
and Weber, 2008; Gehler and Nowozin, 2008). Although finding non-linear kernel mixtures (G̈onen
and Alpaydin, 2008; Varma and Babu, 2009) generally results in non-convex optimization problems,
Cortes et al. (2009b) show that convex relaxations may be obtained for special cases.

However, learning arbitrary kernel combinations is a problem too general to allow for a general
optimal solution—by focusing on a restricted scenario, it is possible to achieve guaranteed optimal-
ity. In their seminal work, Lanckriet et al. (2004) consider training an SVM along with optimizing
the linear combination of several positive semi-definite matrices,K = ∑M

m=1 θmKm, subject to the
trace constraint tr(K) ≤ c and requiring a valid combined kernelK � 0. This spawned the new
field of multiple kernel learning(MKL), the automatic combination of several kernel functions.
Lanckriet et al. (2004) show that their specific version of the MKL task can be reduced to a convex
optimization problem, namely a semi-definite programming (SDP) optimization problem. Though
convex, however, the SDP approach is computationally too expensive for practical applications.
Thus much of the subsequent research focuses on devising more efficient optimization procedures.

One conceptual milestone for developing MKL into a tool of practical utility is simply to con-
strain the mixing coefficientsθ to be non-negative: by obviating the complex constraintK � 0, this
small restriction allows to transform the optimization problem into a quadratically constrained pro-
gram, hence drastically reducing the computational burden. While the original MKL objective is
stated and optimized in dual space, alternative formulations have been studied. For instance, Bach
et al. (2004) found a corresponding primal problem, and Rubinstein (2005) decomposed the MKL
problem into a min-max problem that can be optimized by mirror-prox algorithms (Nemirovski,
2004). The min-max formulation has been independently proposed by Sonnenburg et al. (2005).
They use it to recast MKL training as a semi-infinite linear program. Solving thelatter with column
generation (e.g., Nash and Sofer, 1996) amounts to repeatedly training anSVM on a mixture kernel
while iteratively refining the mixture coefficientsθ. This immediately lends itself to a convenient
implementation by a wrapper approach. These wrapper algorithms directly benefit from efficient
SVM optimization routines (cf., Fan et al., 2005; Joachims, 1999) and are now commonly deployed
in recent MKL solvers (e.g., Rakotomamonjy et al., 2008; Xu et al., 2009), thereby allowing for
large-scale training (Sonnenburg et al., 2005, 2006a). However, thecomplete training of several
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SVMs can still be prohibitive for large data sets. For this reason, Sonnenburg et al. (2005) also
propose to interleave the SILP with the SVM training which reduces the trainingtime drastically.
Alternative optimization schemes include level-set methods (Xu et al., 2009) and second order ap-
proaches (Chapelle and Rakotomamonjy, 2008). Szafranski et al. (2010), Nath et al. (2009), and
Bach (2009) study composite and hierarchical kernel learning approaches. Finally, Zien and Ong
(2007) and Ji et al. (2009) provide extensions for multi-class and multi-label settings, respectively.

Today, there exist two major families of multiple kernel learning models. The firstis charac-
terized by Ivanov regularization (Ivanov et al., 2002) over the mixing coefficients (Rakotomamonjy
et al., 2007; Zien and Ong, 2007). For the Tikhonov-regularized optimization problem (Tikhonov
and Arsenin, 1977), there is an additional parameter controlling the regularization of the mixing
coefficients (Varma and Ray, 2007).

All the above mentioned multiple kernel learning formulations promotesparsesolutions in
terms of the mixing coefficients. The desire for sparse mixtures originates in practical as well
as theoretical reasons. First, sparse combinations are easier to interpret. Second, irrelevant (and
possibly expensive) kernels functions do not need to be evaluated at testing time. Finally, sparse-
ness appears to be handy also from a technical point of view, as the additional simplex constraint
‖θ‖1 ≤ 1 simplifies derivations and turns the problem into a linearly constrained program. Never-
theless, sparseness is not always beneficial in practice and sparse MKL is frequently observed to be
outperformed by a regular SVM using an unweighted-sum kernelK = ∑mKm (Cortes et al., 2008).

Consequently, despite all the substantial progress in the field of MKL, there still remains an
unsatisfied need for an approach that is really useful for practical applications: a model that has a
good chance of improving the accuracy (over a plain sum kernel) together with an implementation
that matches today’s standards (i.e., that can be trained on 10,000s of datapoints in a reasonable
time). In addition, since the field has grown several competing MKL formulations, it seems timely
to consolidate the set of models. In this article we argue that all of this is now achievable.

1.1 Outline of the Presented Achievements

On the theoretical side, we cast multiple kernel learning as a general regularized risk minimization
problem for arbitrary convex loss functions, Hilbertian regularizers, and arbitrary norm-penalties
on θ. We first show that the above mentioned Tikhonov and Ivanov regularized MKL variants are
equivalent in the sense that they yield the same set of hypotheses. Then we derive a dual repre-
sentation and show that a variety of methods are special cases of our objective. Our optimization
problem subsumes state-of-the-art approaches to multiple kernel learning, covering sparse and non-
sparse MKL by arbitraryp-norm regularization (1≤ p≤∞) on the mixing coefficients as well as the
incorporation of prior knowledge by allowing for non-isotropic regularizers. As we demonstrate, the
p-norm regularization includes both important special cases (sparse 1-norm and plain sum∞-norm)
and offers the potential to elevate predictive accuracy over both of them.

With regard to the implementation, we introduce an appealing and efficient optimization strategy
which grounds on an exact update in closed-form in theθ-step; hence rendering expensive semi-
infinite and first- or second-order gradient methods unnecessary. Byusing proven working set
optimization for SVMs,p-norm MKL can now be trained highly efficiently for allp; in particular,
we outpace other current 1-norm MKL implementations. Moreover our implementation employs
kernel caching techniques, which enables training on ten thousands of data points or thousands
of kernels respectively. In contrast, most competing MKL software require all kernel matrices
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to be stored completely in memory, which restricts these methods to small data sets withlimited
numbers of kernels. Our implementation is freely available within the SHOGUN machine learning
toolbox available athttp://www.shogun-toolbox.org/ . See also our supplementary homepage:
http://doc.ml.tu-berlin.de/nonsparse_mkl/ .

Our claims are backed up by experiments on artificial and real world data sets representing
diverse, relevant and challenging problems from the application domain ofbioinformatics. Using
artificial data, we investigate the impact of the p-norm on the test error as a function of the size
of the true sparsity pattern. The real world problems include subcellular localization of proteins,
transcription start site detection, and enzyme function prediction. The results demonstrate (i) that
combining kernels is now tractable on large data sets, (ii) that it can provide cutting edge classifica-
tion accuracy, and (iii) that depending on the task at hand, different kernel mixture regularizations
are required for achieving optimal performance.

We also present a theoretical analysis of non-sparse MKL. We introduce a novelℓ1-to-ℓp con-
version technique and use it to derive generalization bounds. Based onthese, we perform a case
study to compare an exemplary sparse with a non-sparse learning scenario. We show that in the
sparse scenarioℓp>1-norm MKL yields a strictly better generalization bound thanℓ1-norm MKL,
while in the non-sparse scenario it is the other way around.

The remainder is structured as follows. We derive non-sparse MKL in Section 2 and discuss
relations to existing approaches in Section 3. Section 4.3 introduces the novel optimization strategy
and its implementation. We report on theoretical results in Section 5 and on our empirical results in
Section 6. Section 7 concludes.

1.1.1 RELATED WORK

A basic version of this work appeared in NIPS 2009 (Kloft et al., 2009a). The present article
additionally offers a more general and complete derivation of the main optimization problem, ex-
emplary applications thereof, a simple algorithm based on a closed-form solution, technical details
of the implementation, a theoretical analysis, and additional experimental results. Parts of Section 5
are based on Kloft et al. (2010) the present analysis however extends the previous publication by a
novel conversion technique, an illustrative case study, tighter bounds,and an improved presentation.

In related papers, non-sparse MKL has been applied, extended, andfurther analyzed by several
researchers since its initial publication in Kloft et al. (2008), Cortes et al.(2009a), and Kloft et al.
(2009a): Varma and Babu (2009) derive a projected gradient-basedoptimization method forℓ2-norm
MKL. Yu et al. (2010) present a more general dual view ofℓ2-norm MKL and show advantages of
ℓ2-norm over an unweighted-sum kernel SVM on six bioinformatics data sets. Cortes et al. (2010a)
provide generalization bounds forℓ1- and ℓp≤2-norm MKL. The analytical optimization method
presented in this paper was independently and in parallel discovered by Xu et al. (2010) and has
also been studied in Roth and Fischer (2007) and Ying et al. (2009) forℓ1-norm MKL, and in
Szafranski et al. (2010) and Nath et al. (2009) for composite kernellearning on small and medium
scales.

2. Multiple Kernel Learning—A Unifying View

In this section we cast multiple kernel learning into a unified framework: we present a regularized
loss minimization formulation with additional norm constraints on the kernel mixing coefficients.

956



ℓp-NORM MULTIPLE KERNEL LEARNING

We show that it comprises many popular MKL variants currently discussed inthe literature, includ-
ing seemingly different ones.

We derive generalized dual optimization problems without making specific assumptions on the
norm regularizers or the loss function, beside that the latter is convex. Asa special case we derive
ℓp-norm MKL in Section 4. In addition, our formulation covers binary classification and regression
tasks and can easily be extended to multi-class classification and structural learning settings using
appropriate convex loss functions and joint kernel extensions (cf. Section 3). Prior knowledge on
kernel mixtures and kernel asymmetries can be incorporated by non-isotropic norm regularizers.

2.1 Preliminaries

We begin with reviewing the classical supervised learning setup. Given a labeled sampleD =
{(xi ,yi)}i=1...,n, where thexi lie in some input spaceX andyi ∈ Y ⊂R, the goal is to find a hypoth-
esish∈ H, that generalizes well on new and unseen data. Regularized risk minimizationreturns a
minimizerh∗,

h∗ ∈ argminh Remp(h)+λΩ(h),

where Remp(h)= 1
n ∑n

i=1V (h(xi),yi) is the empirical risk of hypothesish w.r.t. a convex loss function
V : R×Y → R, Ω : H→ R is a regularizer, andλ > 0 is a trade-off parameter. We consider linear
models of the form

hw̃,b(x) = 〈w̃,ψ(x)〉+b, (1)

together with a (possibly non-linear) mappingψ : X → H to a Hilbert spaceH (e.g., Scḧolkopf
et al., 1998; M̈uller et al., 2001) and constrain the regularization to be of the formΩ(h) = 1

2‖w̃‖22
which allows to kernelize the resulting models and algorithms. We will later make useof kernel
functionsk(x,x′) = 〈ψ(x),ψ(x′)〉H to compute inner products inH .

2.2 Regularized Risk Minimization with Multiple Kernels

When learning with multiple kernels, we are givenM different feature mappingsψm :X →Hm, m=
1, . . .M, each giving rise to a reproducing kernelkm of Hm. Convex approaches to multiple kernel
learning consider linear kernel mixtureskθ = ∑θmkm, θm≥ 0. Compared to Equation (1), the primal
model for learning with multiple kernels is extended to

hw̃,b,θ(x) =
M

∑
m=1

√
θm〈w̃m,ψm(x)〉Hm

+b = 〈w̃,ψθ(x)〉H +b

where the parameter vector ˜w and the composite feature mapψθ have a block structure ˜w= (w̃⊤1 , . . . ,
w̃⊤M)⊤ andψθ =

√
θ1ψ1× . . .×

√
θMψM, respectively.

In learning with multiple kernels we aim at minimizing the loss on the training data w.r.t. the
optimal kernel mixture∑M

m=1 θmkm in addition to regularizingθ to avoid overfitting. Hence, in terms
of regularized risk minimization, the optimization problem becomes

inf
w̃,b,θ:θ≥0

1
n

n

∑
i=1

V

(
M

∑
m=1

√
θm〈w̃m,ψm(xi)〉Hm

+b, yi

)
+

λ
2

M

∑
m=1

‖w̃m‖2Hm
+ µ̃Ω̃[θ], (2)
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for µ̃> 0. Note that the objective value of Equation (2) is an upper bound on the training error.
Previous approaches to multiple kernel learning employ regularizers of theform Ω̃(θ) = ‖θ‖1 to
promote sparse kernel mixtures. In contrast, we propose to use convexregularizers of the form
Ω̃(θ) = ‖θ‖2, where‖ · ‖2 is an arbitrary norm inRM, possibly allowing for non-sparse solutions
and the incorporation of prior knowledge. The non-convexity arising from the

√
θmw̃m product in

the loss term of Equation (2) is not inherent and can be resolved by substituting wm←
√

θmw̃m.
Furthermore, the regularization parameter and the sample size can be decoupled by introducingC̃=
1
nλ (and adjustingµ← µ̃

λ ) which has favorable scaling properties in practice. We obtain the following
convex optimization problem (Boyd and Vandenberghe, 2004) that has also been considered by
Varma and Ray (2007) for hinge loss and anℓ1-norm regularizer

inf
w,b,θ:θ≥0

C̃
n

∑
i=1

V

(
M

∑
m=1

〈wm,ψm(xi)〉Hm
+b, yi

)
+

1
2

M

∑
m=1

‖wm‖2Hm

θm
+µ‖θ‖2, (3)

where we use the convention thatt
0 = 0 if t = 0 and∞ otherwise.

An alternative approach has been studied by Rakotomamonjy et al. (2007)and Zien and Ong
(2007), again using hinge loss andℓ1-norm. They upper bound the value of the regularizer‖θ‖1≤ 1
and incorporate the regularizer as an additional constraint into the optimization problem. ForC> 0
and hinge loss, they arrive at the following problem which is the primary object of investigation in
this paper.

2.2.1 GENERAL PRIMAL MKL O PTIMIZATION PROBLEM

inf
w,b,θ:θ≥0

C
n

∑
i=1

V
( M

∑
m=1

〈wm,ψm(xi)〉Hm
+b, yi

)
+

1
2

M

∑
m=1

‖wm‖2Hm

θm
(4)

s.t. ‖θ‖2≤ 1.

It is important to note here that, while the Tikhonov regularization in (3) hastwo regularization pa-
rameters (C andµ), the above Ivanov regularization (4) has onlyone(C only). Our first contribution
shows that, despite the additional regularization parameter, both MKL variants are equivalent, in the
sense that traversing the regularization paths yields the same binary classification functions.

Theorem 1 Let‖ · ‖ be a norm onRM and V a convex loss function. Suppose for the optimal w∗ in
Optimization Problem(4) it holds w∗ 6= 0. Then, for each pair(C̃,µ) there exists C> 0 such that
for each optimal solution (w,b,θ) of Equation(3) using(C̃,µ), we have that(w,b,κθ) is also an
optimal solution of Optimization Problem(4)using C, and vice versa, whereκ> 0 is a multiplicative
constant.

For the proof we need Prop. 12, which justifies switching from Ivanov to Tikhonov regulariza-
tion, and back, if the regularizer is tight. We refer to Appendix A for the proposition and its proof.

Proof of Theorem 1Let be(C̃,µ) > 0. In order to apply Prop. 12 to (3), we show that condition
(31) in Prop. 12 is satisfied, that is, that the regularizer is tight.

Suppose on the contrary, that Optimization Problem (4) yields the same infimum regardless of
whether we require

‖θ‖2≤ 1,
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or not. Then this implies that in the optimal point we have∑M
m=1

‖w∗m‖22
θ∗m

= 0, hence,

‖w∗m‖22
θ∗m

= 0, ∀ m= 1, . . . ,M. (5)

Since all norms onRM are equivalent (e.g., Rudin, 1991), there exists aL < ∞ such that‖θ∗‖∞ ≤
L‖θ∗‖. In particular, we have‖θ∗‖∞ < ∞, from which we conclude by (5), thatwm = 0 holds for all
m, which contradicts our assumption.

Hence, Prop. 12 can be applied,1 which yields that (3) is equivalent to

inf
w,b,θ

C̃
n

∑
i=1

V
( M

∑
m=1

〈wm,ψm(x)〉+b, yi

)
+

1
2

M

∑
m=1

‖wm‖22
θm

s.t. ‖θ‖2≤ τ,

for someτ > 0. Consider the optimal solution(w⋆,b⋆,θ⋆) corresponding to a given parametrization
(C̃,τ). For anyλ > 0, the bijective transformation(C̃,τ) 7→ (λ−1/2C̃,λτ) will yield (w⋆,b⋆,λ1/2θ⋆)

as optimal solution. Applying the transformation withλ := 1/τ and settingC = C̃τ 1
2 as well as

κ = τ−1/2 yields Optimization Problem (4), which was to be shown.

Zien and Ong (2007) also show that the MKL optimization problems by Bach et al. (2004),
Sonnenburg et al. (2006a), and their own formulation are equivalent. As a main implication of
Theorem 1 and by using the result of Zien and Ong it follows that the optimization problem of Varma
and Ray (2007) lies in the same equivalence class as Bach et al. (2004),Sonnenburg et al. (2006a),
Rakotomamonjy et al. (2007) and Zien and Ong (2007). In addition, our result shows the coupling
between trade-off parameterC and the regularization parameterµ in Equation (3): tweaking one also
changes the other and vice versa. Theorem 1 implies that optimizingC in Optimization Problem
(4) implicitly searches the regularization path for the parameterµ of Equation (3). In the remainder,
we will therefore focus on the formulation in Optimization Problem (4), as a single parameter is
preferable in terms of model selection.

2.3 MKL in Dual Space

In this section we study the generalized MKL approach of the previous section in the dual space.
Let us begin with rewriting Optimization Problem (4) by expanding the decision values into slack
variables as follows

inf
w,b,t,θ

C
n

∑
i=1

V (ti , yi)+
1
2

M

∑
m=1

‖wm‖2Hm

θm
(6)

s.t. ∀i :
M

∑
m=1

〈wm,ψm(xi)〉Hm
+b= ti ; ‖θ‖2≤ 1 ; θ≥ 0 ,

where‖ · ‖ is an arbitrary norm inRm and‖ · ‖HM
denotes the Hilbertian norm ofHm. Applying

Lagrange’s theorem re-incorporates the constraints into the objective by introducing Lagrangian

1. Note that after a coordinate transformation, we can assume thatH is finite dimensional (see Schölkopf et al., 1999).
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multipliersα ∈ R
n, β ∈ R+, andγ ∈ R

M. The Lagrangian saddle point problem is then given by

sup
α,β,γ:

β≥0,γ≥0

inf
w,b,t,θ

C
n

∑
i=1

V (ti , yi)+
1
2

M

∑
m=1

‖wm‖2Hm

θm

−
n

∑
i=1

αi

(
M

∑
m=1

〈wm,ψm(xi)〉Hm
+b− ti

)
+β
(

1
2
‖θ‖2− 1

2

)
− γ⊤θ.

Denoting the Lagrangian byL and setting its first partial derivatives with respect tow andb to 0
reveals the optimality conditions

1⊤α = 0;

wm = θm

n

∑
i=1

αiψm(xi), ∀ m= 1, . . . ,M.

Resubstituting the above equations yields

sup
α,β,γ: 1⊤α=0,

β≥0,γ≥0

inf
t,θ

C
n

∑
i=1

(V (ti , yi)+αiti)−
1
2

M

∑
m=1

θmα⊤Kmα+β
(

1
2
‖θ‖2− 1

2

)
− γ⊤θ,

which can also be written as

sup
α,β,γ: 1⊤α=0,

β≥0,γ≥0

−C
n

∑
i=1

sup
ti

(
−αi

C
ti−V (ti , yi)

)
−βsup

θ

(
1
β

M

∑
m=1

(1
2

α⊤Kmα+ γm
)
θm−

1
2
‖θ‖2

)
− 1

2
β.

As a consequence, we now may express the Lagrangian as2

sup
α,β,γ: 1⊤α=0,β≥0,γ≥0

−C
n

∑
i=1

V∗
(
−αi

C
, yi

)
− 1

β

∥∥∥∥∥

(
1
2

α⊤Kmα+ γm

)M

m=1

∥∥∥∥∥

2

∗
− 1

2
β, (7)

whereh∗(x) = supux⊤u− h(u) denotes the Fenchel-Legendre conjugate of a functionh and ‖ ·
‖∗ denotes thedual norm, that is, the norm defined via the identity12‖ · ‖2∗ :=

(
1
2‖ · ‖2

)∗
. In the

following, we callV∗ the dual loss. Equation (7) now has to be maximized with respect to the
dual variablesα,β, subject to1⊤α = 0 andβ ≥ 0. Let us ignore for a moment the non-negativity
constraint onβ and solve∂L/∂β = 0 for the unboundedβ. Setting the partial derivative to zero
allows to express the optimalβ as

β =

∥∥∥∥∥

(
1
2

α⊤Kmα+ γm

)M

m=1

∥∥∥∥∥
∗
. (8)

Obviously, at optimality, we always haveβ≥ 0. We thus discard the corresponding constraint from
the optimization problem and plugging Equation (8) into Equation (7) results in thefollowing dual
optimization problem:

2. We employ the notations= (s1, . . . ,sM)⊤ = (sm)
M
m=1 for s∈ R

M .
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2.3.1 GENERAL DUAL MKL O PTIMIZATION PROBLEM

sup
α,γ: 1⊤α=0,γ≥0

−C
n

∑
i=1

V∗
(
−αi

C
, yi

)
−
∥∥∥∥∥

(
1
2

α⊤Kmα+ γm

)M

m=1

∥∥∥∥∥
∗
. (9)

The above dual generalizes multiple kernel learning to arbitrary convex loss functions and
norms.3 Note that for the most common choices of norms (for example,ℓp-norm, weightedℓp-
norms, and sum ofℓp-norms; but not the norms discussed in Section 3.5) it holdsγ∗ = 0 in the
optimal point so that theγ-term can be discarded and the above reduces to an optimization problem
that solely depends onα. Also note that if the loss function is continuous (e.g., hinge loss), the
supremum is also a maximum. The thresholdb can be recovered from the solution by applying the
KKT conditions.

The above dual can be characterized as follows. We start by noting thatthe expression in
Optimization Problem (9) is a composition of two terms, first, the left hand side term,which depends
on the conjugate loss functionV∗, and, second, the right hand side term which depends on the
conjugate norm. The right hand side can be interpreted as a regularizer on the quadratic terms that,
according to the chosen norm, smoothens the solutions. Hence we have a decomposition of the
dual into a loss term (in terms of the dual loss) and a regularizer (in terms of the dual norm). For a
specific choice of a pair(V,‖ ·‖) we can immediately recover the corresponding dual by computing
the pair of conjugates(V∗,‖ · ‖∗) (for a comprehensive list of dual losses see Rifkin and Lippert,
2007, Table 3). In the next section, this is illustrated by means of well-knownloss functions and
regularizers.

At this point we would like to highlight some properties of Optimization Problem (9)that arise
due to our dualization technique. While approaches that firstly apply the representer theorem and
secondly optimize in the primal such as Chapelle (2006) also can employ general loss functions, the
resulting loss terms depend on all optimization variables. By contrast, in our formulation the dual
loss terms are of a much simpler structure and they only depend on a single optimization variable
αi . A similar dualization technique yielding singly-valued dual loss terms is presented in Rifkin
and Lippert (2007); it is based on Fenchel duality and limited to strictly positive definite kernel
matrices. Our technique, which uses Lagrangian duality, extends the latter by allowing for positive
semi-definite kernel matrices.

3. Recovering Previous MKL Formulations as Special Instances

In this section we show that existing MKL-based learners are subsumed bythe generalized formu-
lation in Optimization Problem (9). It is helpful for what is coming up to note that for most (but not
all; see Section 3.5) choices of norms it holdsγ∗ = 0 in the generalized dual MKL problem (9), so
that it simplifies to:

sup
α: 1⊤α=0

−C
n

∑
i=1

V∗
(
−αi

C
, yi

)
− 1

2

∥∥∥∥
(

α⊤Kmα
)M

m=1

∥∥∥∥
∗
. (10)

3. We can even employ non-convex losses and still the dual will be a convex problem; however, it might suffer from a
duality gap.
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3.1 Support Vector Machines with Unweighted-Sum Kernels

First, we note that the support vector machine with an unweighted-sum kernel can be recovered as a
special case of our model. To see this, we consider the regularized risk minimization problem using
the hinge loss functionV(t,y) = max(0,1− ty) and the regularizer‖θ‖∞. We then can obtain the
corresponding dual in terms of Fenchel-Legendre conjugate functionsas follows.

We first note that the dual loss of the hinge loss isV∗(t,y) = t
y if −1≤ t

y ≤ 0 and∞ elsewise

(Rifkin and Lippert, 2007, Table 3). Hence, for eachi the termV∗
(
−αi

C , yi
)

of the generalized
dual, that is, Optimization Problem (9), translates to− αi

Cyi
, provided that 0≤ αi

yi
≤C. Employing a

variable substitution of the formαnew
i = αi

yi
, Optimization Problem (9) translates to

max
α,γ: γ≥0

1⊤α−
∥∥∥∥∥

(
1
2

α⊤YKmYα+ γm

)M

m=1

∥∥∥∥∥
∗
, s.t. y⊤α = 0 and 0≤ α≤C1, (11)

where we denoteY = diag(y). The primalℓ∞-norm penalty‖θ‖∞ is dual to‖θ‖1, hence, via the
identity ‖ · ‖∗ = ‖ · ‖1 the right hand side of the last equation translates to∑M

m=1 α⊤YKmYα, and we
note thatγ∗ = 0 in the optimal point. Combined with (11) this leads to the dual

max
α

1⊤α−
M

∑
m=1

α⊤YKmYα, s.t. y⊤α = 0 and 0≤ α≤C1,

which is precisely an SVM with an unweighted-sum kernel.

3.2 QCQP MKL of Lanckriet et al. (2004)

A common approach in multiple kernel learning is to employ regularizers of the form

Ω(θ) = ‖θ‖1. (12)

This so-calledℓ1-norm regularizers are specific instances ofsparsity-inducingregularizers. The
obtained kernel mixtures usually have a considerably large fraction of zero entries, and hence equip
the MKL problem by the favor of interpretable solutions. Sparse MKL is a special case of our
framework; to see this, note that the conjugate of (12) is‖ · ‖∞. Recalling the definition of anℓp-
norm, the right hand side of Optimization Problem (9) translates to maxm∈{1,...,M}α⊤YKmYα. The
maximum can subsequently be expanded into a slack variableξ, resulting in

sup
α,ξ

1⊤α−ξ

s.t. ∀ m :
1
2

α⊤YKmYα≤ ξ ; y⊤α = 0 ; 0≤ α≤C1,

which is the original QCQP formulation of MKL, firstly given by Lanckriet etal. (2004).

3.3 A Smooth Variant of Group Lasso

Yuan and Lin (2006) studied the following optimization problem for the specialcaseHm=R
dm and

ψm = idRdm, also known as group lasso,

min
w

C
2

n

∑
i=1

(
yi−

M

∑
m=1

〈wm,ψm(xi)〉Hm

)2

+
1
2

M

∑
m=1

‖wm‖Hm
. (13)
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The above problem has been solved by active set methods in the primal (Roth and Fischer, 2008).
We sketch an alternative approach based on dual optimization. First, we note that Equation (13) can
be equivalently expressed as (Micchelli and Pontil, 2005, Lemma 26)

inf
w,θ:θ≥0

C
2

n

∑
i=1

(
yi−

M

∑
m=1

〈wm,ψm(xi)〉Hm

)2

+
1
2

M

∑
m=1

‖wm‖2Hm

θm
, s.t. ‖θ‖21≤ 1.

The dual ofV(t,y) = 1
2(y− t)2 is V∗(t,y) = 1

2t2+ ty and thus the corresponding group lasso dual
can be written as

max
α

y⊤α− 1
2C
‖α‖22−

1
2

∥∥∥∥
(

α⊤YKmYα
)M

m=1

∥∥∥∥
∞
,

which can be expanded into the following QCQP

sup
α,ξ

y⊤α− 1
2C
‖α‖22−ξ

s.t. ∀m :
1
2

α⊤YKmYα≤ ξ.

For smalln, the latter formulation can be handled efficiently by QCQP solvers. However, the
quadratic constraints caused by the non-smoothℓ∞-norm in the objective still are computationally
too demanding. As a remedy, we propose the following unconstrained variant based onℓp-norms
(1< p< ∞), given by

max
α

y⊤α− 1
2C
‖α‖22−

1
2

∥∥∥∥
(

α⊤YKmYα
)M

m=1

∥∥∥∥
p∗
.

It is straightforward to verify that the above objective function is differentiable in anyα ∈ R
n (in

particular, notice that theℓp-norm function is differentiable for 1< p < ∞) and hence the above
optimization problem can be solved very efficiently by, for example, limited memoryquasi-Newton
descent methods (Liu and Nocedal, 1989).

3.4 Density Level-Set Estimation

Density level-set estimators are frequently used for anomaly/novelty detection tasks (Markou and
Singh, 2003a,b). Kernel approaches, such as one-class SVMs (Schölkopf et al., 2001) and Sup-
port Vector Domain Descriptions (Tax and Duin, 1999) can be cast into our MKL framework by
employing loss functions of the formV(t) = max(0,1− t). This gives rise to the primal

inf
w,θ:θ≥0

C
n

∑
i=1

max

(
0,

M

∑
m=1

〈wm,ψm(xi)〉Hm

)
+

1
2

M

∑
m=1

‖wm‖2Hm

θm
, s.t. ‖θ‖2≤ 1.

Noting that the dual loss isV∗(t) = t if −1≤ t ≤ 0 and∞ elsewise, we obtain the following gener-
alized dual

sup
α

1⊤α− 1
2

∥∥∥∥
(

α⊤Kmα
)M

m=1

∥∥∥∥
p∗
, s.t. 0≤ α≤C1,

which has been studied by Sonnenburg et al. (2006a) and Rakotomamonjyet al. (2008) forℓ1-norm,
and by Kloft et al. (2009b) forℓp-norms.
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3.5 Non-Isotropic Norms

In practice, it is often desirable for an expert to incorporate prior knowledge about the problem
domain. For instance, an expert could provide estimates of the interactions of kernels{K1, ...,KM}
in the form of anM×M matrixE. Alternatively,E could be obtained by computing pairwise kernel
alignmentsEi j =

<Ki ,K j>
‖Ki‖ ‖K j‖ given a dot product on the space of kernels such as the Frobenius dot

product (Ong et al., 2005). In a third scenario,E could be a diagonal matrix encoding the a priori
importance of kernels—it might be known from pilot studies that a subset ofthe employed kernels
is inferior to the remaining ones.

All those scenarios can be handled within our framework by considering non-isotropic regular-
izers of the form4

‖θ‖E−1 =
√

θ⊤E−1θ with E ≻ 0,

whereE−1 is the matrix inverse ofE.
However, this choice of a norm is quite different from what we have seen before: let us consider

Optimization Problem (9); for non-isotropic norms we in general do not have γ∗ = 0 in the optimal
point so that this OP does not simplify to the dual (10) as in the subsections before. Instead we have
to work with (9) directly. To this end, note that for the dual norm it holds

(
1
2‖ · ‖2E−1

)∗
= 1

2‖ · ‖2E, so
that we obtain from (9) the following dual

sup
α,γ: 1⊤α=0,γ≥0

−C
n

∑
i=1

V∗
(
−αi

C
, yi

)
−
∥∥∥∥∥

(
1
2

α⊤Kmα+ γm

)M

m=1

∥∥∥∥∥
E

,

which is the desired non-isotropic MKL problem.

4. ℓp-Norm Multiple Kernel Learning

In this work, we propose to use non-sparse and thus more robust kernel mixtures by employing an
ℓp-norm constraint withp> 1, rather than the traditionally usedℓ1-norm constraint, on the mixing
coefficients (Kloft et al., 2009a). To this end, we employ non-sparse norms of the form‖θ‖p =
(∑M

m=1 θp
m)1/p, 1 < p < ∞.5 From the unifying framework of Section 2 we obtain the following

ℓp-norm MKL primal:

4.1 Primal ℓp-norm MKL Optimization Problem

inf
w,b,θ:θ≥0

C
n

∑
i=1

V

(
M

∑
m=1

〈wm,ψm(xi)〉Hm
+b, yi

)
+

1
2

M

∑
m=1

‖wm‖2Hm

θm

s.t. ‖θ‖2p≤ 1. (14)

Using that the dual norm of theℓp-norm is theℓp∗-norm, wherep∗ := p
p−1, and noting thatγ∗ = 0

in the optimal point, we obtain from Optimization Problem (9) the followingℓp-norm MKL dual:

4. This idea is inspired by the Mahalanobis distance (Mahalanobis, 1936).
5. While the upcoming reasoning also holds for weightedℓp-norms, the extension to more general norms, such as the

ones described in Section 3.5, is left for future work.
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4.2 Dualℓp-norm MKL Optimization Problem

sup
α:1⊤α=0

−C
n

∑
i=1

V∗
(
−αi

C
, yi

)
− 1

2

∥∥∥∥
(

α⊤Kmα
)M

m=1

∥∥∥∥
p∗
.

In the special case of hinge loss minimization, we obtain the optimization problem

sup
α

1⊤α− 1
2

∥∥∥∥
(

α⊤YKmYα
)M

m=1

∥∥∥∥
p∗
, s.t. y⊤α = 0 and 0≤ α≤C1. (15)

In the subsequent sections, we will propose an efficient optimization algorithm for Optimization
Problem (15) (Section 4.3) and proof its convergence (Section 4.3.3). Later we derive generalization
bounds (Section 5), and analyzeℓp-norm MKL empirically using artificial and real-world data sets
(Section 6).

4.3 Optimization Strategies

The dual as given in Optimization Problem (15) does not lend itself to efficient large-scale opti-
mization in a straight-forward fashion, for instance by direct application of standard approaches
like gradient descent. Instead, it is beneficial to exploit the structure of the MKL cost function by
alternating between optimizing w.r.t. the mixingsθ and w.r.t. the remaining variables. Most recent
MKL solvers (e.g., Rakotomamonjy et al., 2008; Xu et al., 2009; Nath et al., 2009) do so by set-
ting up a two-layer optimization procedure: a master problem, which is parameterized only byθ,
is solved to determine the kernel mixture; to solve this master problem, repeatedlya slave prob-
lem is solved which amounts to training a standard SVM on a mixture kernel. Importantly, for the
slave problem, the mixture coefficients are fixed, such that conventional, efficient SVM optimizers
can be recycled. Consequently these two-layer procedures are commonly implemented aswrapper
approaches. Albeit appearing advantageous, wrapper methods suffer from two shortcomings: (i)
Due to kernel cache limitations, the kernel matrices have to be pre-computed and stored or many
kernel computations have to be carried out repeatedly, inducing heavy wastage of either memory or
time. (ii) The slave problem is always optimized to the end (and many convergence proofs seem to
require this), although most of the computational time is spend on the non-optimalmixtures. Cer-
tainly suboptimal slave solutions would already suffice to improve far-from-optimalθ in the master
problem.

Due to these problems, MKL is prohibitive when learning with a multitude of kernelsand on
large-scale data sets as commonly encountered in many data-intense real world applications such
as bioinformatics, web mining, databases, and computer security. The optimization approach pre-
sented in this paper decomposes the MKL problem into smaller subproblems (Platt, 1999; Joachims,
1999; Fan et al., 2005) by establishing a wrapper-like schemewithin the decomposition algorithm.

Our algorithm is embedded into the large-scale framework of Sonnenburg et al. (2006a) and
extends it to the optimization of non-sparse kernel mixtures induced by anℓp-norm penalty. Our
strategy alternates between minimizing the primal problem (6) w.r.t.θ via a simple analytical update
formula and with incomplete optimization w.r.t. all other variables which, however,is performed
in terms of the dual variablesα. Optimization w.r.t.α is performed by chunking optimizations
with minor iterations. Convergence of our algorithm is proven under typicaltechnical regularity
assumptions.
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4.3.1 A SIMPLE WRAPPERAPPROACHBASED ON AN ANALYTICAL UPDATE

We first present an easy-to-implement wrapper version of our optimizationapproach to multiple
kernel learning. The interleaved decomposition algorithm is deferred to thenext section.

To derive the new algorithm, we divide the optimization variables of the primal problem (14)
into two groups,(w,b) on one hand andθ on the other. Our algorithm will alternatingly operate
on those two groups via a block coordinate descent algorithm, also known as thenon-linear block
Gauss-Seidel method. Thereby the optimization w.r.t.θ will be carried out analytically and the
(w,b)-step will be computed in the dual, if needed.

The basic idea of our first approach is that for a given, fixed set of primal variables(w,b), the
optimal θ in the primal problem (14) can be calculated analytically as the following proposition
shows.

Proposition 2 Let V be a convex loss function, be p> 1. Given fixed (possibly suboptimal) w6= 0
and b, the minimalθ in Optimization Problem(14) is attained for

θm =
‖wm‖

2
p+1

Hm(
∑M

m′=1‖wm′‖
2p

p+1

Hm′

)1/p
, ∀m= 1, . . . ,M. (16)

Proof 6 We start the derivation, by equivalently translating Optimization Problem (14)via Theo-
rem 1 into

inf
w,b,θ:θ≥0

C̃
n

∑
i=1

V

(
M

∑
m=1

〈wm,ψm(xi)〉Hm
+b, yi

)
+

1
2

M

∑
m=1

‖wm‖2Hm

θm
+

µ
2
‖θ‖2p, (17)

with µ > 0. Suppose we are given fixed(w,b), then setting the partial derivatives of the above
objective w.r.t.θ to zero yields the following condition on the optimality ofθ,

−
‖wm‖2Hm

2θ2
m

+µ·
∂
(

1
2‖θ‖2p

)

∂θm
= 0, ∀m= 1, . . . ,M. (18)

The first derivative of theℓp-norm with respect to the mixing coefficients can be expressed as

∂
(

1
2‖θ‖2p

)

∂θm
= θp−1

m ‖θ‖2−p
p ,

and hence Equation (18) translates into the following optimality condition,

∃ζ ∀m= 1, . . . ,M : θm = ζ‖wm‖
2

p+1

Hm
. (19)

Becausew 6= 0, using the same argument as in the proof of Theorem 1, the constraint‖θ‖2p ≤ 1
in (17) is at the upper bound, that is,‖θ‖p = 1 holds for an optimalθ. Inserting (19) in the latter

equation leads toζ =
(

∑M
m=1‖wm‖2p/p+1

Hm

)1/p
. Resubstitution into (19) yields the claimed formula

6. We remark that a more general result can be obtained by an alternative proof using Ḧolder’s inequality (see Lemma
26 in Micchelli and Pontil, 2005).
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(16).

Second, we consider how to optimize Optimization Problem (14) w.r.t. the remainingvariables
(w,b) for a given set of mixing coefficientsθ. Since optimization often is considerably easier in the
dual space, we fixθ and build the partial Lagrangian of Optimization Problem (14) w.r.t. all other
primal variablesw, b. The resulting dual problem is of the form (detailed derivations omitted)

sup
α:1⊤α=0

−C
n

∑
i=1

V∗
(
−αi

C
, yi

)
− 1

2

M

∑
m=1

θmα⊤Kmα, (20)

and the KKT conditions yieldwm = θm∑n
i=1 αiψm(xi) in the optimal point, hence

‖wm‖2 = θ2
mαKmα, ∀ m= 1, . . . ,M. (21)

We now have all ingredients (i.e., Equations (16), (20)–(21)) to formulatea simple macro-wrapper
algorithm forℓp-norm MKL training:

Algorithm 1 Simpleℓp>1-norm MKL wrapper-based training algorithm. The analytical updates of
θ and the SVM computations are optimized alternatingly.

1: input: feasibleα andθ
2: while optimality conditions are not satisfieddo
3: Computeα according to Equation (20) (e.g., SVM)
4: Compute‖wm‖2 for all m= 1, ...,M according to Equation (21)
5: Updateθ according to Equation (16)
6: end while

The above algorithm alternatingly solves a convex risk minimization machine (e.g.,SVM) w.r.t. the
actual mixtureθ (Equation (20)) and subsequently computes the analytical update according to
Equation (16) and (21). It can, for example, be stopped based on changes of the objective function
or the duality gap within subsequent iterations.

4.3.2 TOWARDS LARGE-SCALE MKL—I NTERLEAVING SVM AND MKL O PTIMIZATION

However, a disadvantage of the above wrapper approach still is that it deploys a full blown kernel
matrix. We thus propose to interleave the SVM optimization of SVMlight with theθ- andα-steps
at training time. We have implemented this so-calledinterleavedalgorithm in Shogun for hinge
loss, thereby promoting sparse solutions inα. This allows us to solely operate on a small number of
active variables.7 The resulting interleaved optimization method is shown in Algorithm 2. Lines 3-5
are standard in chunking based SVM solvers and carried out by SVMlight (note thatQ is chosen as
described in Joachims, 1999). Lines 6-7 compute SVM-objective values.Finally, the analyticalθ-
step is carried out in Line 9. The algorithm terminates if the maximal KKT violation (cf. Joachims,
1999) falls below a predetermined precisionε and if the normalized maximal constraint violation
|1− ω

ωold
|< εmkl for the MKL-step, whereω denotes the MKL objective function value (Line 8).

7. In practice, it turns out that the kernel matrix of active variables typically is about of the size 40×40, even when we
deal with ten-thousands of examples.
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Algorithm 2 ℓp-Norm MKL chunking-based training algorithm via analytical update. Kernel
weightingθ and (signed) SVMα are optimized interleavingly. The accuracy parameterε and the
subproblem sizeQ are assumed to be given to the algorithm.

1: Initialize: gm,i = ĝi = αi = 0,∀i = 1, ...,n; L = S=−∞; θm = p
√

1/M, ∀m= 1, ...,M
2: iterate
3: Select Q variablesαi1, . . . ,αiQ based on the gradientĝ of (20) w.r.t.α
4: Storeαold = α and then updateα according to (20) with respect to the selected variables
5: Update gradientgm,i ← gm,i +∑Q

q=1(αiq−αold
iq )km(xiq,xi), ∀ m= 1, . . . ,M, i = 1, . . . ,n

6: Compute the quadratic termsSm = 1
2 ∑i gm,iαi , qm = 2θ2

mSm, ∀m= 1, . . . ,M

7: Lold = L, L = ∑i yiαi , Sold = S, S= ∑mθmSm

8: if |1− L−S
Lold−Sold

| ≥ ε

9: θm = (qm)
1/(p+1) /

(
∑M

m′=1 (qm′)
p/(p+1)

)1/p
, ∀ m= 1, . . . ,M

10: else
11: break
12: end if
13: ĝi = ∑mθmgm,i for all i = 1, . . . ,n

4.3.3 CONVERGENCEPROOF FORp> 1

In the following, we exploit the primal view of the above algorithm as a nonlinear block Gauss-
Seidel method, to prove convergence of our algorithms. We first need thefollowing useful result
about convergence of the nonlinear block Gauss-Seidel method in general.

Proposition 3 (Bertsekas, 1999, Prop. 2.7.1)LetX =
⊗M

m=1Xm be the Cartesian product of closed
convex setsXm⊂ R

dm, be f : X → R a continuously differentiable function. Define the nonlinear
block Gauss-Seidel method recursively by letting x0 ∈ X be any feasible point, and be

xk+1
m = argmin

ξ∈Xm

f
(

xk+1
1 , · · · ,xk+1

m−1,ξ,x
k
m+1, · · · ,xk

M

)
, ∀m= 1, . . . ,M. (22)

Suppose that for each m and x∈ X , the minimum

min
ξ∈Xm

f (x1, · · · ,xm−1,ξ,xm+1, · · · ,xM)

is uniquely attained. Then every limit point of the sequence{xk}k∈N is a stationary point.

The proof can be found in Bertsekas (1999), p. 268-269. The nextproposition basically establishes
convergence of the proposedℓp-norm MKL training algorithm.

Theorem 4 Let V be the hinge loss and be p> 1. Let the kernel matrices K1, . . . ,KM be positive
definite. Then every limit point of Algorithm 1 is a globally optimal point of Optimization Problem
(14). Moreover, suppose that the SVM computation is solved exactly in each iteration, then the same
holds true for Algorithm 2.

Proof If we ignore the numerical speed-ups, then the Algorithms 1 and 2 coincide for the hinge
loss. Hence, it suffices to show the wrapper algorithm converges.
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To this aim, we have to transform Optimization Problem (14) into a form such thatthe require-
ments for application of Prop. 3 are fulfilled. We start by expanding Optimization Problem (14)
into

min
w,b,ξ,θ

C
n

∑
i=1

ξi +
1
2

M

∑
m=1

‖wm‖2Hm

θm
,

s.t. ∀i :
M

∑
m=1

〈wm,ψm(xi)〉Hm
+b≥ 1−ξi ; ξ≥ 0; ‖θ‖2p≤ 1; θ≥ 0,

thereby extending the second block of variables,(w,b), into (w,b,ξ). Moreover, we note that after
an application of the representer theorem8 (Kimeldorf and Wahba, 1971) we may without loss of
generality assumeHm = R

n.
In the problem’s current form, the possibility of an optimalθm = 0 while wm 6= 0 renders the

objective function nondifferentiable. This hinders the application of Prop. 3. Fortunately, it follows
from Prop. 2 (note thatKm≻ 0 impliesw 6= 0) that this case is impossible forp> 1. We therefore can
substitute the constraintθ≥ 0 by θ> 0 for all mwithout changing the optimum. In order to maintain
the closeness of the feasible set we subsequently apply a bijective coordinate transformationφ :
R

M
+ → R

M with θnew
m = φm(θm) = log(θm), resulting in the following equivalent problem,

inf
w,b,ξ,θ

C
n

∑
i=1

ξi +
1
2

M

∑
m=1

exp(−θm)‖wm‖2Rn,

s.t. ∀i :
M

∑
m=1

〈wm,ψm(xi)〉Rn +b≥ 1−ξi ; ξ≥ 0; ‖exp(θ)‖2p≤ 1,

where we employ the notation exp(θ) = (exp(θ1), · · · ,exp(θM))⊤.
Applying the Gauss-Seidel method in Equation (22) to the base problem Optimization Problem

(14) and to the reparametrized problem yields the same sequence of solutions {(w,b,θ)k}k∈N0.
The above problem now allows to apply Prop. 3 for the two blocks of coordinatesθ ∈ X1 and
(w,b,ξ) ∈ X2: the objective is continuously differentiable and the setsX1 andX2 are closed and
convex. To see the latter, note that‖ · ‖2p ◦exp is a convex function (cf., Section 3.2.4 in Boyd and
Vandenberghe, 2004). Moreover, the minima in Equation (22) are uniquely attained: the(w,b)-step
amounts to solving an SVM on a positive definite kernel mixture, and the analytical θ-step clearly
yields unique solutions as well.

Hence, we conclude that every limit point of the sequence{(w,b,θ)k}k∈N is a stationary point
of Optimization Problem (14). For a convex problem, this is equivalent to such a limit point being
globally optimal.

In practice, we are facing two problems. First, the standard Hilbert spacesetup necessarily
implies that‖wm‖ ≥ 0 for all m. However in practice this assumption may often be violated, either
due to numerical imprecision or because of using an indefinite “kernel” function. However, for
any‖wm‖ ≤ 0 it also follows thatθ⋆

m = 0 as long as at least one strictly positive‖wm′‖ > 0 exists.
This is because for anyλ < 0 we have limh→0,h>0

λ
h = −∞. Thus, for anym with ‖wm‖ ≤ 0, we

8. Note that the coordinate transformation intoRn can be explicitly given in terms of the empirical kernel map
(Scḧolkopf et al., 1999).
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can immediately set the corresponding mixing coefficientsθ⋆
m to zero. The remainingθ are then

computed according to Equation (2), and convergence will be achieved as long as at least one
strictly positive‖wm′‖> 0 exists in each iteration.

Second, in practice, the SVM problem will only be solved with finite precision, which may
lead to convergence problems. Moreover, we actually want to improve theα only a little bit be-
fore recomputingθ since computing a high precision solution can be wasteful, as indicated by the
superior performance of the interleaved algorithms (cf. Sect. 6.5). This helps to avoid spending a
lot of α-optimization (SVM training) on a suboptimal mixtureθ. Fortunately, we can overcome the
potential convergence problem by ensuring that the primal objective decreases within eachα-step.
This is enforced in practice, by computing the SVM by a higher precision if needed. However, in
our computational experiments we find that this precaution is not even necessary: even without it,
the algorithm converges in all cases that we tried (cf. Section 6).

Finally, we would like to point out that the proposed block coordinate descent approach lends
itself more naturally to combination with primal SVM optimizers like Chapelle (2006), LibLin-
ear (Fan et al., 2008) or Ocas (Franc and Sonnenburg, 2008). Especially for linear kernels this is
extremely appealing.

4.4 Technical Considerations

In this section we report on implementation details and discuss kernel normalization.

4.4.1 IMPLEMENTATION DETAILS

We have implemented the analytic optimization algorithm described in the previous Section, as
well as the cutting plane and Newton algorithms by Kloft et al. (2009a), within the SHOGUN
toolbox (Sonnenburg et al., 2010) for regression, one-class classification, and two-class classifica-
tion tasks. In addition one can choose the optimization scheme, that is, decide whether the inter-
leaved optimization algorithm or the wrapper algorithm should be applied. In allapproaches any
of the SVMs contained in SHOGUN can be used. Our implementation can be downloaded from
http://www.shogun-toolbox.org .

In the more conventional family of approaches, thewrapper algorithms, an optimization scheme
onθ wraps around a single kernel SVM. Effectively this results in alternatinglysolving forα andθ.
For the outer optimization (i.e., that onθ) SHOGUN offers the three choices listed above. The semi-
infinite program (SIP) uses a traditional SVM to generate new violated constraints and thus requires
a single kernel SVM. A linear program (forp= 1) or a sequence of quadratically constrained linear
programs (forp> 1) is solved via GLPK9 or IBM ILOG CPLEX10. Alternatively, either an analytic
or a Newton update (forℓp norms withp > 1) step can be performed, obviating the need for an
additional mathematical programming software.

The second, much faster approach performs interleaved optimization and thus requires modifi-
cation of the core SVM optimization algorithm. It is currently integrated into the chunking-based
SVRlight and SVMlight. To reduce the implementation effort, we implement a single function
perform mkl step( ∑α, obj m) , that has the arguments∑α := ∑n

i=1 αi and objm=1
2αTKmα, that is,

the current linearα-term and the SVM objectives for each kernel. This function is either, in the

9. GLPK can be found athttp://www.gnu.org/software/glpk/ .
10. ILOG CPLEX can be found athttp://www.ibm.com/software/integration/optimizatio n/cplex/ .
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interleaved optimization case, called as a callback function (after each chunking step or a couple of
SMO steps), or it is called by the wrapper algorithm (after each SVM optimization to full precision).

Recovering Regression and One-Class Classification.It should be noted that one-class classifi-
cation is trivially implemented using∑α = 0 while support vector regression (SVR) is typically per-
formed by internally translating the SVR problem into a standard SVM classification problem with
twice the number of examples once positively and once negatively labeled withcorrespondingα and
α∗. Thus one needs direct access toα∗ and computes∑α =−∑n

i=1(αi +α∗i )ε−∑n
i=1(αi−α∗i )yi (cf.

Sonnenburg et al., 2006a). Since this requires modification of the core SVM solver we implemented
SVR only for interleaved optimization and SVMlight.

Efficiency Considerations and Kernel Caching.Note that the choice of the size of the kernel
cache becomes crucial when applying MKL to large scale learning applications.11 While for the
wrapper algorithms only asinglekernel SVM needs to be solved and thus a single large kernel
cache should be used, the story is different for interleaved optimization. Since one must keep track
of the several partial MKL objectives objm, requiring access to individual kernel rows, the same
cache size should be used for all sub-kernels.

4.4.2 KERNEL NORMALIZATION

The normalization of kernels is as important for MKL as the normalization of features is for training
regularized linear or single-kernel models. This is owed to the bias introduced by the regularization:
optimal feature / kernel weights are requested to be small. This is easier to achieve for features (or
entire feature spaces, as implied by kernels) that are scaled to be of largemagnitude, while down-
scaling them would require a correspondingly upscaled weight for representing the same predictive
model. Upscaling (downscaling) features is thus equivalent to modifying regularizers such that they
penalize those features less (more). As is common practice, we here use isotropic regularizers,
which penalize all dimensions uniformly. This implies that the kernels have to be normalized in a
sensible way in order to represent an “uninformative prior” as to which kernels are useful.

There exist several approaches to kernel normalization, of which we use two in the computa-
tional experiments below. They are fundamentally different. The first onegeneralizes the common
practice of standardizing features to entire kernels, thereby directly implementing the spirit of the
discussion above. In contrast, the second normalization approach rescales the data points to unit
norm in feature space. Nevertheless it can have a beneficial effect on the scaling of kernels, as we
argue below.

Multiplicative Normalization.As done in Ong and Zien (2008), we multiplicatively normalize
the kernels to have uniform variance of data points in feature space. Formally, we find a positive
rescalingρm of the kernel, such that the rescaled kernelk̃m(·, ·) = ρmkm(·, ·) and the corresponding
feature map̃Φm(·) =

√ρmΦm(·) satisfy

1
n

n

∑
i=1

∥∥Φ̃m(xi)− Φ̃m(x̄)
∥∥2

= 1

11. Large scalein the sense, that the data cannot be stored in memory or the computation reaches a maintainable limit.
In the case of MKL this can be due both a large sample size or a high numberof kernels.
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for eachm= 1, . . . ,M, whereΦ̃m(x̄) := 1
n ∑n

i=1 Φ̃m(xi) is the empirical mean of the data in feature
space. The above equation can be equivalently be expressed in terms ofkernel functions as

1
n

n

∑
i=1

k̃m(xi ,xi)−
1
n2

n

∑
i=1

n

∑
j=1

k̃m(xi ,x j) = 1,

so that the final normalization rule is

k(x, x̄) 7−→ k(x, x̄)
1
n ∑n

i=1k(xi ,xi)− 1
n2 ∑n

i, j=1,k(xi ,x j)
.

Note that in case the kernel is centered (i.e., the empirical mean of the data points lies on the origin),
the above rule simplifies tok(x, x̄) 7−→ k(x, x̄)/1

ntr(K), where tr(K) := ∑n
i=1k(xi ,xi) is the trace of

the kernel matrixK.
Spherical Normalization.Frequently, kernels are normalized according to

k(x, x̄) 7−→ k(x, x̄)√
k(x,x)k(x̄, x̄)

. (23)

After this operation,‖x‖ = k(x,x) = 1 holds for each data pointx; this means that each data point
is rescaled to lie on the unit sphere. Still, this also may have an effect on the scale of the features: a
spherically normalized and centered kernel is also always multiplicatively normalized, because the
multiplicative normalization rule becomesk(x, x̄) 7−→ k(x, x̄)/1

ntr(K) = k(x, x̄)/1.
Thus the spherical normalization may be seen as an approximate to the above multiplicative

normalization and may be used as a substitute for it. Note, however, that it changes the data points
themselves by eliminating length information; whether this is desired or not depends on the learning
task at hand. Finally note that both normalizations achieve that the optimal valueof C is not far from
1.

4.5 Limitations and Extensions of our Framework

In this section, we show the connection ofℓp-norm MKL to a formulation based on block norms,
point out limitations and sketch extensions of our framework. To this aim let usrecall the primal
MKL problem (14) and consider the special case ofℓp-norm MKL given by

inf
w,b,θ:θ≥0

C
n

∑
i=1

V

(
M

∑
m=1

〈wm,ψm(xi)〉Hm
+b, yi

)
+

1
2

M

∑
m=1

‖wm‖2Hm

θm
, s.t. ‖θ‖2p≤ 1. (24)

The subsequent proposition shows that (24) equivalently can be translated into the following mixed-
norm formulation,

inf
w,b

C̃
n

∑
i=1

V

(
M

∑
m=1

〈wm,ψm(xi)〉Hm
+b, yi

)
+

1
2

M

∑
m=1

‖wm‖qHm
, (25)

whereq= 2p
p+1, andC̃ is a constant. This has been studied by Bach et al. (2004) forq= 1 and by

Szafranski et al. (2008) for hierarchical penalization.
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Proposition 5 Let be p> 1, be V a convex loss function, and define q:= 2p
p+1 (i.e., p= q

2−q).

Optimization Problem(24) and (25) are equivalent, that is, for each C there exists aC̃ > 0, such
that for each optimal solution (w∗,b∗,θ∗) of OP(24) using C, we have that (w∗,b∗) is also optimal
in OP (25)usingC̃, and vice versa.

Proof From Prop. 2 it follows that for any fixedw in (24) it holds for thew-optimalθ:

∃ζ : θm = ζ‖wm‖
2

p+1

Hm
, ∀m= 1, . . . ,M.

Plugging the above equation into (24) yields

inf
w,b

C
n

∑
i=1

V

(
M

∑
m=1

〈wm,ψm(xi)〉Hm
+b, yi

)
+

1
2ζ

M

∑
m=1

‖wm‖
2p

p+1

Hm
.

Definingq := 2p
p+1 andC̃ := ζC results in (25).

Now, let us take a closer look on the parameter range ofq. It is easy to see that when we vary
p in the real interval[1,∞], thenq is limited to range in[1,2]. So in other words the methodology
presented in this paper only covers the 1≤ q≤ 2 block norm case. However, from an algorithmic
perspective our framework can be easily extended to theq> 2 case: although originally aiming at
the more sophisticated case of hierarchical kernel learning, Aflalo et al.(2011) showed in particular
that forq≥ 2, Equation (25) is equivalent to

sup
θ:θ≥0,‖θ‖2r≤1

inf
w,b

C̃
n

∑
i=1

V

(
M

∑
m=1

〈wm,ψm(xi)〉Hm
+b, yi

)
+

1
2

M

∑
m=1

θm‖wm‖2Hm
,

where r := q
q−2. Note the difference toℓp-norm MKL: the mixing coefficientsθ appear in the

nominator and by varyingr in the interval[1,∞], the range ofq in the interval[2,∞] can be obtained,
which explains why this method is complementary to ours, whereq ranges in[1,2].

It is straightforward to show that for every fixed (possibly suboptimal) pair (w,b) the optimalθ
is given by

θm =
‖wm‖

2
r−1

Hm(
∑M

m′=1‖wm′‖
2r

r−1

Hm′

)1/r
, ∀m= 1, . . . ,M.

The proof is analogous to that of Prop. 2 and the above analytical updateformula can be used
to derive a block coordinate descent algorithm that is analogous to ours.In our framework, the
mixingsθ, however, appear in the denominator of the objective function of OptimizationProblem
(14). Therefore, the corresponding update formula in our frameworkis

θm =
‖wm‖

−2
r−1

Hm(
∑M

m′=1‖wm′‖
−2r
r−1

Hm′

)1/r
, ∀m= 1, . . . ,M. (26)

This shows that we can simply optimize 2< q≤ ∞-block-norm MKL within our computational
framework, using the update formula (26).
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5. Theoretical Analysis

In this section we present a theoretical analysis ofℓp-norm MKL, based on Rademacher complex-
ities.12 We prove a theorem that converts any Rademacher-based generalization bound onℓ1-norm
MKL into a generalization bound forℓp-norm MKL (and even more generally: arbitrary-norm
MKL). Remarkably thisℓ1-to-ℓp conversion is obtained almost without any effort: by a simple 5-
line proof. The proof idea is based on Kloft et al. (2010). We remark that anℓp-norm MKL bound
was already given in Cortes et al. (2010a), but their bound is only valid for the special cases where
p/(p− 1) is an integer and is not tight for smallp, as it diverges to infinity whenp > 1 and p
approaches one. By contrast, beside a negligible log(M)-factor, our result matches the best known
lower bounds, whenp approaches one.

Let us start by defining the hypothesis set that we want to investigate. Following Cortes et al.
(2010a), we consider the following hypothesis class forp∈ [1,∞]:

H p
M :=

{
h : X → R

∣∣∣∣ h(x) =
M

∑
m=1

√
θm〈wm,ψm(x)〉Hm

, ‖w‖H ≤ 1, ‖θ‖p≤ 1

}
.

Solving our primal MKL problem (14) corresponds to empirical risk minimizationin the above
hypothesis class. We are thus interested in bounding the generalization error of the above class
w.r.t. an i.i.d. sample(x1,y1), ...,(xn,yn) ∈ X ×{−1,1} from an arbitrary distributionP. In order to
do so, we compute theRademacher complexity,

R(H p
M) := E

[
sup

h∈H p
M

1
n

n

∑
i=1

σih(xi)

]
,

whereσ1, . . . ,σn are independent Rademacher variables (i.e., they obtain the values -1 or +1 with
the same probability 0.5) and theE is the expectation operator that removes the dependency on all
random variables, that is,σi , xi , andyi (i = 1, ...,n). If the Rademacher complexity is known, there
is a large body of results that can be used to bound the generalization error (e.g., Koltchinskii and
Panchenko, 2002; Bartlett and Mendelson, 2002).

We now show a simpleℓq-to-ℓp conversion technique for the Rademacher complexity, which is
the main result of this section:

Theorem 6 (ℓq-to-ℓp Conversion) For any sample of size n and1≤ q≤ p≤ ∞ the Rademacher
complexity of the hypothesis set Hp

M can be bounded in terms of Hq
M,

R(H p
M)≤

√
M

1
q− 1

p R(Hq
M).

In particular, we haveR(H p
M) ≤

√
M1/p∗R(H1

M) (ℓ1-to-ℓp Conversion), where p∗ := p/(p−1) is
the conjugated exponent of p.

Proof By Hölder’s inequality (e.g., Steele, 2004), denotingθp := (θp
1, · · · ,θ

p
M)⊤, we have for all

non-negativeθ ∈ R
M,

‖θ‖q = (1⊤θq)1/q≤
(
‖1‖(p/q)∗‖θq‖p/q

)1/q
= M

1
q(p/q)∗ ‖θ‖p = M

1
q− 1

p‖θ‖p . (27)

12. An introduction to statistical learning theory, which may equip the readerwith the needed notions used in this section,
is given in Bousquet et al. (2004). See also, for example, Section 4 in Shawe-Taylor and Cristianini (2004).
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Hence,

R(H p
M)

Def.
= E

[
sup

w:‖w‖H≤1, θ:‖θ‖p≤1

1
n

n

∑
i=1

σi

M

∑
m=1

√
θm〈wm,ψm(xi)〉Hm

]

(27)
≤ E

[
sup

w:‖w‖H≤1, θ:‖θ‖q≤M
1
q− 1

p

1
n

n

∑
i=1

σi

M

∑
m=1

√
θm〈wm,ψm(xi)〉Hm

]

= E

[
sup

w:‖w‖H≤1, θ:‖θ‖q≤1

1
n

n

∑
i=1

σi

M

∑
m=1

√
θmM

1
q− 1

p 〈wm,ψm(x)〉Hm

]

Def.
=

√
M

1
q− 1

p R(Hq
M).

Remark 7 More generally we have that for any norm‖ · ‖⋆ onR
M, because all norms onRM are

equivalent (e.g., Rudin, 1991), there exists a c⋆ ∈ R such that

R(H p
M)≤ c⋆R(H⋆

M).

This means the conversion technique extends to arbitrary norms: for anygiven norm‖ · ‖⋆, we can
convert any bound onR(H p

M) into a bound on the Rademacher complexityR(H⋆
M) of hypothesis

set induced by‖ · ‖⋆.

A nice characteristic of the above result is that we can make use of any existing bound on the
Rademacher complexity ofH1

M in order to obtain a generalization bound forH p
M. This fact is illus-

trated in the following. For example, it has recently been shown:

Theorem 8 (Cortes et al., 2010a)Let M> 1 and assume that km(x,x)≤ R2 for all x ∈ X and m=
1, . . . ,M. Then, for any sample of size n, the Rademacher complexities of the hypothesis sets H1M
and Hp

M can be bounded as follows (where c:= 23/22and⌈·⌉ rounds to the next largest integer):

R(H1
M)≤

√
ce⌈logM⌉R2

n
, R(H p

M)≤

√
cp∗M1/p∗R2

n
,

for any p> 1 such that p∗ is an even integer.

For p = 1 [p > 1] the above result directly leads to aO(
√

logM)
[
O(
√

M1/p∗)
]

bound on the

generalization error and thus substantially improves on a series of loose results given within the
past years (see Cortes et al., 2010a, and references therein). Unfortunately, sincep∗ is required to
be an integer, the range ofp is restricted top∈ [1,2]. As a remedy, in this paper we use theℓq-to-ℓp

Conversion technique to the above result13 to obtain a bound forH p
M that holds for allp∈ [1, . . . ,∞]:

the following corollary is obtained from the previous theorem by usingℓq-to-ℓp-norm conversion
for q= 1 andq= ⌈p∗⌉∗, respectively, and then taking the minimum value of the so-obtained bounds.

13. The point here is that we could use anyℓ1-bound, for example, the bounds of Kakade et al. (2009) and Kloft et al.
(2010) have the same favorableO(logM) rate; in particular, whenever a newℓ1-bound is proven, we can plug it into
our conversion technique to obtain a new bound.
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Corollary 9 (of the previous two theorems) Let M> 1 and assume that km(x,x)≤R2 for all x∈X
and m= 1, . . . ,M. Then, for any sample of size n, the Rademacher complexity of the hypothesis set
H p

M can be bounded as follows:

∀p∈ [1, ...,∞] : R(H p
M)≤

√
cM1/p∗R2min(e⌈logM⌉,⌈p∗⌉)

n
,

where p∗ := p/(p−1) is the conjugated exponent of p and c:= 23/22.

It is instructive to compare the above bound, which we obtained by ourℓq-to-ℓp conversion

technique, with the one given in Cortes et al. (2010a): that isR(H p
M) ≤

√
cep∗M1/p∗R2

n for any p∈
[1, ...,∞] such thatp∗ is an integer. First, we observe that forp = 2 the bounds’ rates coincide.
Second, we observe that for smallp (close to one), thep∗-factor in the Cortes-bound leads to
considerably high constants. Whenp approaches one, it even diverges to infinity. In contrast, our

bound converges toR(H p
M) ≤

√
ce⌈logM⌉R2

n when p approaches one, which is precisely the tight
1-norm bound of Thm. 8. Finally, it is also interesting to consider the casep≥ 2 (which is not

covered by the Cortes et al., 2010a bound): if we letp→ ∞, we obtainR(H p
M) ≤

√
2cMR2

n . This

matches the well-knownO
(√

M
)

lower bounds based on the VC-dimension (e.g., Devroye et al.,
1996, Section 14).

We now make use of the above analysis of the Rademacher complexity to boundthe generaliza-
tion error. There are many results in the literature that can be employed to this aim. Ours is based
on Thm. 7 in Bartlett and Mendelson (2002):

Corollary 10 Let M> 1and p∈]1, ...,∞]. Assume that km(x,x)≤R2 for all x∈X and m= 1, . . . ,M.
Assume the loss V: R→ [0,1] is Lipschitz with constant L and V(t) ≥ 1 for all t ≤ 0. Set p∗ :=
p/(p−1) and c:= 23/22. Then, the following holds with probability larger than1−δ over samples
of size n for all classifiers h∈ H p

M:

R(h)≤ R̂(h)+4L

√
cM1/p∗R2min(e⌈logM⌉,⌈p∗⌉)

n
+

√
ln(2/δ)

2n
,

where R(h) = P
[
yh(x) ≤ 0

]
is the expected risk w.r.t. 0-1 loss and̂R(h) = 1

n ∑n
i=1V(yih(xi)) is the

empirical risk w.r.t. loss V.

The above theorem is formulated for general Lipschitz loss functions. Since the margin lossV(t) =
min

(
1, [1− t/γ]+

)
is Lipschitz with constant 1/γ and upper bounding the 0-1 loss, it fulfills the

preliminaries of the above corollary. Hence, we immediately obtain the following radius-margin
bound (see also Koltchinskii and Panchenko, 2002):

Corollary 11 (ℓp-norm MKL Radius-Margin Bound) Fix the marginγ > 0. Let M> 1 and p∈
]1, ...,∞]. Assume that km(x,x) ≤ R2 for all x ∈ X and m= 1, . . . ,M. Set p∗ := p/(p− 1) and
c := 23/22. Then, the following holds with probability larger than1−δ over samples of size n for
all classifiers h∈ H p

M:

R(h)≤ R̂(h)+
4R
γ

√
cM1/p∗min(e⌈logM⌉,⌈p∗⌉)

n
+

√
ln(2/δ)

2n
,
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where R(h) = P
[
yh(x) ≤ 0

]
is the expected risk w.r.t. 0-1 loss and̂R(h) = 1

n ∑n
i=1min

(
1, [1−

yih(xi)/γ]+
)

the empirical risk w.r.t. margin loss.

Finally, we would like to point out that, for reasons stated in Remark 7, theℓq-to-ℓp conversion
technique can be extended to norms different thanℓp . This lets us extend the above bounds to, for
example, block norms and sums of block norms as used in elastic-net regularization (see Kloft et al.,
2010, for such bounds), but also non-isotropic norms such as weighted ℓp-norms.

5.1 Case-based Analysis of a Sparse and a Non-Sparse Scenario

From the results given in the last section it seems that it is beneficial to use a sparsity-inducing
ℓ1-norm penalty when learning with multiple kernels. This however somewhat contradicts our em-
pirical evaluation, which indicated that the optimal norm parameterpdepends on the true underlying
sparsity of the problem. Indeed, as we show below, a refined theoreticalanalysis supports this intu-
itive claim. We show for an exemplary scenario that if the underlying truth is uniformly non-sparse,
then a non-sparseℓp-norm is more promising than a sparse one. On the other hand, we illustrate
that in a sparse scenario, the sparsity-inducingℓ1-norm indeed can be beneficial.

We start by reparametrizing our hypothesis set based on block norms: byProp. 5 it holds that

H p
M =

{
h : X → R

∣∣∣∣ h(x) =
M

∑
m=1

〈wm,ψm(x)〉Hm
, ‖w‖2,q≤ 1, q := 2p/(p+1)

}
,

where ||w||2,q :=
(

∑M
m=1 ||wm||qHm

)1/q
is the ℓ2,q-block norm. This means we can equivalently

parametrize our hypothesis set in terms of block norms. Second, let us generalize the set by in-
troducing an additional parameterC as follows

CH p
M :=

{
h : X → R

∣∣∣∣ h(x) =
M

∑
m=1

〈wm,ψm(x)〉Hm
, ‖w‖2,q≤C, q := 2p/(p+1)

}
.

Clearly,CH p
M = H p

M for C = 1, which explains why the parametrization viaC is more general. It is
straightforward to verify thatR

(
CH p

M

)
= CR

(
H p

M

)
for anyC. Hence, under the preliminaries of

Corollary 10, we have

p> 1 : R(h)≤ R̂(h)+4L

√
cM1/p∗R2C2min(e⌈logM⌉,⌈p∗⌉)

n
+

√
ln(2/δ)

2n
,

p= 1 : R(h)≤ R̂(h)+4L

√
ce⌈logM⌉R2C2

n
+

√
ln(2/δ)

2n
. (28)

We will exploit the above bound in the following two illustrate examples.
Example 1.Let the input space beX = R

M, and the feature map beψm(x) = xm for all m=
1, . . . ,M andx= (x1, ...,xM) ∈ X (in other words,ψm is a projection on themth feature). Assume
that the Bayes-optimal classifier is given by

wBayes= (1, . . . ,1)⊤ ∈ R
M.

This means the best classifier possible is uniformly non-sparse (see Fig. 1, left). Clearly, it can
be advantageous to work with a hypothesis set that is rich enough to containthe Bayes classifier,
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Figure 1: Illustration of the two analyzed cases forM = 2: a uniformly non-sparse (Example 1,
left) and a sparse (Example 2, right) Scenario.

that is,(1, . . . ,1)⊤ ∈ CH p
M. In our example, this is the case if and only if‖(1, . . . ,1)⊤‖2p/(p+1) ≤C,

which itself is equivalent toM(p+1)/2p≤C. The bound (28) attains its minimal value under the latter
constraint forM(p+1)/2p =C. Resubstitution into the bound yields

p> 1 : R(h)≤ R̂(h)+4L

√
cM2R2min(e⌈logM⌉,⌈p∗⌉)

n
+

√
ln(2/δ)

2n
.

p= 1 : R(h)≤ R̂(h)+4L

√
ceM2⌈logM⌉R2C2

n
+

√
ln(2/δ)

2n
.

Let us now compare the so obtained rate: forp > 1 we getO(M2) and for p = 1 we have
O(M2 log(M)). So the rates differ by a log(M) factor. This means that in this particular (non-
sparse) example, neglecting the constants, the non-sparsep> 1-norm MKL variants yield a strictly
better generalization bound thanℓ1-norm MKL.

Example 2.In this second example we consider the same input space and kernels as before. But
this time we assume asparseBayes-optimal classifier (see Fig. 1, right)

wBayes= (1,0, . . . ,0)⊤ ∈ R
M.

As in the previous example, in orderwBayes to be in the hypothesis set, we have to require
‖(1,0, . . . ,0)⊤‖2p/(p+1) ≤ C. But this time this simply solves toC ≥ 1, which is independent of
the norm parameterp. Thus, insertingC= 1 in the bound (28), we obtain

p> 1 : R(h)≤ R̂(h)+4L

√
cM2R2min(e⌈logM⌉,⌈p∗⌉)

n
+

√
ln(2/δ)

2n
.

p= 1 : R(h)≤ R̂(h)+4L

√
ceM2⌈logM⌉R2

n
+

√
ln(2/δ)

2n
.

Clearly, in this particular sparse example, theℓp=1-bound is considerably smaller than the one of
ℓp>1-norm MKL—especially, if the number of kernels is high compared to the samplesize. This is
also intuitive: if the underlying truth is sparse, we expect a sparsity-inducing norm to match well
the ground truth.
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We conclude from the previous two examples that the optimal norm parameterp depends on
the underlying ground truth: if it is sparse, then choosing a sparse regularization is beneficial;
otherwise, a non-sparse normp can perform well. This is somewhat contrary to anecdotal reports,
which claim that sparsity-inducing norms are beneficial in high (kernel) dimensions. This is because
those analyses implicitly assume the ground truth to be sparse. The present paper, however, clearly
shows that we might encounter a non-sparse ground truth in practical applications (see experimental
section).

6. Computational Experiments

In this section we study non-sparse MKL in terms of computational efficiencyand predictive accu-
racy. We apply the method of Sonnenburg et al. (2006a) in the case ofp = 1. We writeℓ∞-norm
MKL for a regular SVM with the unweighted-sum kernelK = ∑mKm.

We first study a toy problem in Section 6.1 where we have full control overthe distribution
of the relevant information in order to shed light on the appropriateness ofsparse, non-sparse, and
ℓ∞-MKL. We report on real-world problems from bioinformatics, namely protein subcellular lo-
calization (Section 6.2), finding transcription start sites of RNA Polymerase II binding genes in
genomic DNA sequences (Section 6.3), and reconstructing metabolic gene networks (Section 6.4).
All data sets used in this section were made available online (see supplementaryhomepage of this
paper:http://doc.ml.tu-berlin.de/nonsparse_mkl/ ).

6.1 Measuring the Impact of Data Sparsity—Toy Experiment

The goal of this section is to study the relationship of the level of sparsity of the true underlying
function to be learned to the chosen normp in the model. Intuitively, we might expect that the
optimal choice ofp directly corresponds to the true level of sparsity. Apart from verifyingthis con-
jecture, we are also interested in the effects of suboptimal choice ofp. To this aim we constructed
several artificial data sets in which we vary the degree of sparsity in the true kernel mixture coef-
ficients. We go from having all weight focused on a single kernel (the highest level of sparsity) to
uniform weights (the least sparse scenario possible) in several steps.We then study the statistical
performance ofℓp-norm MKL for different values ofp that cover the entire range[1,∞].

We generated a data set as follows (we made this so-calledmkl-toy data set available at the
mldata repository14). An n-element balanced sampleD = {(xi ,yi)}ni=1 is generated from twod =
50-dimensional isotropic Gaussian distributions with equal covariance matricesC= Id×d and equal,
but opposite, meansµ1 = ρ

‖θ‖2 θ and µ2 = −µ1. Therebyθ is a binary vector, that is,∀i : θi ∈
{0,1}, encoding the true underlying data sparsity as follows. Zero componentsθi = 0 clearly imply
identical means of the two classes’ distributions in theith feature set; hence the latter does not carry
any discriminating information. In summary, the fraction of zero components,ν(θ) = 1− 1

d ∑d
i=1 θi ,

is a measure for the feature sparsity of the learning problem.
Forν ∈ {0,0.44,0.64,0.82,0.92,1} we generate six data setsD1, . . . ,D6 fixing ρ = 1.75. Then,

each feature is input to a linear kernel and the resulting kernel matrices are multiplicatively normal-
ized as described in Section 4.4.2. Hence,ν(θ) gives the fraction of noise kernels in the working
kernel set. Then, classification models are computed by trainingℓp-norm MKL for p=1,4/3,2,4,∞
on eachDi . Soft margin parametersC are tuned on independent 10,000-elemental validation sets

14. The repository can be found athttp://mldata.org/repository/data/viewslug/mkl-toy/ .
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Figure 2: Illustration of the toy experiment forθ = (1,0)⊤.

by grid search overC ∈ 10[−4,3.5,...,0] (optimalCs are attained in the interior of the grid). The rel-
ative duality gaps were optimized up to a precision of 10−3. We report on test errors evaluated
on 10,000-elemental independent test sets and pure meanℓ2 model errors of the computed kernel
mixtures, that is ME(θ̂) = ‖ζ(θ̂)−ζ(θ)‖2, whereζ(x) = x

‖x‖2 .

The results are shown in Fig. 3 forn= 50 andn= 800, where the figures on the left show the
test errors and the ones on the right the model errors ME(θ̂). Regarding the latter, model errors
reflect the corresponding test errors forn = 50. This observation can be explained by statistical
learning theory. The minimizer of the empirical risk performs unstable for smallsample sizes and
the model selection results in a strongly regularized hypothesis, leading to theobserved agreement
between test error and model error.

Unsurprisingly,ℓ1 performs best and reaches the Bayes error in the sparse scenario, where only a
single kernel carries the whole discriminative information of the learning problem. However, in the
other scenarios it mostly performs worse than the other MKL variants. This isremarkable because
the underlying ground truth, that is, the vectorθ, is sparse in all but the uniform scenario. In other
words, selecting this data set may imply a bias towardsℓ1-norm. In contrast, the vanilla SVM using
an unweighted sum kernel performs best when all kernels are equally informative, however, its
performance does not approach the Bayes error rate. This is because it corresponds to aℓ2,2-block
norm regularization (see Sect. 4.5) but for a truly uniform regularizationa ℓ∞-block norm penalty
(as employed in Nath et al., 2009) would be needed. This indicates a limitation of our framework; it
shall, however, be kept in mind that such a uniform scenario might quite artificial. The non-sparse
ℓ4- andℓ2-norm MKL variants perform best in the balanced scenarios, that is, when the noise level
is ranging in the interval 64%-92%. Intuitively, the non-sparseℓ4-norm MKL is the most robust
MKL variant, achieving a test error of less than 10% in all scenarios. Tuning the sparsity parameter
p for each experiment,ℓp-norm MKL achieves the lowest test error across all scenarios.

When the sample size is increased ton = 800 training instances, test errors decrease signifi-
cantly. Nevertheless, we still observe differences of up to 1% test error between the best (ℓ∞-norm
MKL) and worst (ℓ1-norm MKL) prediction model in the two most non-sparse scenarios. Note that
all ℓp-norm MKL variants perform well in the sparse scenarios. In contrastwith the test errors,
the mean model errors depicted in Figure 3 (bottom, right) are relatively high.Similarly to above
reasoning, this discrepancy can be explained by the minimizer of the empiricalrisk becoming stable
when increasing the sample size, which decreases the generalization error (see theoretical Analysis
in Section 5, where it was shown that the speed of the minimizer becoming stable isat least of a rate
of O(1/

√
n)). Again,ℓp-norm MKL achieves the smallest test error for all scenarios for appropri-

ately chosenp and for a fixedp across all experiments, the non-sparseℓ4-norm MKL performs the
most robustly.
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Figure 3: Results of the artificial experiment for sample sizes ofn= 50 (top) andn= 800 (below)
training instances in terms of test errors (left) and meanℓ2 model errors ME(θ̂) (right).

In summary, the choice of the norm parameterp is important for small sample sizes, whereas
its impact decreases with an increase of the training data. As expected, sparse MKL performs best
in sparse scenarios, while non-sparse MKL performs best in moderate or non-sparse scenarios, and
for uniform scenarios the unweighted-sum kernel SVM performs best.For appropriately tuning the
norm parameter,ℓp-norm MKL proves robust in all scenarios.

6.2 Protein Subcellular Localization—A Sparse Scenario

The prediction of the subcellular localization of proteins is one of the rare empirical success stories
of ℓ1-norm-regularized MKL (Ong and Zien, 2008; Zien and Ong, 2007): after defining 69 kernels
that capture diverse aspects of protein sequences,ℓ1-norm-MKL could raise the predictive accuracy
significantly above that of the unweighted sum of kernels, and thereby also improve on established
prediction systems for this problem. This has been demonstrated on 4 data sets, corresponding
to 4 different sets of organisms (plants, non-plant eukaryotes, Gram-positive and Gram-negative
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ℓp-norm 1 32/31 16/15 8/7 4/3 2 4 8 16 ∞
plant 8.18 8.22 8.20 8.21 8.43 9.47 11.00 11.61 11.91 11.85

std. err. ±0.47 ±0.45 ±0.43 ±0.42 ±0.42 ±0.43 ±0.47 ±0.49 ±0.55 ±0.60
nonpl 8.97 9.01 9.08 9.19 9.24 9.43 9.77 10.05 10.23 10.33

std. err. ±0.26 ±0.25 ±0.26 ±0.27 ±0.29 ±0.32 ±0.32 ±0.32 ±0.32 ±0.31
psortNeg 9.99 9.91 9.87 10.01 10.13 11.01 12.20 12.73 13.04 13.33

std. err. ±0.35 ±0.34 ±0.34 ±0.34 ±0.33 ±0.32 ±0.32 ±0.34 ±0.33 ±0.35
psortPos 13.07 13.01 13.41 13.17 13.25 14.68 15.55 16.43 17.36 17.63

std. err. ±0.66 ±0.63 ±0.67 ±0.62 ±0.61 ±0.67 ±0.72 ±0.81 ±0.83 ±0.80

Table 1: Results for Protein Subcellular Localization. For each of the 4 datasets (rows) and each
considered norm (columns), we present a measure of prediction errortogether with its
standard error. As measure of prediction error we use 1 minus the average MCC, displayed
as percentage.

bacteria) with differing sets of relevant localizations. In this section, we investigate the performance
of non-sparse MKL on the same 4 data sets.

The experimental setup used here is related to that of Ong and Zien (2008), although it devi-
ates from it in several details. The kernel matrices are multiplicatively normalized as described
in Section 4.4.2. For each data set, we perform the following steps for eachof the 30 prede-
fined splits in training set and test set (downloaded from the same URL): Weconsider normsp∈
{1,32/31,16/15,8/7,4/3,2,4,8,∞} and regularization constantsC∈ {1/32,1/8,1/2,1,2,4,8,32,
128}. For each parameter setting(p,C), we trainℓp-norm MKL using a 1-vs-rest strategy on the
training set. The predictions on the test set are then evaluated w.r.t. average (over the classes) MCC
(Matthews correlation coefficient). As we are only interested in the influence of the norm on the per-
formance, we forbear proper cross-validation (the so-obtained systematical error affects all norms
equally). Instead, for each of the 30 data splits and for eachp, the value ofC that yields the highest
MCC is selected. Thus we obtain an optimizedC andMCC value for each combination of data set,
split, and normp. For each norm, the finalMCC value is obtained by averaging over the data sets
and splits (i.e.,C is selected to be optimal for each data set and split).

The results, shown in Table 1, indicate that indeed, with proper choice of anon-sparse regular-
izer, the accuracy ofℓ1-norm can be recovered. On the other hand, non-sparse MKL can approx-
imate theℓ1-norm arbitrarily close, and thereby approach the same results. However, even when
1-norm is clearly superior to∞-norm, as for these 4 data sets, it is possible that intermediate norms
perform even better. As the table shows, this is indeed the case for the PSORT data sets, albeit only
slightly and not significantly so.

We briefly mention that the superior performance ofℓp≈1-norm MKL in this setup is not surpris-
ing. There are four sets of 16 kernels each, in which each kernel picks up very similar information:
they only differ in number and placing of gaps in all substrings of length 5 ofa given part of the
protein sequence. The situation is roughly analogous to considering (inhomogeneous) polynomial
kernels of different degrees on the same data vectors. This means that they carry large parts of over-
lapping information. By construction, also some kernels (those with less gaps) in principle have
access to more information (similar to higher degree polynomials including low degree polynomi-
als). Further, Ong and Zien (2008) studied single kernel SVMs for each kernel individually and
found that in most cases the 16 kernels from the same subset perform very similarly. This means
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that each set of 16 kernels is highly redundant and the excluded parts of information are not very
discriminative. This renders a non-sparse kernel mixture ineffective.We conclude thatℓ1-norm
must be the best prediction model.

6.3 Gene Start Recognition—A Weighted Non-Sparse Scenario

This experiment aims at detecting transcription start sites (TSS) of RNA Polymerase II binding
genes in genomic DNA sequences. Accurate detection of the transcription start site is crucial to
identify genes and their promoter regions and can be regarded as a firststep in deciphering the key
regulatory elements in the promoter region that determine transcription.

Transcription start site finders exploit the fact that the features of promoter regions and the
transcription start sites are different from the features of other genomicDNA (Bajic et al., 2004).
Many such detectors thereby rely on a combination of feature sets which makes the learning task
appealing for MKL. For our experiments we use the data set from Sonnenburg et al. (2006b) which
contains a curated set of 8,508 TSS annotated genes using dbTSS version 4 (Suzuki et al., 2002)
and refseq genes. These are translated into positive training instances by extracting windows of
size[−1000,+1000] around the TSS. Similar to Bajic et al. (2004), 85,042 negative instances are
generated from the interior of the gene using the same window size. FollowingSonnenburg et al.
(2006b), we employ five different kernels representing the TSS signal(weighted degree with shift),
the promoter (spectrum), the 1st exon (spectrum), angles (linear), and energies (linear). Optimal
kernel parameters are determined by model selection in Sonnenburg et al.(2006b). The kernel
matrices are spherically normalized as described in section 4.4.2. We reserve 13,000 and 20,000
randomly drawn instances for validation and test sets, respectively, anduse the remaining 60,000
as the training pool. Soft margin parametersC are tuned on the validation set by grid search over
C ∈ 2[−2,−1,...,5] (optimalCs are attained in the interior of the grid). Figure 4 shows test errors for
varying training set sizes drawn from the pool; training sets of the same sizeare disjoint. Error bars
indicate standard errors of repetitions for small training set sizes.

Regardless of the sample size,ℓ1-norm MKL is significantly outperformed by the sum-kernel.
On the contrary, non-sparse MKL significantly achieves higher AUC values than theℓ∞-norm MKL
for sample sizes up to 20k. The scenario is well suited forℓ2-norm MKL which performs best.
Finally, for 60k training instances, all methods butℓ1-norm MKL yield the same performance.
Again, the superior performance of non-sparse MKL is remarkable, and of significance for the
application domain: the method using the unweighted sum of kernels (Sonnenburg et al., 2006b)
has recently been confirmed to be leading in a comparison of 19 state-of-the-art promoter prediction
programs (Abeel et al., 2009), and our experiments suggest that its accuracy can be further elevated
by non-sparse MKL.

We give a brief explanation of the reason for optimality of a non-sparseℓp-norm in the above
experiments. It has been shown by Sonnenburg et al. (2006b) that there are three highly and two
moderately informative kernels. We briefly recall those results by reporting on the AUC perfor-
mances obtained from training a single-kernel SVM on each kernel individually: TSS signal 0.89,
promoter 0.86, 1st exon 0.84, angles 0.55, and energies 0.74, for fixed sample sizen= 2000. While
non-sparse MKL distributes the weights over all kernels (see Fig. 4), sparse MKL focuses on the best
kernel. However, the superior performance of non-sparse MKL means that dropping the remaining
kernels is detrimental, indicating that they may carry additional discriminative information.
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Figure 4: (left) Area under ROC curve (AUC) on test data for TSS recognition as a function of
the training set size. Notice the tiny bars indicating standard errors w.r.t. repetitions on
disjoint training sets. (right) Corresponding kernel mixtures. Forp= 1 consistent sparse
solutions are obtained while the optimalp= 2 distributes weights on the weighted degree
and the 2 spectrum kernels in good agreement to Sonnenburg et al. (2006b).

kernel id

ke
rn

el
 id

 

 

1 2 3 4 5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5 0

0.2

0.4

0.6

0.8

1

Figure 5: Pairwise alignments of the kernel matrices are shown for the genestart recognition exper-
iment. From left to right, the ordering of the kernel matrices is TSS signal, promoter, 1st
exon, angles, and energies. The first three kernels are highly correlated, as expected by
their high AUC performances (AUC=0.84–0.89) and the angle kernel correlates decently
(AUC=0.55). Surprisingly, the energy kernel correlates only few, despite a descent AUC
of 0.74.
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To investigate this hypothesis we computed the pairwise alignments of the kernelmatrices, that
is,A(i, j) = <Ki ,K j>F

‖Ki‖F‖K j‖F , with respect to the Frobenius dot product (e.g., Golub and van Loan, 1996).
The computed alignments are shown in Fig. 5. One can observe that the threerelevant kernels are
highly aligned as expected since they are correlated via the labels.

However, the energy kernel shows only a slight correlation with the remaining kernels, which
is surprisingly little compared to its single kernel performance (AUC=0.74). We conclude that this
kernel carries complementary and orthogonal information about the learning problem and should
thus be included in the resulting kernel mixture. This is precisely what is doneby non-sparse MKL,
as can be seen in Fig. 4(right), and the reason for the empirical successof non-sparse MKL on this
data set.

6.4 Reconstruction of Metabolic Gene Network—A Uniformly Non-Sparse Scenario

In this section, we apply non-sparse MKL to a problem originally studied by Yamanishi et al.
(2005). Given 668 enzymes of the yeastSaccharomyces cerevisiaeand 2782 functional relation-
ships extracted from the KEGG database (Kanehisa et al., 2004), the taskis to predict functional
relationships for unknown enzymes. We employ the experimental setup of Bleakley et al. (2007)
who phrase the task as graph-based edge prediction with local models by learning a model for each
of the 668 enzymes. They provided kernel matrices capturing expression data (EXP), cellular local-
ization (LOC), and the phylogenetic profile (PHY); additionally we use the integration of the former
3 kernels (INT) which matches our definition of an unweighted-sum kernel.

Following Bleakley et al. (2007), we employ a 5-fold cross validation; in each fold we train on
average 534 enzyme-based models; however, in contrast to Bleakley etal. (2007) we omit enzymes
reacting with only one or two others to guarantee well-defined problem settings. As Table 2 shows,
this results in slightly better AUC values for single kernel SVMs where the results by Bleakley et al.
(2007) are shown in brackets.

As already observed (Bleakley et al., 2007), the unweighted-sum kernel SVM performs best.
Although its solution is well approximated by non-sparse MKL using large values of p, ℓp-norm
MKL is not able to improve on thisp = ∞ result. Increasing the number of kernels by including
recombined and product kernels does improve the results obtained by MKLfor small values of
p, but the maximal AUC values are not statistically significantly different from those ofℓ∞-norm
MKL. We conjecture that the performance of the unweighted-sum kernelSVM can be explained
by all three kernels performing well individually. Their correlation is only moderate, as shown in
Fig. 6, suggesting that they contain complementary information. Hence, downweighting one of
those three orthogonal kernels leads to a decrease in performance, asobserved in our experiments.
This explains whyℓ∞-norm MKL is the best prediction model in this experiment.

6.5 Execution Time

In this section we demonstrate the efficiency of our implementations of non-sparse MKL. We ex-
periment on the MNIST data set,15 where the task is to separate odd vs. even digits. The digits in
thisn= 60,000-elemental data set are of size 28x28 leading tod = 784 dimensional examples. We
compare our analytical solver for non-sparse MKL (Section 4.3.1–4.3.2)with the state-of-the art

15. This data set is available fromhttp://yann.lecun.com/exdb/mnist/ .
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AUC ± stderr

EXP 71.69±1.1 (69.3±1.9)
LOC 58.35±0.7 (56.0±3.3)
PHY 73.35±1.9 (67.8±2.1)
INT (∞-norm MKL) 82.94±1.1 (82.1±2.2)

1-norm MKL 75.08±1.4
4/3-norm MKL 78.14±1.6
2-norm MKL 80.12±1.8
4-norm MKL 81.58±1.9
8-norm MKL 81.99±2.0
10-norm MKL 82.02±2.0
Recombined and product kernels
1-norm MKL 79.05±0.5
4/3-norm MKL 80.92±0.6
2-norm MKL 81.95±0.6
4-norm MKL 83.13±0.6

Table 2: Results for the reconstruction of a metabolic gene network. Resultsby Bleakley et al.
(2007) for single kernel SVMs are shown in brackets.
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Figure 6: Pairwise alignments of the kernel matrices are shown for the metabolic gene network
experiment. From left to right, the ordering of the kernel matrices is EXP, LOC, and PHY.
One can see that all kernel matrices are equally correlated. Generally, the alignments are
relatively low, suggesting that combining all kernels with equal weights is beneficial.

for ℓ1-norm MKL, namely SimpleMKL16 (Rakotomamonjy et al., 2008), HessianMKL17 (Chapelle
and Rakotomamonjy, 2008), SILP-based wrapper, and SILP-based chunking optimization (Sonnen-
burg et al., 2006a). We also experiment with the analytical method forp= 1, although convergence

16. We obtained an implementation fromhttp://asi.insa-rouen.fr/enseignants/ ˜ arakotom/code/ .
17. We obtained an implementation fromhttp://olivier.chapelle.cc/ams/hessmkl.tgz .
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is only guaranteed by our Theorem 4 forp > 1. We also compare to the semi-infinite program
(SIP) approach toℓp-norm MKL presented in Kloft et al. (2009a).18 In addition, we solve standard
SVMs19 using the unweighted-sum kernel (ℓ∞-norm MKL) as baseline.

We experiment with MKL using precomputed kernels (excluding the kernel computation time
from the timings) and MKL based on on-the-fly computed kernel matrices measuring training time
including kernel computations. Naturally, runtimes of on-the-fly methods should be expected to be
higher than the ones of the precomputed counterparts. We optimize all methodsup to a precision
of 10−3 for the outer SVM-ε and 10−5 for the “inner” SIP precision, and computed relative duality
gaps. To provide a fair stopping criterion to SimpleMKL and HessianMKL, weset their stopping
criteria to the relative duality gap of theirℓ1-norm SILP counterpart. SVM trade-off parameters are
set toC= 1 for all methods.

6.5.1 SCALABILITY OF THE ALGORITHMS W.R.T. SAMPLE SIZE

Figure 7 (top) displays the results for varying sample sizes and 50 precomputed or on-the-fly com-
puted Gaussian kernels with bandwidths 2σ2 ∈ 1.20,...,49. Error bars indicate standard error over
5 repetitions. As expected, the SVM with the unweighted-sum kernel using precomputed kernel
matrices is the fastest method. The classical MKL wrapper based methods, SimpleMKL and the
SILP wrapper, are the slowest; they are even slower than methods that compute kernels on-the-fly.
Note that the on-the-fly methods naturally have higher runtimes because theydo not profit from
precomputed kernel matrices.

Notably, when considering 50 kernel matrices of size 8,000 times 8,000 (memory requirements
about 24GB for double precision numbers), SimpleMKL is the slowest method: it is more than
120 times slower than theℓ1-norm SILP solver from Sonnenburg et al. (2006a). This is because
SimpleMKL suffers from having to train an SVM to full precision for each gradient evaluation. In
contrast, kernel caching and interleaved optimization still allow to train our algorithm on kernel
matrices of size 20000× 20000, which would usually not completely fit into memory since they
require about 149GB.

Non-sparse MKL scales similarly asℓ1-norm SILP for both optimization strategies, the analytic
optimization and the sequence of SIPs. Naturally, the generalized SIPs areslightly slower than
the SILP variant, since they solve an additional series of Taylor expansions within eachθ-step.
HessianMKL ranks in between on-the-fly and non-sparse interleaved methods.

6.5.2 SCALABILITY OF THE ALGORITHMS W.R.T. THE NUMBER OF KERNELS

Figure 7 (bottom) shows the results for varying the number of precomputed and on-the-fly computed
RBF kernels for a fixed sample size of 1000. The bandwidths of the kernels are scaled such that
for M kernels 2σ2 ∈ 1.20,...,M−1. As expected, the SVM with the unweighted-sum kernel is hardly
affected by this setup, taking an essentially constant training time. Theℓ1-norm MKL by Sonnen-
burg et al. (2006a) handles the increasing number of kernels best andis the fastest MKL method.
Non-sparse approaches to MKL show reasonable run-times, being justslightly slower. Thereby
the analytical methods are somewhat faster than the SIP approaches. Thesparse analytical method

18. The Newton method presented in the same paper performed similarly most of the time but sometimes had convergence
problems, especially whenp≈ 1 and thus was excluded from the presentation.

19. We use SVMlight as SVM-solver.
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Figure 7: Results of the runtime experiment. Top: Training using fixed numberof 50 kernels vary-
ing training set size. Bottom: For 1000 examples and varying numbers of kernels. Notice
the tiny error bars and that these are log-log plots. The legend is sorted correspondingly
to the curves from top to bottom.
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performs worse than its non-sparse counterpart; this might be related to thefact that convergence of
the analytical method is only guaranteed forp> 1. The wrapper methods again perform worst.

However, in contrast to the previous experiment, SimpleMKL becomes more efficient with in-
creasing number of kernels. We conjecture that this is in part owed to the sparsity of the best
solution, which accommodates thel1-norm model of SimpleMKL. But the capacity of SimpleMKL
remains limited due to memory restrictions of the hardware. For example, for storing 1,000 kernel
matrices for 1,000 data points, about 7.4GB of memory are required. On the other hand, our inter-
leaved optimizers which allow for effective caching can easily cope with 10,000 kernels of the same
size (74GB). HessianMKL is considerably faster than SimpleMKL but slower than the non-sparse
interleaved methods and the SILP. Similar to SimpleMKL, it becomes more efficientwith increasing
number of kernels but eventually runs out of memory.

Overall, our proposed interleaved analytic and cutting plane based optimization strategies achieve
a speedup of up to one and two orders of magnitude over HessianMKL andSimpleMKL, respec-
tively. Using efficient kernel caching, they allow for truely large-scalemultiple kernel learning well
beyond the limits imposed by having to precompute and store the complete kernel matrices. Finally,
we note that performing MKL with 1,000 precomputed kernel matrices of size 1,000 times 1,000
requires less than 3 minutes for the SILP. This suggests that it focussing future research efforts on
improving the accuracy of MKL models may pay off more than further accelerating the optimization
algorithm.

7. Conclusion

In the past years, multiple kernel learning research has focused onacceleratingalgorithms for learn-
ing convex combinations of kernels. Unfortunately, empirical evidence often showed that sparse
MKL-optimized kernel combinations rarely help in practice. By proposingℓp-norm multiple kernel
learning, conceiving an optimization scheme of unprecedented efficiency, and providing a really
efficient implementation (http://doc.ml.tu-berlin.de/nonsparse_mkl/ ), this paper finally
makes large-scale MKL practical and profitable.

These advances are founded on our novel general multiple kernel learning framework that sub-
sumes many seemingly different approaches and provides a unifying viewand new insights on
MKL. In a theoretical analysis, we derived sharp generalization bounds showing that in a non-sparse
scenarioℓp-norm MKL yields strictly better bounds thanℓ1-norm MKL and vice versa. However,
the difference between theℓp and ℓ1-norm bounds might not be sufficiently large to completely
explain our empirical results. Using the local Rademacher complexity forℓp-norm MKL, one may
obtain even tighter bounds, for which the results in Section 5 may serve as a starting point.

In an extensive empirical evaluation, we showed thatℓp-norm MKL can significantly improve
classification accuracies on diverse and relevant real-world data setsfrom bioinformatics. Using
artificial data, we provided insights by connecting theℓp-norm with the size of the true sparsity pat-
tern. A related—and obtruding!—question is whether the optimality of the parameter p can retro-
spectively be explained or, more profitably, even be estimated in advance.Clearly, cross-validation
based model selection over the choice ofp will inevitably tell us which cases call for sparse or
non-sparse models. The analyses of our real-world applications suggests that both the correlation
amongst the kernels with each other and their correlation with the target (i.e., the amount of discrim-
inative information that they carry) play a role in the distinction of sparse from non-sparse scenarios.
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We not only provide a thorough theoretical and empirical analysis, but also contribute an efficient
and freely available implementation useful for large-scale real-world applications.

Finally, we would like to note that it may be worthwhile to rethink the current strong preference
for sparse models in the scientific community. For example, already weak connectivity in a causal
graphical model may be sufficient for all variables to be required for optimal predictions, and even
the prevalence of sparsity in causal flows is being questioned (e.g., for the social sciences Gelman,
2010 argues that “There are (almost) no true zeros”). A main reason for favoring sparsity may
be the presumed interpretability of sparse models. However, in general sparse MKL solutions are
sensitive to kernel normalization, and in particular in the presence of strongly correlated kernels the
selection of kernels may be somewhat arbitrary. This puts the interpretation of sparsity patterns in
doubt, and it may be more honest to focus on predictive accuracy. In thisrespect we demonstrate
that non-sparse models may improve quite impressively over sparse ones.
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Appendix A. Switching Between Tikhonov and Ivanov Regularization

In this appendix, we show a useful result that justifies switching from Tikhonov to Ivanov regular-
ization and vice versa, if the bound on the regularizing constraint is tight. Itis the key ingredient of
the proof of Theorem 1. We state the result for arbitrary convex functions, so that it can be applied
beyond the multiple kernel learning framework of this paper.

Proposition 12 Let D⊂ R
d be a convex set, let f,g : D→ R be convex functions. Consider the

convex optimization tasks

min
x∈D

f (x)+σg(x), (29)

min
x∈D:g(x)≤τ

f (x). (30)

Assume that the minima exist and that a constraint qualification holds in(30), which gives rise
to strong duality, for example, that Slater’s condition is satisfied. Furthermore assume that the
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constraint is active at the optimal point, that is,

inf
x∈D

f (x) < inf
x∈D:g(x)≤τ

f (x). (31)

Then we have that for eachσ> 0 there existsτ> 0—and vice versa—such that OP(29) is equivalent
to OP(30), that is, each optimal solution of one is an optimal solution of the other, and vice versa.

Proof
(a). Let beσ > 0 andx∗ be the optimal of (29). We have to show that there exists aτ > 0 such
that x∗ is optimal in (30). We setτ = g(x∗). Supposex∗ is not optimal in (30), that is, it exists
x̃∈ D : g(x̃)≤ τ such thatf (x̃)< f (x∗). Then we have

f (x̃)+σg(x̃)< f (x∗)+στ,

which byτ = g(x∗) translates to

f (x̃)+σg(x̃)< f (x∗)+σg(x∗).

This contradics the optimality ofx∗ in (29), and hence shows thatx∗ is optimal in (30), which was
to be shown.
(b). Vice versa, letτ > 0 bex∗ optimal in (30). The Lagrangian of (30) is given by

L(σ) = f (x)+σ(g(x)− τ) , σ≥ 0.

By strong dualityx∗ is optimal in the saddle point problem

σ∗ := argmax
σ≥0

min
x∈D

f (x)+σ(g(x)− τ) ,

and by the strong max-min property (cf. Boyd and Vandenberghe, 2004, p. 238) we may exchange
the order of maximization and minimization. Hencex∗ is optimal in

min
x∈D

f (x)+σ∗ (g(x)− τ) . (32)

Removing the constant term−σ∗τ, and settingσ = σ∗, we have thatx∗ is optimal in (29), which
was to be shown. Moreover by (31) we have that

x∗ 6= argmin
x∈D

f (x),

and hence we see from Equation (32) thatσ∗ > 0, which completes the proof of the proposition.
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