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Abstract

We analyze the convergence behaviour of a recently propalgedithm for regularized estima-
tion called Dual Augmented Lagrangian (DAL). Our analysidbased on a new interpretation of
DAL as a proximal minimization algorithm. We theoreticalipow under some conditions that
DAL converges super-linearly in a non-asymptotic and glalemse. Due to a special modelling
of sparse estimation problems in the context of machineniegy the assumptions we make are
milder and more natural than those made in conventionalysisabf augmented Lagrangian al-
gorithms. In addition, the new interpretation enables ugdneralize DAL to wide varieties of
sparse estimation problems. We experimentally confirm palyais in a large scalg -regularized
logistic regression problem and extensively compare theeficy of DAL algorithm to previously
proposed algorithms on both synthetic and benchmark d&ta se

Keywords: dual augmented Lagrangian, proximal minimization, glatmivergence, sparse esti-
mation, convex optimization

1. Introduction

Sparse estimation through convex regularization has become a commongaractany application
areas including bioinformatics and natural language processing. Hofaming the rapid increase
in the size of data-sets that we analyze everyday, clearly needed issilefglaent of optimization
algorithms that are tailored for machine learning applications.

Regularization-based sparse estimation methods estimate unknown variatlegh tthe min-
imization of a loss term (or a data-fit term) plus a regularization term. In thisrpaygefocus on
convex methods; that is, both the loss term and the regularization termrarexdoinctions of un-
known variables. Regularizers may be nondifferentiable on some poirtsiatidifferentiability
can promote various types of sparsity on the solution.

Although the problem is convex, there are three factors that challenggrtight-forward ap-
plication of general tools for convex optimization (Boyd and Vandenkergf04) in the context of
machine learning.
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The first factor is the diversity of loss functions. Arguably the squéwss is most commonly
used in the field of signal/image reconstruction, in which many algorithms fosspatimation have
been developed (Figueiredo and Nowak, 2003; Daubechies et &, 2a0et al., 2008). However
the variety of loss functions is much wider in machine learning, to name a feisitotpss and
other log-linear loss functions. Note that these functions are not regdgssrongly convex like
the squared loss. See Table 1 for a list of loss functions that we cansider

The second factor is the nature of the data matrix, which we call the desigix mdtris paper.
For a regression problem, the design matrix is defined by stacking inputrsedtmg rows. If
the input vectors are numerical (e.g., gene expression data), the designr is dense and has no
structure. In addition, the characteristics of the matrix (e.g., the conditionenishunknown until
the data is provided. Therefore, we would like to minimize assumptions abodetign matrix,
such as, sparse, structured, or well conditioned.

The third factor is the large number of unknown variables (or paramatenspared to obser-
vations. This is a situation regularized estimation methods are commonly applisdadior may
have been overlooked in the context of signal denoising, in which the euailobservations and
the number of parameters are equal.

Various methods have been proposed for efficient sparse estimatoRigeeiredo and Nowak,
2003; Daubechies et al., 2004; Combettes and Wajs, 2005; Andrewa@@7; Koh et al., 2007;
Wright et al., 2009; Beck and Teboulle, 2009; Yu et al., 2010, and tfegeneces therein). Many
previous studies focus on th®ndifferentiabilityof the regularization term. In contrast, we fo-
cus on thecouplingsbetween variables (or non-separability) caused by the design matriactin f
if the optimization problem can be decomposed into smaller (e.g., containing a sarigble)
problems, optimization is easy. Recently Wright et al. (2009) showed thatctivalled iterative
shrinkage/thresholding (IST) method (see Figueiredo and Nowak,, ZBf#echies et al., 2004;
Combettes and Wajs, 2005; Figueiredo et al., 2007a) can be seen agtveisaparable approxi-
mationprocess.

In this paper, we show that a recently proposed dual augmented Igggma(AL) algorithm
(Tomioka and Sugiyama, 2009) can be considered a&xact(up to finite tolerance) version of the
iterative approximation process discussed in Wright et al. (2009). @uoruiation is based on the
connection between the proximal minimization (Rockafellar, 1976a) and treented Lagrangian
(AL) algorithm (Hestenes, 1969; Powell, 1969; Rockafellar, 197 @&id®kas, 1982). The proximal
minimization framework also allows us to rigorously study the convergencavimir of DAL. We
show that DAL converges super-linearly under some mild conditions, whedms that the number
of iterations that we need to obtain edaccurate solution grows no greater than logarithmically with
1/¢. Due to the generality of the framework, our analysis applies to a wide varigiyactically
important regularizers. Our analysis improves the classical result omtivergence of augmented
Lagrangian algorithms in Rockafellar (1976b) by taking special strugifrsparse estimation into
account. In addition, we make no asymptotic arguments as in Rockafellaklaid Kort and
Bertsekas (1976); instead our convergence analysis is build on top oé¢knt result in Beck and
Teboulle (2009).

Augmented Lagrangian formulations have also been considered in Yin(208B) and Gold-
stein and Osher (2009) for sparse signal reconstruction. Whateadiffates DAL approach of
Tomioka and Sugiyama (2009) from those studied earlier is that the AL algoighapplied to
the dual problem (see Section 2.2), which results in an inner minimization pnailet can be
solved efficiently exploiting the sparsity of intermediate solutions (see SectlgnApplying AL
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Table 1: List of loss functions and their convex conjugates. Constanstare ignored. For the multi-class logit logsy € R™¢1 where
m is the number of samples aieds the number of classegi = 1 if the ith sample belongs to thHeh class, and zero otherwise;
i(k) := (i—1)c+k denotes the linear index corresponding to ktte output for theith sample;d; xk denotes the Kronecker delta
function.
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formulation to the dual problem also plays an important role in the conveegamalysis because
some loss functions (e.g., logistic loss) are not strongly convex in the priealSection 5. Re-
cently Yang and Zhang (2009) compared primal and dual augmenteangign algorithms for
¢1-problems and reported that the dual formulation was more efficient. Sedl@tsioka et al.
(2011b) for related discussions.

This paper is organized as follows. In Section 2, we mathematically formulateptiree es-
timation problem and we review DAL algorithm. We derive DAL algorithm from fireximal
minimization framework in Section 3; special instances of DAL algorithm areudssd in Sec-
tion 4. In Section 5, we theoretically analyze the convergence behaviddAlbofalgorithm. We
discuss previously proposed algorithms in Section 6 and contrast them with IB Section 7
we confirm our analysis in a simulatég-regularized logistic regression problem. Moreover, we
extensively compare recently proposed algorithms/faregularized logistic regression including
DAL in synthetic and benchmark data sets under a variety of conditiondlyRive&summarize our
contribution in Section 8. Most of the proofs are given in the appendix.

2. Sparse Estimation Problem and DAL Algorithm

In this section, we first formulate the sparse estimation problem as a coptiexization prob-
lem, and state our assumptions. Next we derive DAL algorithn?fegproblem as an augmented
Lagrangian method in the dual.

2.1 Objective

We consider the problem of estimatingmmdimensional parameter vector framtraining examples
as described in the following optimization problem:

minimize  f,(Aw) + @\ (w), 1)
weR" N————
=:f(w)

wherew € R" is the parameter vector to be estimat&d; R™" is a design matrix, ané(-) is aloss
function. We call the first term in the minimand the loss term and the second temeghlarization
term, or the regularizer.

We assume that the loss functién: R™ — RU {+} is a closed proper strictly convex func-
tion! See Table 1 for examples of loss functions. We assumefihaas Lipschitz continuous
gradient with modulus Ay (see AssumptiolflA2) in Section 5.2). Iff, is twice differentiable, this
condition is equivalent to saying that the maximum eigenvalue of the Hessigniotiniformly
bounded by ly. Suchy exists for example for quadratic loss, logistic loss, and other log-linear
losses. However, non-smooth loss functions (e.g., the hinge loss anthsbkita loss) are ex-
cluded. Note that since we separate the data matficom the loss function, we can quantify the
above constantwithout examining the data. Moreover, we assume that the convex corﬁdge'me
(essentially) twice differentiable. Note that the first order differentiabilftthe convex conjugate
f; isimplied by the strict convexity of the loss functidn(Rockafellar, 1970, Theorem 26.3).

1. “Closed” means that the epigrapte,y) € R™1:y > f,(z)} is a closed set, and “proper” means that the function is
not everywhereto; see, for example, Rockafellar (1970). In the sequel, we use the fwonvex function” in the
meaning of “closed proper convex function”.

2. The convex conjugate of a functidn R" — RU{+} is a functionf* overR" that takes values iR"U {+} and
is defined ag*(y) = SUBcgn (Y X — f(X)).
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The regularization ternp, (w) is a convex possibly nondifferentiable function. In addition, we
assume that for alf > 0, n@, (W) = @ (w).

An important special case, which has been studied by many authorsif&itisi996; Efron
et al., 2004; Andrew and Gao, 2007; Koh et al., 2007) is/fheegularization:

minimize  f,(Aw) + Al|w||1, (2)
weR"
where[|w|[; = _; |wj] is the/;-norm ofw.

2.2 Dual Augmented Lagrangian (DAL) Algorithm

In this subsection, we review DAL algorithm following the line of Tomioka angigama (2009).
Although, the squared loss function and theregularizer were considered in the original paper,
we deal with a slightly more general setting in Equation (2) for notationalemewce; that is, we
consider general closed convex loss functions instead of the sglemsed For general informa-
tion on augmented Lagrangian algorithms (Powell, 1969; Hestenes, 196kafetar, 1976b), see
Bertsekas (1982) and Nocedal and Wright (1999).

Let @, (w) be the/s-regularizer, that isp, (W) = A[|w||1 = A 3 ]_; |w;|. Using the Fenchel duality
theorem (Rockafellar, 1970), the dual of the problem (2) can be wiigdollows:

imize  — f;(—0) — & 3
maximize (=) =& (v), @3)
subjectto  v=ATa, (4)

whered? is the indicator function (Rockafellar, 1970, p28) of theball of radiusA, namely
n
Z O\ (Vi) 5)

wheredy (vj) = 0, if |vj| <A, and+-o0 otherwise.
Let us consider the augmented Lagrangian (AL) functignwith respect to the above dual
problem (3)

Ln(@,viw) =~ () = & (V) +w' (v—ATa) — v —ATal, 6)

where the primal variable € R" is interpreted as a Lagrangian multiplier vector in the AL frame-
work. Note that the AL function is the ordinary Lagrangiamif 0.

Letno,Nn1,... be a non-decreasing sequence of positive numbers. At every timie gtegn the
current primal solutiomv', we maximize the AL functiot.,, (o, v; w') with respect tax andv. The
maximizer(at,v!) is used to update the primal solution (Lagrangian multipkéris follows:

Wt+1:Wt+nt(ATat—Vt). (7)

Note that the maximization of the AL function (6) with respectvtean be carried out in a
closed form, because the terms involved in the maximization can be separatedeéntes, each
containing singlevj, as follows:

n

Lo(ov) = =T (=) = 3 (v — W /me+AT )2+ 8(v))
j=1
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where(-); denotes thgth element of a vector. Sind (v;) is infinity outside the domain-A <
vj < A, the maximizen!(a) is obtained as a projection onto the ball of radiush as follows (see
also Figure 9):

n

V(@) = proj (/e + A7) = <m.n<|y,| \) M,)J : ®

where(yj)?:1 denotes am-dimensional vector whosgh element is given by;. Note that the ratio

yi/lyil is defined to be zefaf y; = 0. Substituting the abowé back into Equation (7), we obtain
the following update equation:

= proxf1 (Wt +nATal),

where pro%]t is called the soft-threshold operatfoand is defined as follows:

prox(y) = (maxuw 2.0 |§j|) ) ©
j=

The soft-threshold operation is well known in signal processing communiyhas been studied
extensively (Donoho, 1995; Figueiredo and Nowak, 2003; Daubsdt al., 2004; Combettes and
Wajs, 2005).

Furthermore, substituting the abov¢a) into Equation (6), we can expressas the minimizer
of the function

di(a) = —Ln,(a,v(a);w') = £/ (~a) + HIOIFOX[l (W neA T )2, (10)

which we also call an AL function with a slight abuse of terminology. Note thaintlaximization
in Equation (6) is turned into a minimization of the above function by negating thiuAdttion.

3. Proximal Minimization View

The first contribution of this paper is to derive DAL algorithm we reviewe8dation 2.2 from the
proximal minimization framework (Rockafellar, 1976a), which allows for & meterpretation of
the algorithm (see Section 3.3) and rigorous analysis of its convergeee&eéction 5).

3.1 Proximal Minimization Algorithm

Let us consider the following iterative algorithm called the proximal minimizatioarélyn (Rock-
afellar, 1976a) for the minimization of the objective (1).

1. Choose some initial solution® and a sequence of non-decreasing positive numtgrs
n<---

3. This is equivalent to defining;/|yj| = sign(yj). We usey;/lyj| instead of sig(y;) to define the soft-threshold
operations corresponding £ and the group-lasso regularizations (see Section 4.2) in a similar way.
4. This notation is a simplified version of the general notation we introduceitaguation (15).
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2. Repeat until some criterion (e.g., duality gap Wright et al., 2009; TomioklaSaugiyama,
20009) is satisfied:

Wt+1:argmin<f(w)+1HW—Wt\2>7 (11)
weRn Znt

where f(w) is the objective function in Equation (1) amg controls the influence of the
additionalproximity term

The proximity term tries to keep the next solutiafi*? close to the current solution!. Impor-
tantly, the objective (11) is strongly convex even if the original objectlyeq not; see Rockafellar
(1976b). Although at this point it is not clear how we are going to cartyloeiabove minimization,
by definition we havef (w'*1) 4+ 2—r1]t||wt+1 —w!||2 < f(w'); that is, provided that the step-size is
positive, the function value decreases monotonically at every iteration.

3.2 Iterative Shrinkage/Thresholding Algorithm from the Proximal Minimization
Framework

The function to be minimized in Equation (11) is strongly convex. Howevereteeems to be no
obvious way to minimize Equation (11), because it is still (possibly) nonéifféable and cannot
be decomposed into smaller problems because the elememtarefcoupled.

One way to make the proximal minimization algorithm practical is to linearly approxi(sate
Wright et al., 2009) the loss term at the current peihais

fo(Aw) =~ f,(AwW') + (Off) TA (w—w'), (12)

wheref} is a short hand foll f,(Aw'). Substituting the above approximation (12) into the iteration
(11), we obtain

w”l:argmin<(Df})TAw+(pA(w)+2r1]||WW‘||2), (13)
t

weRn

where constant terms are omitted from the right-hand side. Note that leeohtise linear ap-
proximation, there is no coupling between the elements.oFor example, ifp, (w) = A||w||, the
minimand in the right-hand side of the above equation can be separatedeéntos each containing
singlew;, which can be separately minimized.

Rewriting the above update equation, we obtain the well-known iterativekstydn threshold-
ing (IST) method (Figueiredo and Nowak, 2003; Daubechies et al., 2004; Combettes ajsj W
2005; Figueiredo et al., 2007a). The IST iteration can be written as fallows

witl = prox,, . (Wt — ntATDf§> ) (14)
where the proximity operator prgx is defined as follows:
(1
prox, (y) = argmin( 31y |7+ 3. ). (15)
xeRN

Note that the soft-threshold operation pffoée) is the proximity operator corresponding to the
regularizer(pf\l(w) = A|w||1.

5. It is also known as the forward-backward splitting method (Lions aedchr, 1979; Combettes and Wajs, 2005;
Duchi and Singer, 2009); see Section 6.
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3.3 DAL Algorithm from the Proximal Minimization Framewor k

The above IST approach can be considered to be constructing a limesidound of the loss term

in Equation (11) at theurrent pointw!. In this subsection we show that we can precisely (to finite
precision) minimize Equation (11) usingoparametrizedinear lower bound that can be adjusted to
be the tightest at theext pointw!*1. Our approach is based on the convexity of the loss function
fy. First note that we can rewrite the loss functifaras a point-wise maximum as follows:

f,(AW) = max ((—a)TAw— f;(—a)) , (16)
acRM )

wheref; is the convex conjugate functions Hf Now we substitute this expression into the iteration

(11) as follows:

witt = argmlnmax{ o Aw — f(—a) + @ (w) + 1||W—Wt||2}. (17)
weRn O€RM 2r]t

Note that now the loss term is expressed dsear function as in the IST approach; see Equa-

tion (13). Now we exchange the order of minimization and maximization becaaderibtion to

be minimaxed in Equation (17) is a saddle function (i.e., convex with respecatw concave with

respect tax Rockafellar, 1970), as follows:

min max{—aTAw—f;(—a)Jr(p;\( )+ o Hw w]z}

weRMaeRM

1
:max{—fg‘( o) + min ( TAW—}—(@\(W)—FHW—WtH2>}. (18)
aeRM weR 2Nt
Notice the similarity between the two minimizations (13) and (18) (with fixgd
The minimization with respect t&w in Equation (18) gives the following update equation

+1_ prox,, . (Wt + ntATat) , (19)

wherea' denotes the maximizer with respectdoin Equation (18). Note thaa! is in general
different from—Of} used in the IST approach (14). Actually, we show below tiat —Of ™ if
the max-min problem (18) is solved exactly. Therefore takihg- —f} can be considered as a
naive approximation to this.

The final step to derive DAL algorithm is to compute the maximizein Equation (18). This
step is slightly involved and the derivation is presented in Appendix B. Thtref the derivation
can be written as follows (notice that the maximization in Equation (18) is turnedintmimiza-
tion by reversing the sign):

at :argmln(fg )+ — QDM W' +niATa )) (20)

acRM

=:0t(a)

where the functiomb;m is called the Moreau envelope @f (see Moreau, 1965; Rockafellar, 1970)
and is defined as follows:

@3(w) = in (00 + 51x-wl?). @)
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+ Tt
DT, _ N

(a) Gradient-based lower-bound used in IST (b) Variational lower-bound used in DAL

Figure 1: Comparison of the lower bounds used in IST and DAL.

See Appendix A for more details. Since the functimia) in Equation (20) generalizes the AL-
function (10), we call it an augmented Lagrangian (AL) function.

What we need to do at every iteration is to minimize the AL functiefo) and update the
Lagrangian multipliew! as in Equation (19) using the minimizet in Equation (20). Of course in
practice we would like to stop the inner minimization at a finite tolerance. We disicesgsopping
condition in Section 5.

The algorithm we derived above is indeed a generalization of DAL algontlemeviewed in
Section 2.2. This can be shown by computing the proximity operator (19) anbldiheau enve-
lope (21) for the specific case 6f-regularization; see Section 4.1 and also Table 2.

The AL function¢(a) is continuously differentiable, because the AL function is a surfyof
(differentiable by assumption) and an envelope function (differentiziele;Appendix A). In fact,
using Lemma 10 in Appendix A, the derivative of the AL function can be ataldias follows:

Oot(a) = —0f; (—a) + Aw(a), (22)

wherew'*1(a) := prox,, . (W' +n:ATa). The expression for the second derivative depends on the
particular regularizer chosen.

Notice again that the above update Equation (19) is very similar to the one i8S Theplproach
Equation (14). However-a, which is the slope of the lower-bound (16) is optimized in the inner
minimization (20) so that the lower-bound is the tightest atidse pointv'*1. In fact, if O¢¢(a) =0
then Of,(Aw'™) = —a' because of Equation (22) aridf,(0f;(—a')) = —a'. The difference
between the strategies used in IST and DAL to construct a lower-bounghighted in Figure 1.
IST uses a fixed gradient-based lower-bound which is tightest at thentwolutionw!, whereas
DAL uses a variational lower-bound, which can be adjusted to become tigltid® next solution
witl

The general connection between the augmented Lagrangian algoriththeaptbximal mini-
mization algorithm, and (asymptotic) convergence results can be found kafedar (1976b) and
Bertsekas (1982). The derivation we show above is a special casetiu objective functiorfi(w)
can be split into a part that is easy to handle (regularization tgitw)) and the rest (loss term
fg(AW)).
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Description |

Regularizer

Proximity operator prox

Envelope functiordy

lq-
regularizer
(Tibshirani,
1996)

G (w) = ATy [wj|

prox:(w) = ((Iwj| ). )

Ll

=1

O3 (W) = 35 -1 (Iw| = M)2

Group lasso
(Yuan and
Lin, 2006)

@ (W) =A 3 geo (Wl

prox? (w)

(CAEY——

vm_m@

D3 (W) = 3 Yo ([Wqll —2)2

Trace norm
(Fazel et al.,
2001; Srebro
et al.,, 2005;
Tomioka
etal., 2010)

A (W) =A3T_10(w)

prox (w) = vec(U(S—A),. V")

©; (W) = 35 1-1(0j (W) — N2

Elastic-net

(Zou and
Hastie, 2005;
Tomioka and
Suzuki, 2010)

(W) = A3 ((1-8)|wj| + w5)

prox(w)

as(x)+ := max0,x) and applies element-wise to a matrix.

(Iwi[-A(1-8))+ wj

1+A0 [wj]

n
v_.np

iy 1A wj|-A(1-6)\?
@5 (W) = 15 MﬂupA “Thho v

AT

Table 2: List of regularizers and their corresponding proximity opesdtts) and the Envelope function (21). The operation is defined
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Algorithm 1 DAL algorithm for ¢1-regularization
1: Input: design matrixA, loss functionf,, regularization constarX, sequence of proximity

parameters); (t =0,1,2,...), initial solutionw?, tolerance.

Sett =0.

repeat

4:  Minimize the augmented Lagrangian functipy{a) (see Equation 10) with the gradient and
Hessian given in Equations (24) and (25), respectively, using Nésvioethod. Leto! be
the approximate minimizer

w N

aceRM

at ~ argmin( f/(—a)+ Zi]t Hproxf\;t (W +niA"a) H2> .

with the stopping criterion (see Section 5.2)

O (ah)|| < /rrt Hproxfjh(wt +mnATat) —wt

whered;(a) is the derivative of the inner objective (24) andy1s the Lipschitz constant of
Of,.

5. Updatew!'** := proxih (w!+neATal), tt+1.

6: until relative duality gap (see Section 7.1.2) is less than the tolerance

7: Output: the final solutionw!.

)

4. Exemplary Instances

In this section, we discuss special instances of DAL framework presémt@ection 3 and qualita-
tively discuss the efficiency of minimizing the inner objective. We first dis¢he simple case of
£1-regularization (Section 4.1), and then group-lasso (Section 4.2) ardmtire general regular-
ization using the so-called support functions (Section 4.3). In additiortabe of component-wise
regularization is discussed in Section 4.4. See also Table 2 for a list daregus.

4.1 Dual Augmented L agrangian Algorithm for ¢;-Regularization

For theﬁl—regularizationmﬁ1 (w) = A||wl|1, the update Equation (19) can be rewritten as follows:
= proxz1 (Wt + ntATat) , (23)

where pro§1 is the proximity operator corresponding to theregularizer defined in Equation (9).
Moreover, noticing that the convex conjugate of theregularizer is the indicator functiod in
Equation (5), we can derive the envelope functignin Equation (21) as follows (see also Figure 9):

- Lfpotw]

Therefore, the AL function (10) in Tomioka and Sugiyama (2009) is éeriirom the proximal
minimization framework (see Equation 20) in Section 3.

We use Newton’s method for the minimization of the inner objeapiM@ ). The overall algo-
rithm is shown in Algorithm 1. The gradient and Hessian of the AL functid) ¢an be evaluated
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as follows (Tomioka and Sugiyama, 2009):

Oe (o) = —0f; (—0) +Aw' (@), (24)
D?e(0) = D2 (—a) + neAL AL T, (25)

wherew'*1(qa) := proxﬁlm (W' +ntATa), andA, is the matrix that consists of columns Afthat

corresponds to “active” variables (i.e., the non-zero elementd df(a) ). Note that Equation (24)
equals the general expression (22) from the proximal minimization frankewor

It is worth noting that in both the computation of matrix-vector product in Eqndd) and the
computation of matrix-matrix product in Equation (25), the cost is only prtoguaal to the number
of non-zero elements af'+1(a). Thus when we are aiming for a sparse solution, the minimization
of the AL function (10) can be performed efficiently.

4.2 Group Lasso
Let ¢, be the group-lasso penalty (Yuan and Lin, 2006), that is,

AT wgll (26)

ged

where® is a disjoint partition of the index s€t,...,n}, andw, € Rl?l is a sub-vector ov that
consists of rows ofv indicated byg C {1,...,n}. The proximity operator corresponding to the
group-lasso regularizcepf\5 is obtained as follows:

y
proxy (y) := proxg (y) (maX(Hyg! _)\’O)Hyz|>g€® : (27)

where similarly to Equation (9)y,)sce denotes am-dimensional vector whosg component is
given byy,. Moreover, analogous to update Equation (23) (see also Equation th@)ficase, the
update equations can be written as follows:

= proxg, (Wt + ntATat> ,
wherea! is the minimizer of the AL function
01(0) = () 5 prog, (' + A )2 (28)
The overall algorithm is obtained by replacing the soft-thresholding tipaesain Algorithm 1 by

the one defined above (27). In addition, the gradient and Hessian ALtfienction ¢;(a) can be
written as follows:

O (o) = —0f; (—a) + Aw(a), (29)

. A ANt .~
D%e(a) = O?F7 (—a) +ne Y Ag(<1—”t)||g|+ it Gl ) Ayl (30)
o5 10lg 10lg |
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wherew!*1(a) = pro><§5rh (W +ntATa), and®™ is a subset o that consists of active groups,

namely®™ :={ge & : Hwtg“(a)H > 0}; Aq is a sub-matrix ofA that consists of columns cor-
responding to the index-set |y is the |g| x |g| identity matrix; the vectog € R" is defined as
q:=w'+nA"a andd, :=q,/||d,l, whereq, is defined analogously t,. Note that in the above
expressionin./||qg|| < 1 forg € & by the soft-threshold operation (27).

Similarly to the/;-case in the last subsection, the sparsitwof'(a) (i.e.,|&*| < |&|) can be
exploited to efficiently compute the gradient (29) and the Hessian (30).

4.3 Support Functions

The ¢1-norm regularization and the group lasso regularization in Equation ét6be generalized
to the class of support functions. The support function of a conva®,sie defined as follows:

@\(x) = supx'y. (31)
yeC,

For example, thé&i-norm is the support function of th&, unit ball (see Rockafellar, 1970) and
the group lasso regularizer (26) is the support function of the grememglized.-ball defined as
{y e R": |lyql| <A, Vg € &}. Itis well known that the convex conjugate of the support function
(31) is the indicator function df (see Rockafellar, 1970), namely,

0 (inyC)\),

: (32)
+oo  (otherwiseg.

G(y) = {
The proximity operator corresponding to the support function (31) eanriiten as follows:

proxg Ay) :=y — proj, (¥),

where prog, is the projection ont®,; see Lemma 8 in Appendix A. Finally, by computing the
Moreau envelope (21) corresponding to the abgyeve have

1
O (a) = fZ‘(—G)ﬂLZT]tHPfO)éfi (W +neA "o |12, (33)

where we used the fact that for the indicator function in Equation @2projc, (z)) = 0 (vz) and
Lemma 8. Note tha€) = {y € R": |ly||. < A} gives pro%;’p: proxf\1 (see Equation 10), and
Cr={y € R": |lyg]l <A, Vg € &} gives prog = proxy (see Equation (28).

4.4 Handling Different Regularization Constant for Each Component

The ¢1-regularizer in Section 4.1 and the group lasso regularizer in Section 4ihadkat all the
components (variables or groups) are regularized by the same cohst&fuwever the general
formulation in Section 3.3 allows using different regularization constargdch component.

For example, let us consider the following regularizer:

a(W) = > Ajlwl, (34)
=1
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whereA; > 0 (j = 1,...,n). Note that we can also include unregularized terms (e.g., a bias term)
by setting the corresponding regularization consiant 0. The soft-thresholding operation corre-
sponding to the regularizer (34) is written as follows:

prox(y) = (max<|y,| mmfh)] R

where again the ratig; /|y;| is defined to be zero if; = 0. Note that ifA; = 0, the soft-thresholding
operation is an identity mapping for that component. Moreover, by noticingthiearegularizer
(34) is a support function (see Section 4.3), the envelope fungtjon Equation (21) is written as
follows:

n
z 2(wj| —A,,0).

which can also be derived by noticing th&t (0) = 0 and O®;(y) = proxil(y) (Lemma 10 in
Appendix A).

As a concrete example, lbtbe an unregularized bias term and let us assume that all the com-
ponents ofv € R" are regularized by the same regularization constait other words, we aim to
solve the following optimization problem:

minimize f,(Aw+ 1mb) +A|lwl1,

weR" beR
where||w||1 is the/;-norm ofw, andly, is anm-dimensional all one vector. The update Equations
(19) and (20) can be written as follows:

= proxgl (W +nATal), (35)
bt+1 bt‘H] 1mT t7 (36)

wherea! is the minimizer of the AL function as follows:

. 1
at — argmm(f;(—a) tor (Hproxilm (W A Ta) |2+ (bt +nt1mTa)2)) . @)
t

acRM

5. Analysis

In this section, we first show the convergence of DAL algorithm assumatglile inner minimiza-
tion problem (20) is solved exactly (Section 5.1), which is equivalent to tveimal minimization
algorithm (11). The convergence is presented both in terms of the furnvetioa and the norm of the
residual. Next, since it is impractical to perform the inner minimization to highigicet the finite
tolerance version of the two theorems are presented in Section 5.2. TWergamce rate obtained
in Section 5.2 is slightly worse than the exact case. In Section 5.3, we shotinéheonvergence
rate can be improved by performing the inner minimization more precisely. Malsé @roofs are
given in Appendix C for the sake of readability.

Our result is inspired partly by Beck and Teboulle (2009) and is similar to tigegiven in
Rockafellar (1976a) and Kort and Bertsekas (1976). Howeveroalysis does not require asymp-
totic arguments as in Rockafellar (1976a) or rely on the strong convexiheaibjective as in Kort
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and Bertsekas (1976). Importantly the stopping criterion we discuss tio8é&c2 can be checked
in practice. Key to our analysis is the Lipschitz continuity of the gradient ofdbe functiondf,
and the assumption that the proximation with respeg tsee Equation 15) can be computed ex-
actly. Connections between our assumption and the ones made in earlies stieddiscussed in
Section 5.4.

5.1 Exact Inner Minimization

Lemma 1 (Beck and Teboulle, 2009) Let w!,w?, ... be the sequence generated by the proximal
minimization algorithm (Equation 11). For arbitrany € R" we have

CFWED) — (W) < 2wt — w2 2wt w2 (39

Proof First notice thafw' —w!*1)/n, € of (Ww'*1) becausevi*! minimizes Equation (11). There-
fore using the convexity of, we havé

nt(f(w) _ f(Wt+l)) > <W—Wt+1,Wt _Wt+l> (39)

_ <W—Wt+l,wt —W+W—Wt+l>

t+1||2_

> [|w—w I —w ) fjw! —w]

1
> = WfWH—l 2
>3 [

1 2
5w —w?,
where the third line follows from Cauchy-Schwartz inequality and the lastféiiews from the
inequality of arithmetic and geometric means. |

Note that DAL algorithm (Equations 19 and 20) with exact inner minimization igeeg a se-
guence from the proximal minimization algorithm (Equation 11). Thereforbave the following
theorem.

Theorem 2 Letw!,w?,... be the sequence generated by DAL algorithm (Equations 19 and 20);
let W* be the set of minimizers of the objecti#g and let f(\W*) denote the minimum objective
value. If the inner minimization (Equation 20) is solved exactly and the pityxparametem; is
increased exponentially, then the residual function value obtained by thealyarithm converges
exponentially fast to zero as follows:

[Iw® — w2

k+1y %

(40)

where ||w® —W*|| denotes the minimum distance between the initial solwidand W*, namely,
WP —W*|| = miny-ew: |W° —w*||. Note that G = TX n; also grows exponentially.

6. We use the notatiofx,y) := Z?:]_ijj for x,y € R".
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Proof Letw* be any point inV*. Substitutingw = w* in Equation (38) and summing both sides
fromt =1 tot =k, we have

(Z{(:()nt) M_ f(W ) < ||WO—W HZ_EHWK-&-l_W H2
=0 2t=oMt

In addition, sincef (W) < f(w!) (t =0,1,2,...) from Equation (11), we have

(520n) (£ — Fw)) < 2 w0 w2

Finally, taking the minimum of the right-hand side with respecivtoc W* and using the equiva-
lence of proximal minimization (11) and DAL algorithm (19)-(20) (see SecB@), we complete
the proof. |

The above theorem claims the convergence of the residual functiorsvighw®) — f (w*) ob-
tained along the sequengg x»,.... We can convert the above result into convergence in terms of
the residual nornfjw! —w*|| by introducing an assumption that connects the residual function value
to the residual norm. In addition, we slightly generalize Lemma 1 to improve thesggemnce rate.
Consequently, we obtain the following theorem.

Theorem 3 Letw!,w?,... be the sequence generated by DAL algorithm (Equations 19 and 20) and
let W* be the set of minimizers of the object(i¢ Let us assume that there are a positive constant
o and a scalar (1 < a < 2) such that

(A1) fwh) — f(WH) > owt—wH |  (t=0,1,2,...), (41)

where fW*) denotes the minimum objective value, dnd— W*|| denotes the minimum distance
betweerw € R" and the set of minimizers Yas ||w — W*|| := miny:cw- |w —w*||.
If the inner minimization is solved exactly, we have the following inequality:

I =W o Jw W <t -

Moreover, this implies that

HWI+1 —\W* ” 1+(10+;]11)t0m < 1
1+one

Jwh =W (42)

That is,w! converges to W super-linearlyif a < 2 or a = 2 andn; is increasing, in aglobal and
non-asymptotisense.

Proof See Appendix C.1. [ |

Note that the above super-linear convergence holds without the assonmpiibeorem 2 that, is
increased exponentially.
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5.2 Approximate Inner Minimization

First we present a finite tolerance version of Lemma 1.

Lemma4 Letw!,w?,... be the sequence generated by DAL algorithm (Equations 19 and 20). Let
us assume the following conditions.

(A2) The loss function,fhas a Lipschitz continuous gradient with modulyy, that is,

|Ofu(z) — Of(Z)]| < \1/\|z—z’\ (Vz,Z € R™), (43)

(A3) The proximation with respect tg, (see Equation 15) can be computed exactly.

(A4) The inner minimization (Equation 20) is solved to the following tolerance:

1Tt < \/Zuwt“—w‘u, (44)

wherey is the constant in Equatiof#3).

Under assumptionA2)—(A4), for arbitrary w € R" we have
1 1
Ne(F (W) — f(w)) < QHWt —w|? - QHW‘“ — w2 (45)

Proof See Appendix C.2. |

Note that Lemma 4 states that even with the weaker stopping crit@#nwe can obtain inequality
(45) asin Lemma 1.

The assumptions we make here are rather weak. In Assum@ti)nthe loss functiorf, does
not include the design matri& (see Table 1). Therefore, it is easy to compute the congtant
Accordingly, the stopping criterio(A4) can be checked without assuming anything about the data.

Furthermore, summing both sides of inequality (45) and assumingl&increased exponen-
tially, we obtain Theorem 2 also under the approximate minimizg#at).

Finally, an analogue of Theorem 3, which does not assume the expdneatéase inn., is
obtained as follows.

Theorem 5 Letw!,w?, ... be the sequence generated by DAL algorithm and lethé/the set of
minimizers of the objectivil). Under assumptiofAl) in Theorem 3 andA2)-(A4) in Lemma 4,
we have

W — W2 4 20mg W < flwt - w2,

where |w! —W*|| is the minimum distance betweah and W as in Theorem 3. Moreover, this
implies that

t+1 % 1+aont 1
W W o < ————
| | ~ /14 20n;

That is,w! converges to Wsuper-linearly ifa < 2 or a = 2 andn is increasing.

Iw' — W) (46)
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Proof Letw! be the closest point iv* from wt, that is,w! := argmin,. .- W' —w*||. Using
Lemma 4 withw = w! and AssumptiorfA1), we have the first part of the theorem as follows:

W' =W |2 = [w' =W |2 > [lw = W% 4 20m w T — W@
> HWt+1_W*HZ_i_ZO.ntHWt+1_W*HO(,

where we used the minimality dfw!*! —w'*1|| in the second line. The last part of the theo-
rem (46) can be obtained in a similar manner as that of Theorem 3 usingy¥donrquality (see
Appendix C.1). |

5.3 A Faster Rate

The factor ¥1/1+ 201, obtained under the approximate minimizati@) (see inequality (46) in
Theorem 5) is larger than that obtained under the exact inner minimizatienn@guality (42) in
Theorem 3); that is, the statement in Theorem 5 is weaker than that inérheor

Here we show that a better rate can also be obtained for approximate minimizatsoperform
the inner minimization t@([w!t1 —wt||/n;) instead ofO([wt 1 —wt||/\/N) in Assumption(A4).

Theorem 6 Letw!,w?, ... be the sequence generated by DAL algorithm and lethé/the set of
minimizers of the objectivid). Under assumptiofAl) in Theorem 3 witlo = 2, and assumptions
(A2) and(A3) in Lemma 4, for ang < 1 such that := (1—¢)/(on:) < 3/4, if we solve the inner
minimization to the following precision

(ad) S
then we have
W < o W
Proof See Appendix C.3 |

Note that the assumptiol< 3/4 is rather weak, because if the factois greater than one, the
stopping criterion(A4’) would be weaker than the earlier criterioh4). In order to be on the safe
side, we can choose= max(€o, 1 —30n:/4) (assuming that we know the constantand the above
statement holds witls = €9. Unfortunately, in exchange for obtaining a faster rate, the stopping
criterion (A4’) now depends not only op which can be computed, but also onwhich is hard to
know in practice. Therefore stopping conditig®4’) is not practical.

5.4 Validity of Assumption (A1)

In this subsection, we discuss the validity of assump(idh) and its relation to the assumptions
used in Rockafellar (1976a) and Kort and Bertsekas (1976). Rypwpeaking, our assumption
(A1) is milder than the one used in Rockafellar (1976a) and stronger than thesedén Kort and
Bertsekas (1976).

First of all, assumptiorfA 1) is unnecessary for convergence in terms of function value (The-
orem 2 and its approximate version implied by Lemma 4). Exponential incréake proximity
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parameten; may sound restrictive, but this is the setting we typically use in experimentSésee
tion 7.1). AssumptiorfAl) is only necessary in Theorem 3 and Theorem 5 to translate the residual
function valuef (w+1) — f (W*) into the residual distandent™t —W*||.

We can roughly think of AssumptiofAl) as alocal strong convexityassumption. Here we
say a functionf is locally strongly convex arounthe set of minimizer$V* if for all positive C,
all the pointsw within distanceC from the setW*, the objective functiorf is bounded below by a
guadratic function, that is,

f(w) — f(W*) > ofw—W*|?  (vw: [w—W*|| <C), (47)

where the positive constaot may depend o€. If the set of minimizerdV* is bounded, all the
level sets off are bounded (see Rockafellar, 1970, Theorem 8.7). Therefoxe, imhake sure that

the function valuef (w!) does not increase during the minimization, we can assume that all points
generated by DAL algorithm are contained in some neighborhood akiftinidat contains the level

set defined by the initial function valyev € R": f(w) < f(wP®)}; that s, the local strong convexity

of f guarantees AssumptigAl) with a = 2.

Note that Kort and Bertsekas (1976, p278) used a slightly weakemgasismn than the local
strong convexity (47); they assumed that thexestsa positive constar®’ > 0 such that the local
strong convexity (47) is true for al in the neighborhoo¢jw —W*|| < C’ for someo > 0.

The local strong convexity (47) or Assumpti¢hl) fails when the objective function behaves
like a constant function around the set of minimizérs. In this case, DAL converges rapidly in
terms of function value due to Theorem 2; however it does not nedgssamverge in terms of the
distancel|w! —W*||.

Note that the objective functiofis the sum of the loss term and the regularization term. Even
if the minimum eigenvalue of the Hessian of the loss term is very close to zer@awdiope
that the regularization term holds the function up from the minimum objectiveeviahy*). For
example, when the loss term zero and we only have thé;-regularization termpil(w). The
objectivef(w) = Ay ]_; |wj| can be lower-bounded as

A
fw) > =lw® - (vw:[w]| <©),

where the minimizew* is w* = 0. Note that the/;-regularizer is not (globally) strongly convex.
The same observation holds also for other regularizers we discussedtiar4.

In the context of asymptotic analysis of AL algorithm, Rockafellar (197@&suened that there
existst > 0, such that in the ballB|| < t in R", the gradient of the convex conjugaté of the
objective functionf is Lipschitz continuous with constaht that is,

10F7(B) — D (0| < L[IB]l-

Note that becauséf(CJf*(0)) > 0 (Rockafellar, 1970, Corollary 23.5.1)]f*(0) is the optimal
solutionw* of Equation (1), and it is unigue by the continuity assumed above.
Our assumptiotfAl) can be justified from Rockafellar's assumption as follows.

Theorem 7 Rockafellar's assumption implies that the objective f is locally strongly cowitdx
C =crL ando = min(1, (2c— 1)/c?)/(2L) for any positive constant a @nd L are constants from
Rockafellar's assumption).
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Proof The proofis docal version of the proof of Theorem X.4.2.2 in Hiriart-Urruty and Leétral
(1993) (Lipschitz continuity of1f* implies strong convexity of). See Appendix C.4. |

Note that as the constaothat bounds the distance to the set of minimia#fsincreases, the con-
stanto becomes smaller and the convergence guarantee in Theorem 3 andnebgeaker (but
still valid).

Nevertheless AssumptiofA1l) we use in Theorem 3 and 5 are weaker than the local strong
convexity (47), because we need Assumptijdi) to hold only on the points generated by DAL
algorithm. For example, if we only consider a finite number of steps, sucmstarto always
exists.

Both assumptions in Rockafellar (1976b) and Kort and Bertsekas YE®&6nade for asymp-
totic analysis. In fact, they require that as the optimization proceeds, thitosabecomes closer
to the optimumw* in the sense of the distange! —W*|| in Kort and Bertsekas (1976) afi@| in
Rockafellar (1976b). However in both cases, it is hard to predict honyrtarations it takes for
the solution to be sufficiently close to the optimum so that the super-linear rcemez happens.

Our analysis is complementary to the above classical results. We have #taivauiper-linear
convergence happensn-asymptoticallyinder AssumptiofA 1), which is trivial for a finite num-
ber of steps. Assumptio(A1l) can also be guaranteed for infinite steps using the local strong
convexity aroundV* (47).

6. Previous Studies

In this section, we discuss earlier studies in two categories. The firstocategmprises methods
that try to overcome the difficulty posed by the nondifferentiability of the laggation termg, (w).
The second category, which includes DAL algorithm in this paper, cordistethods that try to
overcome the difficulty posed by the coupling (or non-separability) inttedupy the design matrix
A. The advantages and disadvantages of all the methods are summarizbiif.Ta

6.1 Constrained Optimization, Upper-Bound Minimization, and Subgradient M ethods

Many authors have focused on thendifferentiabilityof the regularization term in order to effi-
ciently minimize Equation (1). This view has lead to three types of approanhely, (i) con-
strained optimization, (ii) upper-bound minimization, and (iii) subgradient method

In the constrained optimization approach, auxiliary variables are introdioaewrite the non-
differentiable regularization term as a linear function of conically-comstthauxiliary variables.
For example, thé;-norm of a vectokv can be rewritten as:

n
HWHl:Z min (w§+)+w§*)> st. wj:w(-”—w(-*)

_ J |-
j:lW(j+),W(j )>0

wherew'™ andw!™

] | (j =1,...,n) are auxiliary variables and they are constrained in the positive-
orthant cone. Two major challenges of the auxiliary-variable formulatierttee increased size of
the problem and the complexity of solving a constrained optimization problem.

The projected gradient (PG) method (see Bertsekas, 1999) iteratwslyutes a gradient step

and projects it back to the constraint-set. The PG method in Figueiredo g0ark)) converges
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R-linearly, if the loss function is quadratic. However, PG methods can be extremely dlew the
design matrixA is poorly conditioned. To overcome the scaling problem, the L-BFGS-B igthgar
(Byrd et al., 1995) can be applied for the simple positive orthant constraharises from thé;
minimization. However, this approach does not easily extend to more geaguddrizers, such as
group lasso and trace norm regularization.

The interior-point (IP) method (see Boyd and Vandenberghe, 20 ather algorithm that
is often used for constrained minimization; see Koh et al. 2007; Kim et alf #80the applica-
tion of IP methods to sparse estimation problems. Basically an IP method geresstgaence
that approximately follows the so called central path, which parametricallgezis the analytic
center of the constraint-set and the optimal solution. Although IP methodsleaate poorly con-
ditioned design matrices well, it is challenging to scale them up to very large geeablems. The
convergence of the IP method in Koh et al. (2007) is empirically found to leaiin

The second approach (upper-bound minimization) constructs a diffgsénupper-bound of
the nondifferentiable regularization term. For example,/hrorm of a vectow can be rewritten
as follows:

n W2 )
W= min <’+°‘2’>. (48)

510,20 2a

In fact, the right-hand side is an upper bound of the left-hand side botrany non-negative
due to the inequality of arithmetic and geometric means, and the equality is obtairssdting
a; = |wj|. The advantage of the above parametric-upper-bound formulation igothat fixed
set ofaj, the problem (2) becomes a (weighted) quadratically regularized minimizatadren,
for which various efficient algorithms already exist. The iteratively rewigd shrinkage (IRS)
method (Gorodnitsky and Rao, 1997; Bioucas-Dias, 2006; Figueire@h,e2007a) alternately
solves the quadratically regularized minimization problem and tightens (rextsgithe upper-
bound in Equation (48). A more general technique was studied in parglitlebname of vari-
ational EM (Jaakkola, 1997; Girolami, 2001; Palmer et al., 2006), whictergdizes the above
upper-bound using Fenchel’s inequality (Rockafellar, 1970). A simjgr@ach that is based on
Jensen’s inequality (Rockafellar, 1970) has been studied in the carftexiltiple-kernel learning
(Micchelli and Pontil, 2005; Rakotomamonijy et al., 2008) and in the contextulfi-task learning
(Argyriou et al., 2007, 2008). The challenge in the IRS framework issthgularity (Figueiredo
et al., 2007a) around the coordinate axis. For example, ié;tipeoblem in Equation (2), any zero
componentv; = 0 in the initial vectorw will remain zero after any number of iterations. More-
over, it is possible to create a situation that the convergence becomeardytstow for finite |w;|
because the convergence in thecase is only linear (Gorodnitsky and Rao, 1997).

The third approach (subgradient methods) directly handles the nawedifif@bility through sub-
gradients; see, for example, Bertsekas (1999).

A (stochastic) subgradient method typically converge®él/v/k) for non-smooth problems
in general and a®(1/k) if the objective is strongly convex; see Shalev-Shwartz et al. (20G¥); L
(2010). However, since the method is based on gradients, it can eakiyh&n the problem is
poorly conditioned (see, e.g., Yu et al., 2010, Section 2.2). Therefore,of the challenges in
subgradient-based approaches is to take the second-order caivddumation into account. This

7. A sequencg® converges t& R-linearly (R is for “root”) if the residual&! — &| is bounded by a sequenekthat
linearly converges to zero (Nocedal and Wright, 1999).
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Constrained Upper-bound| Subgradient Iterative
Optimization Minimization Method Proximation
PG IP IRS OWLON AG DAL
Poorly conditionedd - v v v - v
No singularity v v - v v v
Extensibility v v v - v v
Exploits sparsity ofv v - - v v v
Efficient when - - - m>n m>n | m«n
Convergence O(e ) | (0(e7) o(e™™) ? 0(1/k?) | o(e7¥)

Table 3: Comparison of the algorithms to solve Equation (1). In the columns)etixods, namely,
projected gradient (PG), interior point (IP), iterative reweighted &lage (IRS), orthant-
wise limited-memory quasi Newton (OWLQN), accelerated gradient (AG) caral aug-
mented Lagrangian (DAL), are categorized into four groups discusghd text. The first
row: “Poorly conditionedA” means that a method can tolerate poorly conditioned design
matrices well. The second row: “No singularity” means that a method doesiffet from
singularity in the parametrization (see main text). The third row: “Extensibility” msea
that a method can be easily extended bey6ndegularization. The forth row: “Exploits
sparsity ofw” means that a method can exploit the sparsity in the intermediate solution.
The fifth row: “Efficient when” indicates the situations each algorithm refigiently,
namely, more samples than unknowns>$ n), more unknowns than samplas & n),
or does not matter (-). The last row shows the rate of convergeneenkinom literature.
The super-linear convergence of DAL is established in this paper.

is especially important to tackle large-scale problems with a possibly poorlgitamred design
matrix. Orthant-wise limited memory quasi Newton (OWLQN, Andrew and Ga672&and sub-
LBFGS (Yu et al., 2010) combine subgradients with the well known L-BFG&gNewton method
(Nocedal and Wright, 1999). Although being very efficient fgfregularization and piecewise
linear loss functions, these methods depend on the efficiency of oraelesaimpute a descent
direction and a step-size; therefore, it is challenging to extend these msethedmbinations of
general loss functions and general nondifferentiable regularizeasidition, the convergence rates
of the OWLQN and subLBFGS methods are not known.

6.2 Iterative Proximation

Yet another approach is to deal with the nondifferentiable regularizatimugh the proximity
operation. In fact, the proximity operator (15) is easy to compute for maagtipally relevant
separable regularizers.

The remaining issue, therefore, is the coupling between variables ingddycthe design ma-
trix A. We have shown in Sections 3.2 and 3.3 that IST and DAL can be condidete/o different
strategies to remove this coupling.

Recently many studies have focused on methods that iteratively compute tivagdroperation
(15) (Figueiredo and Nowak, 2003; Daubechies et al., 2004; Comlzatte¥/ajs, 2005; Nesterov,
2007; Beck and Teboulle, 2009; Cai et al., 2008), which can be itheskin an abstract manner as
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follows:

witl = ProX,, v, (49)

where proy, is the proximal operator defined in Equation (15). The above mentionetsteah
be differentiated by the differegt and); that they use.

For example, the IST approach (also known addheard-backward splittind.ions and Mercier,
1979; Combettes and Wajs, 2005; Duchi and Singer, 2009) can betdekas follows:

Y= wt AT Of (AW,
At = )\I’]t

What we need to do at every iteration is only to compute the gradient at trentpoint, take a gra-
dient step, and then perform the proximal operation (Equation 49). Natgtlcan be considered
as a step-size.

The IST method can be considered as a generalization of the projectiengmaethod. Since
the proximal gradient step (13) reduces to an ordinary gradient step gih= 0, the basic idea
behind IST is to keep the non-smooth tegy as a part of the proximity step (see Lan, 2010).
Consequently, the convergence behaviour of IST is the same as tipabdjefcfed) gradient descent
on the differentiable loss term. Note that Duchi and Singer (2009) antiigzease where the loss
term is also nondifferentiable in both batch and online learning settings faahet al. (2009) also
analyze the online setting with a more general threshold operation.

IST approach maintains sparsitywf throughout the optimization, which results in significant
reduction of computational cost; this is an advantage of iterative proximati¢imoote compared
to interior-point methods (e.g., Koh et al., 2007), because the solutiougeddoy interior-point
methods becomes sparse only in an asymptotic sense; see Boyd andbéagter(2004).

The downside of the IST approach is the difficulty to choose the step-aizengtem;; this
issue is especially problematic when the design matiis poorly conditioned. In addition, the best
known convergence rate of a naive IST approadis/k) (Beck and Teboulle, 2009), which means
that the number of iteratiorlsthat we need to obtain a solutievf such thatf (wk) — f(w*) < ¢
grows linearly with Y&, wheref (w*) is the minimal value of Equation (1).

SpaRSA (Wright et al., 2009) uses approximate second order cuviafiormation for the
selection of the step-size parametgr TwIST (Bioucas-Dias and Figueiredo, 2007) is a “two-
step” approach that tries to alleviate the poor efficiency of IST when thgualenatrix is poorly
conditioned. However the convergence rates of SpaRSA and TwESTdnown.

Accelerating strategies that use different choiceg' dfave been proposed in Nesterov (2007)
and Beck and Teboulle (2009) (denoted AG in Tab. 3), which @\#'k?) guarantee with almost
the same computational cost per iteration; see also Lan (2010).

DAL can be considered as a new member of the family of iterative proximatiamitdms. We
have qualitatively shown in Section 3.3 that DAL constructs a better lowandotithe loss term
than IST. Moreover, we have rigorously studied the convergencef&aL and have shown that
it converges super-linearly. Of course the fast convergence &f @#nes with the increased cost
per iteration. Nevertheless, as we have qualitatively discussed in Sectibis fcrease is mild,
because the sparsity of intermediate solutions can be effectively exploiteglirmer minimization.
We empirically compare DAL with other methods in Section 7.

There is of course an issue on how much one should precisely optimizetird&aining error
(plus the regularization term) is a crude approximation of the generalization(&halev-Shwartz
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and Srebro, 2008). However the reason we use sparse regularizgagicactly that we are not only
interested in the predictive power. We argue that when we are usingesp@&thods to gain insights
into some problem, it is important that we are sure that we are doing whatitesmour paper (e.g.,
“solve an/;-regularized minimization problem”), and someone else can reliably recovesatine
sparsity pattern using any optimization approach that employs some objecippng criterion
such as the duality gap. Of course the stability of the optimal solution itself muahékyzed
(see Bickel et al., 2009; Zhao and Yu, 2006; Meinshausen didingann, 2006) and the trade-off
between accuracy and sparsity should be discussed. However, thy®isdihe scope of this paper.

7. Empirical Results

In this section, we confirm the super-linear convergence of DAL algariéimd compare it with
other algorithms orf;-regularized logistic regression problems. The algorithms that we compare
are FISTA (Beck and Teboulle, 2009), OWLQON (Andrew and Gao,7208paRSA (Wright et al.,
2009), IRS (Figueiredo et al., 2007a), and LOGREG (Koh et al., 2007). Note that IST is not
included because SpaRSA and FISTA are shown to clearly outperf@maive IST approach.

We describe the logistic regression problem and the implementation of all of teadsen Sec-

tion 7.1. The synthetic experiments are presented in Section 7.2 and thertzgk@xperiments are
presented in Section 7.3.

7.1 Implementation

In this subsection, we first describe the problem to be solved and théaireipe implementation
of the above mentioned algorithms in detail.

For all algorithms except for IRS, the initial solutior? was set to an all zero vector. For IRS,
the initial solution was sampled from an independent standard Gaussiabutistr.

The CPU time was measured on a Linux server with two 3.1 GHz Opteron Boyeesd 32GB
of RAM.

7.1.1 ¢/1-REGULARIZED LOGISTIC REGRESSION

The logistic regression model is defined by the loss function
m m
flr(z) = Y Ur(z,Yi) =Y log(1+e %), (50)
2/ EW =,

wherey; € {—1,+1} is a training label. The conjugate of the loss function can be obtained as
follows:

m
fir(—0) = fr(—0i, Vi),
i; | |
where

Cn(—aiyi) = aiyilog(aiyi) + (1 —aiyi)log(1—aiyi) (if0 <ajy < 1),
RTAA= (e (otherwisg.
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Rewriting the dual problem (3) we have the following expression:
maximize  — fir(—0), (51)
aeRM

subjectto  ||ATde <A, (52)
where |ly|lo = maxj—1,. nlyj| is the /o-norm; note that the implicit constraint in Equation (3)
(through the indicator functiody’) is made explicit in Equation (52).
_ For the experiments in this section, we reparametrize the regularization wohsts A =
A|ATy| . The reason for this reparametrization is that foial 0.5 the solutionw can be shown
to be zero; thus we can measure the strength of the regularization relative pooblem using\
instead ofA. This is because the conjugate loss functf(jg takes the minimum at; = y;/2 and
the minimum is attained fox > |AT(y/2)|« (see Equation 52).

7.1.2 DUALITY GAP

We used the relative duality gap (RDG) as a stopping criterion with toleradice More specif-
ically, we terminated all the algorithms described below when RDG fell below.1®&DG was
computed as follows for all algorithms except LOGREG. For L1LOGREG, we modified the
stopping criterion implemented in the original code by the authors from abshatigy gap to
relative duality gap. See also Koh et al. (2007), Wright et al. (2008)Tamioka and Sugiyama
(2009).

Let a' be any candidate dual vectortst iteration. For exampleg! = at for DAL and ot =
—DOf,(Awt+1) for OWLQN, SpaRSA, and IRS. Note that the abavedoes not necessarily satisfy
the dual constraint (52). Thus we defiie= o' min(1,A/|[A"a'||»). Notice that|ATd | < A
by construction. We compute the dual objective valud @g*!) = —f;(—a'); see Equation (51).
Finally RDG*! is obtained as RDG?! = (f(w't1) — d(wt*1))/f(wt*1), where f is the primal
objective function defined in Equation (1).

The norm of the minimum norm subgradient is also frequently used as airsgogiterion.
However, there are two reasons for using RDG instead. First, the gtadihe current point is not
evaluated in FISTA (Beck and Teboulle, 2009) and it requires additimraputation, whereas the
vectora' in the computation of RDG does not need to be the gradient at the curriett ipdfact
the gradient at any point (or amgdimensional vector) gives a valid lower bound of the minimum
objective value. Second, since the gradient can change discontinabumendifferentiable points,
the norm of gradient does not reflect the distance from the solution wisllistla problem for, for
example, an interior-point method, because it produces a sparse solulyossymptotically.

7.1.3 DAL

DAL algorithm is implemented in MATLAE® The inner minimization problem (see Equation 10)
is solved with Newton’s method; we used the preconditioned conjugate gtdBieG) method for
solving the associated Newton systepog( function in MATLAB); we use the diagonal elements
of the Hessian matrix (see Equation 25) as the preconditioner. The inner nationiis terminated

by the criterion (44) withy = 4, because the Hessian of the loss function (50) is uniformly bounded
by 1/4 (see Table 1).

8. The software is available frohttp://www.ibis.t.u-tokyo.ac.jp/ryotat/dal/
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We chose the initial proximity parameter to be eitimgr= 0.01/A (conservative setting) or
No = 1/A (aggressive setting) and increasgdy a factor of 2 at every iteration. Singg appears
in the soft-thresholding operation multiplied By it seems to be intuitive to choosg inversely
proportional toA but we do not have a formal argument yet. We empirically discuss the cbbice
No in more detail in Section 7.2.4.

The algorithm was terminated when the RDG fell below3.0

7.1.4 DAL-B

DAL-B is a variant of DAL with an unregularized bias term (see updateaiqas 35-37). This
algorithm is included because LIOGREG implemented by Koh et al. (2007) estimates a bias
term and therefore cannot be directly compared to DAL.

As an augmented Lagrangian algorithm, DAL-B solves the following dudilpro:

maximize  — fir(—0a) -8y (v),
acRM
subjectto  ATa=v, (53)
1"a =0. (54)

See also Equations (3) and (4).

When implementing DAL-B, we noticed that sometimes the algorithm gets stuck in aplate
where the additional equality constraint (54) improves very little. This wa®rikely to happen
when the condition of the design matrix was poor.

In order to avoid this undesirable slow-down, we heuristically adapt ity parameten;
for the equality constraint (54). Note that this kind of modification cannot awgthe theoretical
convergence result without additional prior information. More spedificare use proximity pa-
rametersnt(l) andr]t<2) for equality constraints (53) and (54), respectively. The AL funct®?) (s
rewritten as follows

at = argmin(f;(—a) + 21(1) Iprox, (w' + YA a)|2 + i(bt +n? lmTa)2> .
Nt

acRm Znt(Z)

First we initializengl) = r]E,2> = 0.01/A (conservative setting) oTél) = r]E,2> = 1/A (aggressive set-
ting) as above. The proximity parameté?') with respect to Equation (53) is increased by the factor

2 at every iteration (the same as DAL). The proximity pararmp@rwith respect to Equation (54)
is increased by a larger factor 40 if the following conditions are satisfied:

1. The iteration countdr> 1.

2. The violation of the equality constraint (54), namely Viet |17 a!|, does not sufficiently
decrease; that is, viob viol' /2.

3. The violation vidl is larger than 10° (the tolerance of optimization).

Otherwise,r]t(z) is increased by the same factor mﬁg
Note that the theoretical results in Section 5 still holds if we reptacie Section 5 byr]t(l),
becausent(l) < nt(z); that is, the stopping criterion (44) and the convergence rates simplyrngeco

more conservative.
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Since DAL-B has an additional equality constraint (54). We modified the atatipn of relative
duality gap described above by defining the candidate dual vatasa' = ot — 21,1, at,

7.1.5 FAST ITERATIVE SHRINKAGE-THRESHOLDINGALGORITHM (FISTA)

FISTA algorithm (Beck and Teboulle, 2009) is implemented in MATLAB. Theoalthm is termi-
nated by the same RDG criterion except that the dual objective is evaluafeid apdate equation
(49) instead ofv'*1; this approach saves unnecessary computation of gradients.

7.1.6 QRTHANT-WISE LIMITED MEMORY QUASI NEWTON (OWLQN)

OWLQN algorithm (Andrew and Gao, 2007) is also implemented in MATLAB Iseawe found
that our MATLAB implementation was faster than the C++ implementation providédebguthors;
this is because MATLAB uses optimized linear algebra routines while autingptementation does
not. The algorithm is terminated by the same RDG criterion as DAL.

7.1.7 S>ARSERECONSTRUCTION BYSEPARABLE APPROXIMATION (SPARSA)

SpaRSA algorithm (Wright et al., 2009) is implemented in MATLAB. We modifieddbee pro-
vided by the authofsto handle the logistic loss function. The algorithm is terminated by the same
RDG criterion.

7.1.8 ITERATIVE REWEIGHTED SHRINKAGE (IRS)

IRS algorithm is implemented in MATLAB. At every iteration IRS solves a ridggtilarized logis-

tic regression problem with the regularizer defined in Equation (48). Thislgm can be converted
into a standard,-regularized logistic regression with the design ma#ix Adiag(,/a71,...,/0n)

by reparametrizingv; to W; = w;/,/0j. The weighta; is set to|vvtj| before solving the problem.
Thus if anyvvtj = 0, the corresponding column &f becomes zero and it can be removed from the
optimization. We use the limited memory BFGS quasi-Newton method (Nocedal agtty\r999)

to solve each sub-problem.

7.1.9 NTERIORPOINT ALGORITHM (L1_LOGREG)

L1_LOGREG algorithm (Koh et al., 2007) is implemented in C. We modified the codadaw by
the author¥ as a C-MEX function so that it can be called directly from MATLAB withouvisg
matrices into files. We used the BLAS and LAPACK libraries provided togetlitr MATLAB
R2008b {Imwblas and-Imwlapack options for themex command). L1LOGREG is also termi-
nated by the RDG criterion.

Note that LILOGREG also estimates an unregularized bias term. DAL algorithm with a bias
term (DAL-B) is included to make the comparison easy; see Section 7.1.4.

9. Code can be found attp://www.Ix.it.pt/ ~mtf/SpaRSA/ .
10. Code can be found hitp://www.stanford.edu/ ~boyd/I1_logreg/
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7.2 Synthetic Experiment

In this subsection, we first confirm the convergence behaviour of [(Bdction 7.2.2); second we
compare the scaling of various algorithms against the size of the probletoiseé.2.3); finally we
discuss how to choose the initial proximity paramejgfSection 7.2.4).

7.2.1 EXPERIMENTAL SETTING

The elements of the design matAxe R™" were randomly sampled from an independent standard
Gaussian distribution. The true classifier coefficiBrwas generated by filling randomly chosen
element (4%) of a-dimensional vector with samples from an independent standard Gadssian
tribution; the remaining elements of the vector were set to zero. The trainiebJabtory was
obtained by taking the sign &&p + 0.01§, where§ € R™ was a sample from am-dimensional
independent standard Gaussian distribution. The whole procedurepeeted ten times.

7.2.2 BYPIRICAL VALIDATION OF SUPER-LINEAR CONVERGENCE

In this section, we empirically confirm the validity of the convergence restitegrems 2, 3 and 5)
obtained in the previous section and compare the efficiency of DAL, FISTELQN, SpaRSA, and
IRS for the number of samples= 1,024 and the number of parametars 16,384. LLLOGREG
is not included because it solves a different minimization problem. We usediéarization con-
stantA = 0.01. For DAL, we used the aggressive setting< 1/A,2/A,4/A,...).

First in order to obtain the true minimiZérw* of Equation (1), we ran DAL algorithm to ob-
tain a solution with high precision (RD& 10~°). Assuming that the support of this solution is
correct, we performed one Newton step of Equation (1) in the subspaive variables. The
solutionw* we obtained in this way satisfigtdf (w*)|| < 10713, whereOf(w*) is the minimum
norm subgradient of atw*. The parameter in Equation (41) was estimated by taking the mini-
mum of (f(w!) — f(w*))/||w! —w*||? along the trajectory obtained by the above minimization and
multiplying the minimum value by a safety factor of70 In order to estimate the residual norm
lwt —w*||, we use bounds (42) and (46) with= 2 and the initial residug|w® — w*||. The bound
(40) in Theorem 2 is used with the same initial residual to estimate the reductioa fartbtion
value.

In Figure 2, we show a result of a typical (single) run of the algorithmsritesd above. Note
that the result is not averaged to keep the meaning of theoretical bounds.

In the top left panel of Figure 2, we can see that the convergence in tdrthe norm of the
residual vectow! — w* happens indeed rapidly as predicted by the theorems in Section 5. The
yellow curve shows the result of Theorem 3, which assumes exact mininmizgtiequation (20),
and the magenta curve shows the result of Theorem 5, which allows soonééhe minimization
of Equation (20). We can see that the difference between the optimisticseafyl heorem 3 and
the realistic analysis of Theorem 5 is negligible. In this problem, in order tchrédae quality of
solution DAL achieves in 10 iterations OWLQN and SpaRSA take at least I@@ides and FISTA
takes 1,000 iterations. The IRS approach required about the same nofiitbeaitions as OWLQN
and SpaRSA but each step was much heavier than those two algorithmissine @op right panel
in Figure 2) and it was terminated after 100 iterations.

11. We assume that the minimizer is unique.
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Figure 2: Empirical comparison of DAL, FISTA (Beck and Teboulle, 20@®)LQN (Andrew and
Gao, 2007), and SpaRSA (Wright et al., 2009). Top left: residuahng. number of
iterations. Also the theoretical guarantees for DAL from Theorems 3 aa@ Shown.
Top right: residual norm vs. CPU time. Bottom left: residual in the functidoevas.
number of iterations. Bottom right: residual in the function value vs. CPU time.

The bottom left panel of Figure 2 shows comparison of five algorithms BAETA, OWLQN,
SpaRSA, and IRS in terms of the decrease in the function value. Also ploties decrease in the
function value predicted by Theorem 2 (magenta curve). The conveegd DAL is the fastest also
in terms of function value. OWLQN and SpaRSA are the next after DAL aadester than FISTA.

DAL needs to solve a minimization problem at every iteration. Accordingly theaijon re-
quired in each iteration is heavier than those in FISTA, OWLQN, and SpaRB4s we compare
the total CPU time spent by the algorithms in the right part of Figure 2. It caseba that DAL
can obtain a solution that is much more accurate in less than 10 seconds tisatution FISTA
obtained after almost 60 seconds. In terms of computation time, DAL and OW4g@hh to be on
par at low precision. However as the precision becomes higher DALnbesalearly faster than
OWLQN. SpaRSA seems to be slightly slower than DAL and OWLQN.

Two algorithms (DAL-B and LILOGREG) that also estimate an unregularized bias term are
compared in Figure 3. The number of observations 1,024 and the number of parameters:
16,384, and all other settings are identical as above. A variant of DAL-Bdbes not use the
heuristics described in Section 7.1.4 is included for comparison. For DAitfut the heuristics,
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Figure 3: Comparison of DAL-B and LLOGREG (Koh et al., 2007). Both algorithms estimate
an unregularized bias term. The left panel shows the residual funalae against the
number of iterations. The right panel shows the same against the CPU tintebgpibe
algorithms.

the proximity parameterat(l) and nt(z) are both initialized to I\ and increased by the factor 2.

For DAL-B with the heuristics, the proximity paramelref) is increased more aggressively; see
Section 7.1.4.

In the left panel in Figure 3, the residual of primal objective values dh ladgorithms are
plotted against the number of iterations. As empirically observed in Koh €007, LLLOGREG
converges linearly; after roughly 10 iterations, the residual functibrev@duces by a factor around
2 in each iteration (a factor 1.85 was reported in Koh et al., 2007). Theeagence of DAL-B is
faster than L1 OGREG and the curve is slightly concave downwards, which indicatesuhers
linearity of the convergence. Note also that the linear convergenceallftam Theorem 2 is shown.
The heuristics described in Section 7.1.4 shows almost no effect on thieproprobably because
the design matrix is well conditioned.

The right panel in Figure 3 shows the same information against the CPU timé lspé¢he
algorithms. DAL-B is roughly 10 times faster than L'DGREG to achieve residual less tharmr¥0

7.2.3 ALING AGAINST THE SIZE OF THE PROBLEM

Here we compare how well different algorithms scale against the numiparameters. We fixed

the number of samples at m= 1,024 and varied the number of parameters fnrom 4,096 to

n=524288. We used two regularization constahts 0.1 andA = 0.01.

_ The results are summarized in Figure 4. Figures 4(a) and 4(b) showsthlesrrA = 0.01 and
A = 0.1, respectively. In each figure we plot the CPU time spent to reach-RDG 3 against the
number of parameters
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(a) A = 0.01. (b) A =0.1.

Figure 4: CPU time of various algorithms on synthetic logistic regression prsble

One can see that DAL has the mildest dependence on the number of pasaamtsng the
methods compared. In particular, DAL is faster than other algorithms faghlgun > 10%. Also
note that DAL and DAL-B show similar scaling against the number of parasiateat is, adding
an unregularized bias term has no significant influence on the computafbciancy.

For A = 0.01, SpaRSA shows sharp increase in the CPU time from aroun82,768, which
is similar to the result in Tomioka and Sugiyama (2009) (Figure 3). Also noticintheased error-
bar. In fact, forn > 65,536, it had to be stopped after 5,000 iterations in some runs, whereas it
converged after few hundred iterations in other runs. On the other BpadRSA scales similarly to
OWLQN and is more stable for=0.1.

_ For all algorithms except LLOGREG, solving the problem for larger regularization constant
A = 0.1 requires less computation than #or= 0.01. Nevertheless the advantage of the DAL al-
gorithm is larger for the more computationally demanding situatioh ef 0.01 against FISTA,
OWLQN, SpaRSA, and IRS. On the other hand, the advantage of DAInstdal LOGREG is
larger forA = 0.1, because the CPU time of LIOGREG is almost constant in both cases. The
CPU time of DAL with (DAL-B) and without (DAL) the bias term are almost the same

7.2.4 (HOICE OFnNp

In this subsection, we show how the choice of the sequgnchanges the behaviour of DAL algo-
rithm. We ran DAL algorithm foiA = 0.1 with no = 1/A (as above), which we call the aggressive
setting, and)p = 0.01/A, which we call the conservative setting. In both cagess increased by a
factor of 2 as in the previous experiments. No bias term is used.

In Figure 5, plotted are the number of PCG steps for inner minimization and thetigi
spent by DAL algorithm with the conservative settimg & 0.01/A, left) and the aggressive setting
(no = 1/A, right). The average number of PCG steps and CPU time are shown asdstzenk
plots, in which each segment of a bar corresponds to one outer iteratrmncdd see that in the
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Conservative setting (n 1:0.01/)\) Aggressive setting (n 1:1/)\)
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Figure 5: Comparison of behaviours of DAL algorithm for different ickes of initial proximity
parameteno. Left: ng = 0.01/A (conservative setting). Rightjp = 1/A (aggressive
setting). On the top row, the cumulative numbers of PCG steps (inner stepsha@wvn.
On the bottom row, the cumulative CPU time spent by the algorithm is shown.

conservative setting, DAL uses roughly 8 to 10 outer iterations, whardlas aggressive setting, the
number of outer iterations is reduced to less than a half (3 or 4). On thehathdy the total number
of PCG steps is only slightly smaller in the aggressive setting. Thereforeg imgiressive setting
DAL spends more PCG steps for each outer iteration. It is worth noting lihasahalf of the PCG
iterations are spent for the first outer iteration in the aggressive settiregeas in the conservative
setting the PCG steps are more distributed. In terms of the CPU time, the aggrseting is about
10-30% faster than the conservative setting because it saves bothtationptequired for each
outer-iteration and inner-iteration. However, generally speaking istrgéhe proximity parameter
Nt makes the condition of the problem worse; in fact we found that the algodidmot always
converge fomn = 100/A. Thus it is not recommended to use too large valuefor

Figure 6 compares the total CPU time spent by the two variants of DAD fer0.1. As dis-
cussed above, the aggressive setting= 1/A) is faster than the conservative setting & 0.01/A).
However the difference is minor compared to the change in the proximity pteame

7.3 Benchmark Data Sets

In this subsection, we apply the algorithms discussed in the previous $obsexcept IRS to
benchmark data sets, and compare their efficiency on various problR®ss bmitted because it
was clearly outperformed by other methods on the synthetic data.
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Figure 6: Comparison of conservativg(= 0.01/A) and aggressivao = 1/A) choice of proximity
parameteng for A = 0.1 (see also Figure 4(b)). Note that the aggressive setting is used
in Sections 7.2.2 and 7.2.3 and the conservative setting is used in Section 7.3.

7.3.1 EXPERIMENTAL SETTING

The benchmark data sets we use are five data sets from NIPS 2003%Fgetection Challeng®,
20 newsgroups data s€tand a bioinformatics dataprovided by Baranzini et al. (2004)

The five data sets from the Feature Selection Challeageere, dexter, dorothea, gisette,
andmadelon) are all split into training-, validation-, and test-set. We combine the training- a
validation-sets and randomly split each data set into a training-set thairehie-thirds of the
examples, and a test-set that contains the remaining one-third. We apglyrdwularized logistic
regression solvers to the training-set and report the accuracy orstkseteas well as the CPU time
for training. This procedure was repeated 10 times (also for the two o#ttarsets below). The
numbers of training instances and features, and the format of eacheddtparse or dense) are
summarized in Table 4.

From the 20 newsgroups data s2@rfews), we deal with the binary classification of category
“alt.atheism” vs. “comp.graphics”. We use the preprocessed MATLAB&drdata. The original
data set consists of,@61 training examples and 707 test examples. We again combine all the
examples and randomly split them into a training-set containing two-thirds axaeples and a
test-set containing the rest. The training examplerhas1, 188 features which are provided as a
sparse matrix.

The goal in Baranzini et al. (2004) is to predict the response (gogubor) to recombinant
human interferon beta (rIHY treatment of multiple sclerosis patients from gene-expression mea-
surements. The data set is denotedease. The data set consists of gene-expression profile of 70
genes from 52 subjects. We again randomly select two-thirds of the silipedraining and the

12. The data sets are available fratip://www.nipsfsc.ecs.soton.ac.uk/datasets/ ; see Guyon et al. (2006) for
more information.

13. The data set is available frdrtip://people.csail.mit.edu/jrennie/20Newsgroups/ .

14. The data is available fromhttp://www.plosbiology.org/article/info:doi/10.1371 fjournal.pbio.
0030002 .
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remaining for testing. Following the setting in the original paper, we used oalgxtpression data
from the beginning of the treatmenit=£ 0) and preprocessed the data by taking all the polynomials
up to third order, that is, we compute ) x?, andx® for each single featurg, (i) xy, X%y, and

xy? for every pair of featureéx,y), and (iii) xyzfor every triplet of featuresx,y, z). As a result we
obtain 62,195= 3. 70+ 3- 2,415+ 54,740) features.

In every data set, we standardized each feature to zero mean and naérdtdeviation before
applying the algorithms. Since the standardized design m@aﬁﬁmsually dense even if the original
matrix A is sparse, we provide function handles that computandA Ty instead ofA itself with
DAL, FISTA, OWLQN, and SpaRSA. This can be done by keeping theoved means and standard
deviations of the original design matrix as follows:

Ax=AS x—1,m'S x,
. 1
Aly=S7AT(y= Zlnln'y),

wherem € R" is the vector of means ar®is an x n diagonal matrix that has the standard deviations
of the original features on the diagonal. If the standard deviation of eaiyife is zero, we placed
one in the corresponding element®fL1 LOGREG is implemented with a similar technique; see
Koh et al. (2007).

We compare the CPU time that is necessary to compute the whole regularizatioinparder
to define the regularization path, we choose 20 log-linearly separategsviabmA = 0.5 toA =
0.001, whereA is the normalized regularization constant defined in Section 7.1.1. We apply a
warm start strategy to all the algorithms; that is, we sequentially solve prolftanssaller and
smaller regularization constants using the solution obtained from the last ogtonigar a larger
regularization constant) as the initial solution.

All the methods were terminated when the relative duality gap fell below.1Bor DAL algo-
rithms (DAL and DAL-B) we choose the conservative setting, that is, we iizielaiemé1> andr]gz) as
0.01/A.

7.3.2 RESULTS

Table 4 summarizes the problems and the performance of the algorithms. chaalgarithm, we
show the maximum test accuracy obtained in the regularization path and thei@®dpent to
compute the whole path. The smallest and the second smallest CPU times anersthold-face
and italic, respectively. One can see that DAL is the fastest in most cdsas tive number of
parameters is larger than the number of observations. In addition, the CPU time of twortaria
of DAL (with and without the bias term) tend to be similar excéptothea data set. For most data
sets, the accuracy obtained by DAL algorithm is close to FISTA, OWLQN,&wmaRSA, and the
accuracy obtained by DAL-B is close to LIOGREG.

Figure 7 illustrates a typical situation where DAL algorithm is efficient. Sincesibe of the
inner minimization problem (20) is proportional to the number of observatigneghenn > m,
DAL is more efficient than other methods that work in the primal.

In contrast, Figure 8 illustrates the situation where DAL is not very effigentpared to other
algorithms. In Figure 8, we can also see that for all algorithms exceptQGREG, the cost of
solving one minimization problem grows larger as the regularization consteedused, whereas
the cost seems almost constant for LOGREG.
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arcene | dexter | dorothea | gisette | madelon | 20news gene

m 133 400 767 | 4667 1733 1179 35

n 10000| 20000| 100000| 5000 500 | 61188| 62195
format dense| sparse sparse| dense dense| sparse| dense

DAL accuracy 70.60| 91.75 93.71| 97.70 61.53 92.84 82.35
time (s) 3.47 4.20 36.61| 77.02 16.73| 28.10 5.56

DAL -B accuracy 72.54| 92.00 93.05| 97.71 61.43| 92.87 81.18
time (s) 3.56 4.77 1060 | 82.96 17.96| 26.31 5.49

FISTA accuracy 70.60| 91.75 93.79| 97.71 61.51 92.80 82.35
time (s) | 25.34 7.24 284.59| 52.19 10.40| 27.95| 108.27

OWLON accuracy 70.60| 91.75 93.76 | 97.70 61.56 92.82 82.35
time(s) | 17.63 5.25 134.31| 70.96 19.08| 23.11| 132.21

SpaRSA accuracy 70.90| 91.75 93.71| 97.70 61.55| 95.14 78.24
time (s) | 294.80| 29.98| 1377.20| 91.65 10.11| 310.96| 1622.26

L1 LOG- | accuracy| 72.84| 92.05 93.05| 97.71 61.48 92.85 81.18
REG time (s) 8.98 3.39 109.92| 98.37 5.90 21.48 16.58

Table 4: Results on benchmark data sets. We tested six algorithms, namelyDBAIB, FISTA,
OWLQN, SpaRSA, LILOGREG on seven benchmark data sets. See main text for the
description of the data setsiis the number of observations.is the number of features.
For each algorithm, shown are the test accuracy and the CPU time spemtpoitecthe
regularization path with a warm-start strategy. All the numbers are awccage 10 runs.
Bold face numbers indicate the fastest CPU time. Italic numbers indicate CPU tiates th
are within two times of the fastest CPU time.

500 110
——DAL
——DAL-B
— 100¢
@ 400| ——FISTA k | |
2 | —owman R it 71 r aka
S 300! — SpaRSA ] >
2 300 p \ g M&,
5 L1_LOGREG S gol |
) 3
£ 200 =
= 3 70}
g [
o}
O 100¢ 60l |
0 50—l : :
10° 1 10° 10" 10° 107
Normalized regularization constant A Normalized regularization constant A

Figure 7:Dorothea data setifi= 767,n = 100,000). DAL is efficient in this casenf{ < n).

8. Conclusion

In this paper, we have extended DAL algorithm (Tomioka and Sugiyam®)200general regular-
ized minimization problems, and provided it with a new view based on the proximahization
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Figure 8:Madelon data setifh= 1,733,n = 500). DAL is not very efficient in this casen> n).

framework in Rockafellar (1976b). Generalizing the recent resuthfBeck and Teboulle (2009),
we improved the convergence results on super-linear convergeacgofented Lagrangian meth-
ods in literature for the case of sparse estimation.

Importantly, most assumptions that we made in our analysis can be checlegbmuignt of
data. Instead of assuming that the problem is strongly convex we assurtteeth@ss function has
a Lipschitz continuous gradient, which can be checked before regadata. Another assumption
we have made is that the proximation with respect to the regularizer can beiszhgnalytically,
which can also be checked without looking at data. Moreover, we teersthat such assumption
is valid for the/1-regularizer, group lasso regularizer, and any other supportifumaf some convex
set for which the projection onto the set can be analytically obtained.

Compared to the general result in Rockafellar (1976b), our resultdaggr when the inner
minimization is solved approximately. Compared to Kort and Bertsekas (1@&6ilo not need
to assume the strong convexity of the objective function, which is obviouslgted for the dual
of many sparsity regularized estimation problems; instead we assume thatdHernogson has
Lipschitz continuous gradient. Note that we use no asymptotic arguments askafBllar (1976b)
and Kort and Bertsekas (1976). Currently, our results does ndy &pprimal-based augmented
Lagrangian method discussed in Goldstein and Osher (2009) for lostsofiusithat are not strongly
convex (e.g., logistic loss). The extension of our analysis to these methadistise work.

The theoretically predicted rapid convergence of DAL algorithm is also ecafir confirmed
in simulated/;-regularized logistic regression problems. Moreover, we have corhExere-
cently proposed algorithms fdi-regularized logistic regression, namely DAL, FISTA, OWLQN,
SpaRSA, LILOGREG, and IRS on synthetic and benchmark data sets. On the synthatgets
we have shown that DAL has the mildest dependence on the number ofigtara among the
methods compared. On the benchmark data sets, we have shown that DAlfastdst among the
methods compared when the number of parameters is larger than the nunabseopfations on
both sparse and dense data sets.
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Furthermore, we have empirically investigated the relationship between tlee didhe initial
proximity parameteng and the number of (inner/outer) iterations as well as the computation time.
We found that the computation can be sped up by choosing a large valug;ftiowever the
improvement is often small compared to the changgiand choosing large value fgp can make
the inner minimization unstable by making the problem poorly conditioned.

There are basically two strategies to make an efficient optimization algorithm.isQoeause
many iterations that are very light. FISTA, SpaRSA, and OWLQN (and atsdhastic approaches
Shalev-Shwartz and Srebro, 2008; Duchi and Singer, 2009) falltingocategory. Theoretical
convergence guarantee is often weak for these methods, for exadipjé?) for FISTA. Another
strategy is to use a small number of heavier iterations. Interior point methadsas LILOGREG,
are prominent examples of this class. DAL can be considered as a mentberseicond class. We
have theoretically and empirically shown that DAL requires a small numbeutef iterations. At
the same time, DAL inherits good properties of iterative shrinkage/thresigo&dgorithms from
the first class. For example, it effectively uses the fact that the proxipeation can be computed
analytically, and it can maintain the sparsity of the parameter vector during ogtiariz Further-
more, we have shown that the dual formulation of DAL makes the inner minimizaffanent,
because (i) typically the number of observatioms smaller than the number of parameterand
(ii) the gradient and Hessian of the inner objective can be computed efficier sparse estimation
problems.

Future work includes the extension of our analysis to the primal-based atgpneagrangian
methods (Yin et al., 2008; Goldstein and Osher, 2009; Yang and Zh@f§; Rin et al., 2009), ap-
plication of approximate augmented Lagrangian methods and operator splittingda¢o machine
learning problems (see Zhang et al., 2010; Boyd et al., 2011; Tomioka20alb), and application
of DAL to more advanced sparse estimation problems (e.g., Cai et al., 20pBakd Nagarajan,
2008; Tomioka et al., 2011a).
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Appendix A. Preliminaries on Proximal Operation
This section contains some basic results on proximal operation, which we lager sections and
is based on Moreau (1965), Rockafellar (1970), and Combettes ajsd 2U85).

A.1 Proximal Operation

Let f be a closed proper convex function o't that takes values ifR U {+}. The proximal
operatorwith respect tof is defined as follows:

proxs (z) :argmin(f(x)+;||x—z|]2>. (55)

XERN
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Note that because of the strong convexity of the minimand in the right-handtselabove min-
imizer is unique. Similarly we define the proximal operator with respect to theegoronjugate
function f* of f as follows:

, 1

proxs-(z) = argmm(f*(x) +Zx— z||2> .
XeRN 2

The following elegant result is well known.

Lemma 8 (Moreau’s decomposition) The proximation of a vectar € R" with respect to a convex
function f and that with respect to its convex conjugatésfcomplementary in the following sense:

proxs (z) + prox;-(z) = z.

Proof The proof can be found in Moreau (1965) and Rockafellar (197@pfém 31.5). Here, we
present a slightly more simple proof.

Letx = prox; (z) andy = prox;.(z). By definition we hav@ f(x) +x—z> 0 anddf*(y) +y—
z> 0, which imply

of(x) 2 z—Xx, (56)

0f*(z—x) 3 x, (57)
and

of*(y)>z—y, (58)

of(z—y) >y, (59)

respectively, becaug@f)—! = af* (Rockafellar, 1970, Corollary 23.5.1).
From Equations (56) and (58), we have

fz=y) > f(x)+(z-y—x)(z-x), (60)
F(z2=x) > f(y) +(z—x=y) " (z-). (61)
Similarly, Equations (57) and (59) give
F(y) > ' (z=x) +(y—z+x) "X, (62)
fx) > f(z—y)+(x—z+y)Ty. (63)

Summing both sides of Equations (60)—(63), we have
0>2|lz—x—yl?,

from which we conclude that+y = z. [ |

Proximal operation can be considered as a generalization of the projectiora convex set.
For example, if we také as the indicator function of th&, ball of radiush, that is, f(z) = 87(2)
(see Equation 5), then the proximal operation with respetisdahe projection onto thé.-ball (8).
On the other hand, the proximal operation with respect tdthregularizer is the soft-thresholding
operator (9). Therefore, we notice that

Proji_x(2) +prox’(z) = z,

which is a special case of Lemma 8, because/theegularizer is the convex conjugate of the
indicator function of the,.-ball of radiusA; see Figure 9.
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A.2 Moreau’s Envelope

The minimum attained in Equation (55) is called the Moreau enveloge of

. 1

F(z) = min <f(x)+Hx—z||2>. (64)
xeRN 2

The decomposition in Lemma 8 can be expressed in terms of envelope furagitibws.

Lemma 9 (Decomposition and envelope functions) Let f and f be a pair of convex conjugate
functions, and let F and Fbe the Moreau envelopes of f antl fespectively. Then we have

F(2)+F'(2) = 52

Proof Let x = prox;(z) andy = prox;.(z) as in the proof of Lemma 8. From the definition of
convex conjugatd*, we have

F)+f(y) =y'x,

becausg = z—x € 0f (x) (Rockafellar, 1970, Theorem 23.5). Therefore, we have
* 1 2 * 1 2
F(2)+F(2) = 100+ 51lyI"+ () + 5 Xl
1 1
S S NTRTS, S TR
=y T+ SlyIP+ 5 I
1 2 1,2
= Slx+yIP =51z,

where we used +y = z from Lemma 8 in the last line. |

Note that~* is the Moreau envelope df* andnotthe convex conjugate &f.

Moreau’s envelope can be considered as a inf-convolution (seeafdtiek, 1970) off and
a quadratic functior| - [|°/2. Accordingly it is differentiable and the derivative is given in the
following lemma.

Lemma 10 (Derivative of Moreau’s envelope) Moreau’s envelope function F in Equati¢é4) is
continuously differentiable (even if f is not differentiable) and the derivataue be written as
follows:

OF () = prox;- ().

Proof The proof can be found in Moreau (1965) and Rockafellar (1976p1dém 31.5). We repeat
the proof below for completeness. The proof consists of two parts. \&estiow that for all
z,Z eR"

F(Z)2F(@)+(Z-2)"y, (65)
wherey = prox;.(z), which implies thaly = prox;.(z) € 0F (z). Second, we show that

Ty 17 —2|?

F(Z) <F@+(Z-2)y+ 0 (66)
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A 0.\

(b)  w)

-A 0 A -A 0 A
(©) Proj_, W) (d) prox!‘(w)

Figure 9: (a) The/s-regularizer (dashed) and its envelope functipn(solid). (b) The indicator
function &y (dashed) and its envelope functidrf (solid). (c) The derivative ofb,,
which is the projection onto the intervgtA,A]; see Equation (8). (d) The derivative of
@}, which is called the soft-threshold function (9). Note that tieegularizer and the
indicator functiondy’ are conjugate to each other.

which implies the uniqueness of the subgradierf () for all z.

Inequality (65) follows easily from the definition of the envelope functtoand Lemma 8 as
follows:

F(Z)~F(@) = 1<)+ 2 IV IP— T~ 5y IP

= (F6)— 1)) + (%Hy’uz— %Hsz)
> (X =x)y+( -y)y

/

=(Z -2y,

wherex = prox; (z), y = proxs.(z), andx’ andy’ are similarly defined. We used the convexityfof
with y € af(x) and the convexity of - |2/2 in the third line.
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Second, we obtain inequality (66) by upper-boundtiig’) as follows:

AN } 2
F(Z) = min(1() +5 € 7))
< 1)+ 5Ix— 2|7
_ _} 512 } 2
=F(@)—5x—2|*+3Ix~2Z|
_ _} 512 } _ 2
=F(@)—5x—2?+5lx—2z+2-2|
“F@+ -2 (- 2)+ 57 2
1

=F(Z)+yT(Z’—Z)+§IIZ’—Z||2~

The envelope functions of two convex functiopgw) = A|w| and ¢ (w) = &7(w), and their
derivatives (the projection (8) and the soft-threshold function (peetively) are schematically
shown in Figure 9.

Appendix B. Derivation of Equation (20)

Equation (18)= max{ —f,/(—a)+ min { @ (w) —i—iHW—Wt —nATal?
acRM WERN 2Nt

w2
2Nt

1
- ZT]tHWt +ﬂtAT0‘H2} +

= max (17 (=) + 0y (0 ATe) — o AT ) L
acR™ e 2N 2N
1 w2

= _f* _ _7(D* 1 AT

where we used the definition of the Moreau envelope in the second lineeancha 9 in the third
line. Finally omitting the constant terfiw!||2/(2n;) in the last line and reversing the sign we obtain
Equation (20).

Appendix C. Proofs

In this section, we present the proofs of Theorem 3, Lemma 4, Thegrand6érheorem 7.

C.1 Proof of Theorem 3

Proof The first step of the proof is to generalize Lemma 1 in two ways: first we allp@irg w* in
the set of minimizer®V* to be chosen for each time step, and second, we introduce a parareeter
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tighten the bound. Le# be the closest point fromt! in W*, namelyw! := argmin,. .-
From the proof of Lemma 1, we have

wt —w*]|.

nt(f (VT/t+l) —f (WtJrl)) > <VT/t+1 —wtt W Wt+1>
<VTIt+1 —wtt + wh—witl + witl_ Wt+1>

||—t+1 t+lH2+<Wt+l_Wt+l7Wt_VT/t>_|_<VTIt+1_Wt+17VT/t_VTIt+1>
> W W2 — [w - W ffwt - W
1
S el G A e O BT
M t+1 %12 1 t *12
:1——)W W2 2w W2, X
(1-5)1 [ gl —we| (*)
where the last inner produ¢w' ™ — w1, wt —w!'*1) in the third line is non-negative because the
set of minimizerdV* is a convex set, and'*? is the projection ofvt™1 ontoW*; see Bertsekas

(1999, Proposition B.11). In addition, the fifth line follows from the inequadtyarithmetic and
geometric means.

Note that by settingt = 1 in (x) andw' = w!*!, we recover Lemma 1. Now using assumption
(A1), we obtain the following expression:
t+1 *112 t+1 * 1O t *1(2
(20— 1) W — W14 2pome [wH = WH| < flw W2,

Maximizing the left hand side with respectjipwe haveu = 1+ one|wt** —W*||~2 and accord-
ingly,

(1+0r] || t+1 W*HG—Z)ZHWH-l_W*”Z < ”Wt—W*HZ.
Taking the square-root of both sides we obtain
I =W 4 o wt =W < lwt W (67)

The last part of the theorem is obtained by lower-bounding the left-Hdrd§the above inequality
using Young’s inequality as follows:

HWI+1 W*H+0r]t|| t+1 W*Hafl

_ WL W ONt at+t a1
— o) (g Iw wu+1+0nu wpE)

1+on;

> (1+0ny)[w - w*uwm W —we | e

C( 1ont

= (1+ong) wt - w | e

Substituting this relation back into inequality (67) completes the proof of thegheor |
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C.2 Proof of Lemma4

Proof First let us definéd € R™ as the gradient of the AL function (22) at the approximate mini-
mizera' follows:

& = Ody(a') = —Of; (—a') + Aw L,
wherew'** := prox, (w'+nATa'). Note that|3'|| < ﬁuw”l —w!|| from Assumption(A4).
Using Corollary 23.5.1 from Rockafellar (1970), we have
Of (Aw' ! — &) = Of, (Of/ (—a')) = —a, (68)
which implies that if¥' is small,—a! is approximately the gradient of the loss ternwét?.
Moreover, letg! = w! +n:ATal. Sincew' ! = prox,, . (q") (AssumptionA3), we have
Orn (W) + (W —q') 30,

which implies

(' =W /ne € oy (W), (69)

becauseép,, = NtO.

Now we are ready to derive an analogue of inequality (39) in the prooéofma 1. Letv € R"
be an arbitrary vector. We can decompose the residual value in the theftside of inequality (39)
as follows:

Ne(F(w) — FWh) = ne( fo(Aw) — f (AWt &)

(A)
+Ne(fo(AW =8 — (AW )

+ (@ (W) — @ (W),

The above terms (A), (B), and (C) can be separately bounded usiraptivexity of f, andg, as
follows:

(A): fo(Aw) — fo (AW — &) > (A(w—wt) + 8, —a'),
1
(B): fo(AWH — &) — f (AWt > — (&, —a') - 27y\|5t||2,
t Tt a1
©: )= ) > (w1, A EZE,
t

where (A) is due to Equation (68), (B) is due to assump?) and Hiriart-Urruty and Lemdchal
(1993, Theorem X.4.2.2), and (C) is due to Equation (69). Combining(8}),and (C), we have
the following expression:

nt(f(W) _ f(Wt+l)) > <Wt —Wt+l,W—Wt+l> |6t||2

o
2v
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Note that the above inequality reduces to Equation (39Hiff = O (exact minimization). Using
assumptior{A4), we obtain

Ne(f(w) — FWH) > (wh—w 4w —w L w —wit) - %Hwt —wL2

t+l||2_

1 1 12
=|lw—w ~llw—w
S| S I — w2

which completes the proof. |

C.3 Proof of Theorem 6

Proof Letd= (1—¢)/(on:). Note thatd < 3/4 < 1 from the assumption. Following the proof of
Lemma 4 withw = w!, we have

ne(f (W) — f(wth)
= ne(F(W) — f(wHth))
> <Wt 7Wt+1 W —Wt+l> _ 7||Wt+1 7WtH2
_ <Wt Yy —i—VTlt —WH_l,VTIt _Wt+1> _ %HWH_]'—WtHZ"F 1;6”Wt+1—WtH2
1 1-9
= S w2 S — w2 = w2
1
> ”WtJrl_W*Hz_EHWt _W*HZ
1-—
+ ?6 (HWH-l _W*||2+ ||Wt _W*||2_|_2<Wt+1 —VT/H_l,VTIt —Wt>)
0 0
> (8w (1 5 w2 St
> (1-8) (- W P B w2
- 2u 2
0 w2 O x
+(1-3) W= S - (o)
where we usedw!' ! —w![|2 > 0, (w1t —wt wttl—wt) > 0 and (Wt —w', Wt —w') > 0 in
the sixth line; the seventh line follows from Cauchy-Schwartz inequality; itpette line follows

from the inequality of arithmetic and geometric means.
Applying assumptiorfA 1) with a = 2 to the above expression, we have

1-9 t * (12 1-9 t+1 * (|12 d t+1 * (|12 o t *12
= _wt— > = - -9 - — —[jwt— )
o W =W =S Pt w2 (1) om ) w2 St e
Multiplying both sides withu/||w'+1 —W*||?, we have
1-8 [wt—WH|? 1-3 3 & [wt—WH|2
> - 1—2 S L T 70
e T L R 1 3 A
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Now we have to consider two cases depending on the sign inside the cackeks. If the sign is
negative or zero, we have

1_§_|_0 _§M<O
2N 2w W =
which implies
)
wH WA P < ———fwt W2 71
H I < 5y zon W Wl (71)

Sinced < 3/4, the factor in front ofw! —W*||2 in the right-hand side is clearly smaller than one. We
further show that this factor is smaller thaf(1+gon;)?. First we upper bound by 1/(1+ gon;)
as follows:

_1-e (-9 +e) _(A-ge+3/4 1

o .
ont 1+ eong - 1+4eony T 1+eon

Plugging the above upper bound into inequality (71), we have

o)
t+1 %12 t %12
—WHlfP < ——— —-W
Iw 17 < 1 W - Wl
1 t
< |
(1+¢€ont)(1+ 20n;)

* 2< Wt—W* 2
P < raane W W IR

which completes the proof for the first case.
If on the other hand, the term inside the curly brackets is positive in Equ@@@nmaximizing
the right-hand side of Equation (70) with respecfitgives the following expression:

0 0
(1-9)rt>1- 5> +ont— értza
where we defined; := ||w! — W*||/||w!™! —W*|. Because; > 0, the above inequality translates

into

> v/1+20nd—1+0
- o)

J 1+ ond—o2n2d® —1+98
- 0

>1+ Gnt(l—crr]té)

=1+ €0nt.

The second line is true because for 0, v/1+x > 14 x/2 — x?/4; the last line follows from the
definitiond = (1—¢)/(on). [ |
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C.4 Proof of Theorem 7
Proof Since the minimizer is unique, we denote the minimizemtyand show that the following
is true:

f(w) — f(w*) > ofw—w*|? (VYw: [jw—w*|| < ctL).

Using Theorem X.4.2.2 in Hiriart-Urruty and Leng&ahal (1993), fol|B|| < T, we have

f(B) < 1(0) + B0 (0) + 1B
= —fw)+Bw + o[BI (72)

wherew* := argmin,cgn f (W) = 0f*(0) and f*(0) = —f(w*).
On the other hand, we have

f(w) = sup (B'w—1*(8))

BeRn

> sup (BTw—1(B))

> sup (B (w-w) - 5BI?) + fw)
IBll<t
{:f(w*)+21L!W—W*H2 (o< 1)

> f(w) 4+ L w—w*|? (otherwise),

where we used inequality (72) in the third line; the last line follows becausg if, the maximum
is attained aff = (w —w*) /L, and otherwise we can lower bound the value at the maximum by the
value at3 = (w—w*)/(cL). Combining the above two cases, we have Theorem 7. [
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