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Abstract

The Sample Compression Conjecture of Littlestone & Warnhathremained unsolved for a quar-
ter century. While maximum classes (concept classes megsingr's Lemma with equality) can be
compressed, the compression of general concept classesetb compressing maximal classes
(classes that cannot be expanded without increasing VCrdilmie). Two promising ways forward
are: embedding maximal classes into maximum classes wittoat a polynomial increase to VC
dimension, and compression via operating on geometriesgptations. This paper presents pos-
itive results on the latter approach and a first negativeltresuthe former, through a systematic
investigation of finite maximum classes. Simple arrangémehhyperplanes in hyperbolic space
are shown to represent maximum classes, generalizing tinesponding Euclidean result. We
show that sweeping a generic hyperplane across such amengeforms an unlabeled compres-
sion scheme of size VC dimension and corresponds to a spasialof peeling the one-inclusion
graph, resolving a recent conjecture of Kuzmin & Warmuth.ij&diion between finite maximum
classes and certain arrangements of piecewise-lineahigigrplanes in either a ball or Euclidean
space is established. Finally we show thanaximum classes corresponding to PL-hyperplane
arrangements ik have cubical complexes homeomorphic td-ball, or equivalently complexes
that are manifolds with boundary. A main result is that Plangements can be swept by a moving
hyperplane to unlabeledicompressanyfinite maximum class, forming a peeling scheme as con-
jectured by Kuzmin & Warmuth. A corollary is that sordemaximal classes cannot be embedded
into any maximum class of VC-dimensiah+ k, for any constank. The construction of the PL
sweeping involves Pachner moves on the one-inclusion grapresponding to moves of a hyper-
plane across the intersection@bther hyperplanes. This extends the well known Pachner snove
for triangulations to cubical complexes.

Keywords: sample compression, hyperplane arrangements, hypedraipiecewise-linear ge-
ometry, one-inclusion graphs

1. Introduction
Maximumconcept classes have the largest cardinality possible for their givedird€nsion. Such

classes are of particular interest as their special recursive structdexlies all general sample
compression schemes known to-date (Floyd, 1989; Warmuth, 2003; KardikVarmuth, 2007).
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It is this structure that admits many elegant geometric and algebraic topologmakentations
upon which this paper focuses.

Littlestone and Warmuth (1986) introduced the studgarhple compression schemdsfined
as a pair of mappings for given concept cl&sa compression functiomapping aC-labeled
n-sample to a subsequence of labeled examples amrdamstruction functioomapping the sub-
sequence to a concept consistent with the emtisample. A compression scheme of bounded
size—the maximum cardinality of the subsequence image—was shown to implaldiyn The
converse—that classes of VC-dimenstadmit compression schemes of stke-has become one
of the oldest unsolved problems actively pursued within learning thedoydF1989; Helmbold
et al., 1992; Ben-David and Litman, 1998; Warmuth, 2003; Hellersteing;2R0zmin and War-
muth, 2007; Rubinstein et al., 2007, 2009; Rubinstein and Rubinstein).200&est in the conjec-
ture has been motivated by its interpretation as the converse to the existencgpoession bounds
for PAC learnable classes (Littlestone and Warmuth, 1986), the basiaaifqal machine learning
methods on compression schemes (Marchand and Shawe-Taylor v@d03;xburg et al., 2004),
and the conjecture’s connection to a deeper understanding of the caonlzinaroperties of concept
classes (Rubinstein et al., 2009; Rubinstein and Rubinstein, 2008)ntRei€azmin and Warmuth
(2007) achieved compression of maximum classes without the use of l&belgsalso conjectured
that their elegant min-peeling algorithm constitutes such an unlalgetetnpression scheme for
d-maximum classes.

As discussed in our previous work (Rubinstein et al., 2009), maximumedass be fruitfully
viewed ascubical complexesThese are also topological spaces, with each cube equipped with a
natural topology of open sets from its standard embedding into Euclidese.spVe proved that
d-maximum classes corresponddecontractible complexestopological spaces with an identity
map homotopic to a constant map—extending the result that 1-maximum classesdes for
one-inclusion graphs. Peeling can be viewed as a special form ofactibtlity for maximum
classes. However, there are many non-maximum contractible cubical c@sleat cannot be
peeled, which demonstrates that peelability reflects more detailed structoraxaghum classes
than given by contractibility alone.

In this paper we approach peeling from the direction of simple hyperplaaagement rep-
resentations of maximum classes. Kuzmin and Warmuth (2007, Conjecturedi¢tpd thatd-
maximum classes corresponding to simple linear-hyperplane arrangematitseaunlabeled-
compressed by sweeping a generic hyperplane across the arranganukethat concepts are min
peeled as their corresponding cell is swept away. We positively redudviirst part of the conjec-
ture and show that sweeping such arrangements corresponds to@mesf Eorner peelingwhich
we prove is distinct from min peeling. Whikain peelingremoves minimum degree concepts from
a one-inclusion graph, corner peeling peels vertices that are containeitjue cubes of maximum
dimension.

We explore simple hyperplane arrangements in hyperbolic geometry, wkishaw correspond
to a set of maximum classes, properly containing those represented by BivepteEuclidean ar-
rangements. These classes can again be corner peeled by swednggh€ proof of existence of
maximum unlabeled compression schemes due to Ben-David and Litman (K828)in and War-
muth (2007) ask whether unlabeled compression schemes for infiniteckhsdeas positive half
spaces can be constructed explicitly. We present constructions fordtiustbut simpler classes,
suggesting that there are many interesting infinite maximum classes admitting eogfigitession
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schemes, and under appropriate conditions, sweeping infinite Euclidgaerbolic or PL arrange-
ments corresponds to compression by corner peeling.

Next we prove that all maximum classes{id, 1}" are represented as simple arrangements of
piecewise-linear (PL) hyperplanes in thiall. This extends previous work byad@&ner and Welz|
(1994) on viewing simple PL-hyperplane arrangements as maximum classeslose relationship
between such arrangements and their hyperbolic versions suggedtsethabuld be equivalent.
Resolving the main problem left open in the preliminary version of this papebi(Rtein and
Rubinstein, 2008), we show that sweepingdetontractible PL arrangements does compress all
finite maximum classes by corner peeling, completing (Kuzmin and Warmuth, @a@difecture 1).

We show that a one-inclusion grajphcan be represented bydacontractible PL-hyperplane
arrangement if and only i is a strongly contractible cubical complex. This motivates the nomen-
clature ofd-contractible for the class of arrangements of PL hyperplanes. Notetlilagthese
one-inclusion graphs admit a corner-peeling scheme of the same ag&zthe largest dimension of
a cube inl". Moreover if such a graph admits a corner-peeling scheme, then it is a contractible
cubical complex. We give a simple example to show that there are one-intlgsphs which
admit corner-peeling schemes but are not strongly contractible ane smarepresented byd
contractible PL-hyperplane arrangement.

Compressingnaximal classes-classes which cannot be grown without an increase to their VC
dimension—is sufficient for compressing all classes, as embeddedstegsdly inherit compres-
sion schemes of their super-classes. This reasoning motivates the atteempbedd-maximal
classes intd(d)-maximum classes (Kuzmin and Warmuth, 2007, Open Problem 3). We presen
non-embeddability results following from our earlier counter-examples o & Warmuth’'s
minimum degree conjecture (Rubinstein et al., 2009), and our new resutisroer peeling. We
explore with examples, maximal classes that can be compressed but leok, peel classes that are
not strongly contractible but can be compressed.

Finally, we investigate algebraic topological properties of maximum classest mbtably we
characterizel-maximum classes, corresponding to simple linear Euclidean arrangensecubjeal
complexes homeomaorphic to theball. The result that such classes’ boundaries are homeomorphic
to the (d — 1)-sphere begins the study of the boundaries of maximum classes, whiclosety
related to peeling. We conclude with several open problems.

2. Background

We begin by presenting relevant background material on algebraic ppaclomputational learning
theory, and sample compression.

2.1 Algebraic Topology

Definition 1 A homeomorphisnis a one-to-one and onto map f between topological spaces such
that both f and f are continuous. Spaces X and Y are said ttomeomorphidf there exists a
homeomorphism fX —Y.

Definition 2 A homotopyis a continuous map EX x [0,1] — Y. Theinitial mapis F restricted

to X x {0} and thefinal mapis F restricted to Xx {1}. We say that the initial and final maps are
homotopic A homotopy equivalencbetween spaces X and Y is a pair of mapsXf— Y and
g:Y — X such that kg and go f are homotopic to the identity maps onY and X respectively. We
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say that X and Y have tlsmame homotopy typiéthere is a homotopy equivalence between them. A
deformation retractiois a special homotopy equivalence between a space X and a subsgaxe A
Itis a continuous map rX — X with the properties that the restriction of r to A is the identity map
on A, r has range A and r is homotopic to the identity map on X.

Definition 3 A cubical complexs a union of solid cubes of the forfas, b1 x ... x [am,bn], for
bounded ne N, such that the intersection of any two cubes in the complex is either a ciiboeal
of both cubes or the empty-set.

Definition 4 A contractible cubical compleX is one which has the same homotopy type as a one
point space{p}. X is contractible if and only if the constant map from X to p is a homotopy
equivalence.

Definition 5 A simplicial complexis a union of simplices, each of which is affinely equivaient
to the convex hull of k- 1 points (0,0,...,0),(1,0,...,0),...(0,0,...,1) in R¥, for some k. The
intersection of any two simplices in the complex is either a face of both simplitks empty-set.
Amap f: X — Y is calledsimplicialif X,Y are simplicial complexes and f maps each simplex of X
to a simplex of Y so that vertices are mapped to vertices and the map isliaae A subdivision

of a simplicial complex is a new simplicial complex with the same underlying-petrobtained by
cutting up the original simplices into smaller simplices.

For a more formal treatment of simplicial complexes see (Rourke and Samjd€r982). We
will need the concepts of piecewise-linear (PL) manifolds and maps.

Definition 6 A mapping f: X — Y is calledpiecewise linea(PL) if X,Y are simplicial complexes
and there are subdivisions*Xy* of the respective complexes, so thatX¥* — Y* is simplicial.

A PL homeomorphism X — Y is a bijection so that both,f~* are PL maps. A PL manifold
M is a space which is covered by open sefsfof a € | some index set, together with bijections
@ :Ug — Vo, Where 4 is an open set iR". Moreover when YNnUg # 0, then the transition
functiongp o @y @u (Ua NUp) — @(Ug NUp) is @ PL homeomorphism. A paity, @) is called

a chartfor M.

2.2 Pachner Moves

Pachner (1987) showed that triangulations of manifolds which are cotohglly equivalent after
subdivision are also equivalent by a series of moves which are newedfto as Pachner moves.
For the main result of this paper, we need a version of Pachner movesgtimal structures rather
than simplicial ones. The main idea of Pachner moves remains the same.

A Pachner moveeplaces a topological-ballU divided intod-cubes, with another bdll” with
the saméd — 1)-cubical boundary but with a different interior cubical structure.imehsiond = 2,
for example, such an initial bdll can be constructed by taking three 2-cubes forming a hexagonal
disk and in dimensiod = 3, four 3-cubes forming a rhombic dodecahedron, which is a polyhedro
U with 12 quadrilateral faces in its boundary. Theldeof d-cubes is attached to the same boundary
as forU, that is,0U = dU’, as cubical complexes homeomorphic to tde- 1)-sphere. Moreover,
U’ andU are isomorphic cubical complexes, but the gluing between their boungandsices

1. The simplices are related via an affine bijection.
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Arrangement P Arrangement P*

(a) (b)
Figure 1: (a) An example linear-hyperplane arrangenteand (b) the result of a Pachner move of
hyperpland?; on P.

the boundary of the 3- or 4-cube, as a 2- or 3-dimensional cubicaitgtaeuon the 2- or 3-sphere
respectively.

To better understand this move, consider the cubical face structure bbthelaryV of the
(d+ 1)-cube. This is al-sphere containingd+ 2 cubes, each of dimensiah There are many
embeddings of théd — 1)-sphere as a cubical subcomplex imtpdividing it into a pair ofd-balls.
One ball is combinatorially identical 1d and the other ttJ'.

There are a whole series of Pachner moves in each dimedsiaut we are only interested in
the ones where the pair of balls U’ have the same numbers @fcubes. In Figure 1 a change in
a hyperplane arrangement is shown, which corresponds to a Panbmeron the corresponding
one-inclusion graph (considered as a cubical complex).

2.3 Concept Classes and their Learnability

A concept class @ndomain X is a subset of the power set of 3eor equivalentlyC C {0,1}X. We
primarily consider finite domains and so will wri@C {0,1}" in the sequel, where it is understood
thatn = |X| and then dimensions ocolorsare identified with an orderingx }1; = X.

Theone-inclusion graphg(C) of C C {0,1}" is the graph with vertex-s& and edge-set con-
taining {u,v} C Ciff uandyv differ on exactly one component (Haussler et al., 1994%) forms
the basis of a prediction strategy with essentially-optimal worst-case expésite G(C) can be
viewed as a simplicial complex iR" by filling in each face with a product of continuous intervals
(Rubinstein et al., 2009). Each edfe v} in G(C) is labeled by the component on which the two
verticesu, v differ.

Example 1 An example concept class {0, 1}# is enumerated in Figure 2(a). The corresponding
one-inclusion graph is visualized in Figure 2(b), making immediately appdne interpretation of
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Figure 2: (a) A concept class i, 1}* that is maximum with VC-dim 2 and (b) the one-inclusion
graph of the concept class.

the object as a simplicial complex: in this case the concepts form verticeb wi@connected by
edges; these edges bound 2-cubes.

Probably Approximately Correct learnability of a concept class {0,1}* is characterized by
the finiteness of the Vapnik-Chervonenkis (VC) dimensio& ¢Blumer et al., 1989). One key to
all such results is Sauer’'s Lemma.

Definition 7 The VC dimension of concept class G {0,1}* is defined asVC(C) =
sup{n ‘ 3y € (X),My(C) = {0, 1}"} wherely (C) = {(c(x1),...,c(x)) | c€C} C {0,1}" is the
projectionof C on sequence ¥ (Xi,...,Xn)-

Lemma 8 (Vapnik and Chervonenkis, 1971; Sauer, 1972; Shelah, 19) The cardinality of any
concept classes C {0, 1}" is bounded byC| < givfl(c) M.

Motivated by maximizing concept class cardinality under a fixed VC dimengibich is related
to constructing general sample compression schemes (see Section 224)19&7) defined the
following special classes.

Definition 9 Concept class G {0,1}* is called maximalif VC(CuU{c}) > VC(C) for all ¢ €
{0,1}*\C. Furthermore iffly (C) satisfies Sauer's Lemma with equality for each (f;) for every
ne N, then C is termednaximum If C C {0,1}" then C is maximum (and hence maximal) if C
meets Sauer’s Lemma with equality.

Example 2 The concept class of Example 1 has VC-dimengias witnessed by projecting onto
any two of the four available axes. Moreover its cardinalityt bexactly meets Sauer's Lemma with
equality, so the class is also maximum.
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Figure 3: The (a) projection (b) reduction and (c) tail of the conceisatd Figure 2 with respect
to projecting on to the first three coordinates (i.e., projecting out the foodfdnate).

The reduction of C C {0,1}" with respect toi € [n] = {1,...,n} is the classC' =
Mgy ({ceClielge(c)}) wherelgc(c) C [n] denotes the labels of the edges incident to vertex
c¢; amultiple reductions the result of performing several reductions in sequence.tdihef class
Cistail (C)={ceC|i¢ Ig(c)(c)}. Welzl showed that i€ is d-maximum, therf1 . ;i1 (C) andC'
are maximum of VC-dimensiorsandd — 1 respectively.

Example 3 A projection, reduction and tail of the concept class of Figure 2 are shimwFig-
ures 3(a)—3(c) respectively, when projecting onto coordingie®, 3}. In particular note that the
reduction, like the projection, is a class in the smalBcube while the tail is in the originad-
cube. Moreover note that the projection and reduction and maximum witHimMénsion and 1
respectively.

The results presented below relate to other geometric and topologicadeatatons of maxi-
mum classes existing in the literature. Under the guise of ‘forbidden lalbdts/d (1989) showed
that maximunmC C {0,1}" of VC-dim d is the union of a maximally overlappirdrcomplete col-
lection of cubegRubinstein et al., 2009)—defined as a collectior( pf d-cubes which uniquely
project onto all( {j) possible sets af coordinate directions. (An alternative proof was developed by
Neylon 2006.) It has long been known that VC-1 maximum classes havimolosion graphs that
are trees (Dudley, 1985); we previously extended this result by skyawat when viewed as com-
plexes,d-maximum classes are contractiloleubical complexes (Rubinstein et al., 2009). Finally
the cells of a simple linear arrangementrohyperplanes iR form a VC-d maximum class in
the n-cube (Edelsbrunner, 1987), but not all finite maximum classes @amesto such Euclidean
arrangements (Floyd, 1989).

Example 4 It is immediately clear from visual inspection that tRenaximum concept classes of
Figures 2 and 3(a) are composed of complete collectio2saifbes. Similarly th&-maximum class
of Figure 3(c) is a tree with one edge of each color.

2.4 Sample Compression Schemes

Littlestone and Warmuth (1986) showed that the existence of a compreshieme of finite size is
sufficient for learnability ofC, and conjectured the converse, that(@C= d < c implies a com-
pression scheme of size Later Warmuth (2003) weakened the conjectured sif(th. To-date it
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is only known that maximum classes canddeompressed (Floyd, 1989). Unlabeled compression
was first explored by Ben-David and Litman (1998); Kuzmin and WarmuB®72 defined unla-
beled compression as follows, and explicitly constructed schemes af &zenaximum classes.

Definition 10 Let C be a d-maximum class on a finite domain X. A mapping r is caliepr@sen-
tation mappingf C if it satisfies the following conditions:

1. ris a bijection between C and subsets of X of size at most d; and
2. [non-clashing:? My gur(e)(€) # Mreur(e)(c) forallc,c € C, c#£ .

As with all previously published labeled schemes, all previously knowrbeféa compression
schemes for maximum classes exploit their special recursive projeeiituction structure and so
it is doubtful that such schemes will generalize. Kuzmin and Warmuth (Z00jecture 2) conjec-
tured that theimin-peelingalgorithm constitutes an unlabeldecompression scheme for maximum
classes; it iteratively removes minimum degree vertices f@(@), representing the corresponding
concepts by the remaining incident dimensions in the graph. The authorsaaiprtured that
sweeping a hyperplane in general position across a simple linear amangérms a compres-
sion scheme that corresponds to min peeling the associated maximum classr(léozd Warmuth,
2007, Conjecture 1). A particularly promising approach to compressingrgeclasses is via their
maximum-embeddings: a cla€sembedded in clagg’ trivially inherits any compression scheme
for C’, and so an important open problem is to embed maximal classes into maximuns elétbse
at most a linear increase in VC dimension (Kuzmin and Warmuth, 2007, OpbieRr 3).

3. Preliminaries

A first step towards characterizing and compressing maximum classesisespiof building them.
After describing this process difting we discuss compressing maximum classes by peeling, and
properties of the boundaries of maximum classes.

3.1 Constructing All Maximum Classes

The aim in this section is to describe an algorithm for constructing all maximureedasf VC-
dimensiond in then-cube. This process can be viewed as the inverse of mapping a maximwsm clas
to its d-maximum projection o]\ {i} and the correspondin@ — 1)-maximum reduction.

Definition 11 Let C,C’' C {0,1}" be maximum classes of VC-dimensiond d 1 respectively, so
that C C C, and let G,C, C C be d-cubes, that is, d-faces of the n-c§bel }".

1. G, C; are connectedf there exists a path in the one-inclusion gragiiC) with end-points in €
and G; and

2. G, C; are said to be Gconnectedf there exists such a connecting path that further does not
intersect C.

The C-connected componentg C are the equivalence classes of the d-cubes of C under’'the C
connectedness relation.

2. We abuse notation slightly by applying projections, originally defined toad@®n concept classes in Definition 7,
to concepts.
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Algorithm 1 MAxIMUM CLASSESNn,d)
Given: ne N,d € [n]
Returns: the set ofd-maximum classes ifi0, 1}"

1. if d=0thenreturn {{v}|ve {0,1}"} ;
2. if d=nthenreturn {0,1}" ;
3. M<«+0,;
for eachC € MAXIMUM CLASSES(n—1,d),
C' € MAxiIMUM CLASSESn—1,d—1)s.t.C' cCdo
{Cy,...,C«} + C-connected components ©f;

5. M+ M UUpero {(C’ x{0,1}) UUqgeig Cq % {pq}} i
done
6. return M ;

The recursive algorithm for constructing all maximum classes of VC-diroemsin then-cube,
detailed as Algorithm 1, considers each possiblaaximum clas€ in the (n— 1)-cube and each
possible(d — 1)-maximum subclas€’ of C as the projection and reduction oflamaximum class
in the n-cube, respectively. The algorithlfts C andC’ to all possible maximum classes in the
n-cube. TherC’' x {0,1} is contained in each lifted class; so all that remains is to find the tails from
the complement of the reduction in the projection. It turns out that €aclonnected component
Ci of C can be lifted to eithe€; x {0} or C; x {1} arbitrarily and independently of how the other
C’-connected components are lifted. The set of lifts equates to the danakimum classes in the
n-cube that project-reduce {€,C’).

Lemma 12 MAxiMuM CLASSESn,d) (cf. Algorithm 1) returns the set of maximum classes of VC-
dimension d in the n-cube for all@N,d € [n].

Proof We proceed by induction anandd. The base cases correspond toN, d € {0,n} for which

all maximum classes, enumerated as singletons intwhe and th@-cube itself respectively, are
correctly produced by the algorithm. For the inductive step we assumetiratfN,d € [n— 1] all
maximum classes of VC-dimensiorandd — 1 in the(n— 1)-cube are already known by recursive
calls to the algorithm. Given this, we will show thataMiMmum CLASSESn,d) returns onlyd-
maximum classes in thecube, and that all such classes are produced by the algorithm.

Let classe€ € MAXIMUM CLASSESn—1,d) andC’' € MAXIMUM CLASSESn—1,d —1) be
such thaC’ c C. ThenC is the union of ad-complete collection an@’ is the union of gd — 1)-
complete collection of cubes that are faces of the cub€s @onsider a concept cla€s formed
from C andC’ by Algorithm 1. The algorithm partitionS into C’-connected components, . ..,Cy
each of which is a union af-cubes. WhileC' is lifted toC’ x {0,1}, some subset of the components
{Ci}ics, are lifted to{C; x {O}};g, While the remaining components are lifted{G; x {1}};.q .
HereS ranges over all subsets i, selecting which components are lifted to 0; the complement
of § specifies those components lifted to 1. By definiti@nis ad-complete collection of cubes
with cardinality equal tq Jy) since|C*| = |C| +|C| (Kuzmin and Warmuth, 2007). So* is d-
maximum (Rubinstein et al., 2009, Theorem 34).

If we now consider ang-maximum clas€* C {0, 1}", its projection orjn]\ {i} is ad-maximum
classC C {0,1}"~1 andC*' is the (d — 1)-maximum projectiorC’ C C of all the d-cubes inC*
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Figure 4: 2-maximum concept classeq 3 1}* constructed by lifting concept class Figure 3(a) as
the projection, and concept class Figure 3(b) as the reduction.

which contain coloi. It is thus clear thaC* must be obtained by lifting parts of ti@-connected
components of to the 1 level and the remainder to the O level, @tb C’' x {0,1}. We will now
show that if the vertices of each component are not lifted to the same levatsatiile the number
of vertices in the lift match that of d-maximum class in the-cube, the number of edges are too
few for such a maximum class. Define a lifting operatoGoas/(v) = {v} x ¢y, wheret, C {0, 1}

and
2, ifveC
|€V‘ = - / *
1, ifveC\C

Consider now an edggu,v} in G(C). By the definition of aC’-connected component there ex-
ists someC; such that eitheu,v € C;\C', u,v € C" or WLOG u € C;\C',v € C'. In the first case
£(u)U£(v) is an edge in the lifted graph iff, = ¢y. In the second cas&u) U ¢(v) contains four
edges and in the last it contains a single edge. Furthermore, it is clearighattbunts for all edges
in the lifted graph by considering the projection of an edge in the lifted ptodims any lift other
than those produced by Algorithm 1 induces strictly too few edges tbmeaximum class in the
n-cube (cf. Kuzmin and Warmuth, 2007, Corollary 7.5). |

Example 5 Let C and Crefer to the2- and 1-maximum concept classes in Figures 3(a) and 3(b) re-
spectively. Then Figures 4(a), 4(b) and 2 make up all posgimeximum classes (up to symmetry)
resulting from lifting projection C and reduction GFigure 2 corresponds to lifting no’@&onnected
components of C; Figure 4(a) corresponds to lifting just one comporsed;Figure 4(b) corre-
sponds to lifting two components. (Note that Figure 4(a) and Figure 4@)aatually equivalent
after a symmetry. )
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3.2 Corner Peeling

Kuzmin and Warmuth (2007, Conjecture 2) conjectured that their simitrepeelingprocedure
is a valid unlabeled compression scheme for maximum classes. Beginning wititeptelass
Co =C C {0,1}", min peeling operates by iteratively removing a vertgxf minimum-degree
in G(G) to produce the peeled cla€s;1 = G\{w}. The concept class correspondingwois
then represented by the dimensions of the edges incideninog (G ), 15c,)(w) C [n]. Providing
that no-clashing holds for the algorithm, the size of the min-peeling scheme ligrgjest degree
encountered during peeling. Kuzmin and Warmuth predicted that this siz#agsaht mosd for
d-maximum classes. We explore these questions for a related specialf qgaesling, where we
prescribe which vertex to peel at stegs follows.

Definition 13 We say that G- {0,1}" can becorner peeledf there exists an orderingyy. .., V(g
of the vertices of C such that, for each {|C|] where G =C,

1. veGand G =C-1\{u};

2. There exists a unique cubg¢ ¢ of maximum dimension over all cubes in Ccontaining vy;
3. The neighbor§ () of « in G(CG_1) satisfyl' (v) C C/_;; and

4. G¢ =0.

The y are termed theorner vertice®f G_; respectively. If d is the maximum degree of eadn v
G(Ci_1), then C is dcorner peeled

Note that we do not constrain the culi&so be of non-increasing dimension. It turns out that
an important property of maximum classes is invariant to this kind of peeling.

Definition 14 We call a class CC {0, 1}" shortest-path closeéifor any uv € C, G(C) contains a
path connecting v of length|ju— v||1.

Lemma 15 If C C {0,1}" is shortest-path closed anda/C is a corner vertex of C, then\@v} is
shortest-path closed.

Proof Consider a shortest-path closéd- {0,1}". Letc be a corner vertex dE, and denote the
cube of maximum dimension i@, containingc, by C'. Consider{u,v} C C\{c}. By assumption
there exists a-v-path p of length|ju—v||; contained irC. If cis not inp thenpis contained in the
peeled produdC\{c}. If cis in p thenp must cros<’ such that there is another path of the same
length which avoids, and thusC\{c} is shortest-path closed. [ |

3.2.1 GORNERPEELING IMPLIES COMPRESSION

Theorem 16 If a maximum class C can be corner peeled then C can be d-unlabelquiessad.

Proof The invariance of the shortest-path closed property under corningpeekey. The corner-
peeling unlabeled compression scheme representsveadd by r(v) = lgc,_,)(\), the colors of
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Figure 5: (a) A 2-maximum class in the 4-cube and (b) its boundary hightidivtesolid lines.

the cubeC{_; which is deleted fronC;_; whenv; is corner peeled. We claim that any two ver-
ticesvs, v; € C have non-clashing representatives. WLOG, supposesthdt The clas€s 1 must
contain a shortest-vt-pathp. Leti be the color of the single edge containedpithat is incident
to vs. Colori appears once ip, and is contained im(vs). This implies thatvs; # v ,; and that

i €r(vs)Ur(w), and sovs| (r(vs)Ur(w)) # w| (r(vs)Ur(w)). By constructiony(-) is a bijection
betweerC and all subsets dh] of cardinality< VC(C). [

If the oriented one-inclusion graph, with each edge directed away frenmtident vertex rep-
resented by the edge’s color, has no cycles, then that represergatonpression scheme is termed
acyclic(Floyd, 1989; Ben-David and Litman, 1998; Kuzmin and Warmuth, 2007).

Proposition 17 All corner-peeling unlabeled compression schemes are acyclic.

Proof We follow the proof that the min-peeling algorithm is acyclic (Kuzmin and Warn2@6,/).
Letvy,...,vc| be a corner vertex ordering Gf As a corner vertex; is peeled, its unoriented inci-
dent edges are oriented away frem Thus all edges incident i are oriented away frorm, and
so the vertex cannot take part in any cycle. Forl assumé; = {vs | s <t} is disjoint from all
cycles. Theny; cannot be contained in a cycle, as all incoming edgesvingwe incident to some
vertex inVt. Thus the oriented; (C) is indeed acyclic. [ |

3.3 Boundaries of Maximum Classes

We now turn to the geometric boundaries of maximum classes, which are ctekehd to corner
peeling.
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> B.C
B~ " ~C

Figure 6: The first steps of building the dunce hat in Example 7.

Definition 18 The boundarndC of a d-maximum class C is defined as all flde- 1)-subcubes
which are the faces of a single d-cube in C.

Maximum classes, when viewed as cubical complexes, are analogowptblst (an example
of a minimal energy surface encountered in nature), which are obtaimexd awire frame is dipped
into a soap solution. Under this analogy the boundary corresponds tarthizame and the number
of d-cubes can be considered the area of the soap film. An important prapénty boundary of a
maximum class is that all lifted reductions meet the boundary multiple times.

Theorem 19 Every d-maximum class has boundary containing at leasttive1)-cubes of every
combination of d- 1 colors, for all d > 1.

Proof We use the lifting construction of Section 3.1. I&tC {0,1}" be a 2-maximum class and
consider coloii € [n]. Then the reductio@*' is an unrooted tree with at least two leaves, each of
which lifts to ani-colored edge irC*. Since the leaves are of degree 10Hi, the corresponding
lifted edges belong to exactly one 2-cubé&inand so lie indC*. Consider now @-maximum class
C* € {0,1}" for d > 2, and make the inductive assumption that the projec@ienl,_,(C*) has
two of each type ofd — 1)-cube, and that the reducti@i = C*" has two of each type dfd — 2)-
cube, in their boundaries. Pick-1 colorsl C [n]. If n € | then consider tw@d — 2)-cubes colored
by I\{x.} in C’. By the same argument as in the base case, these lift tb-twiwred cubes idC*.

If n¢ | thendC contains twd -colored(d — 1)-cubes. For each cube, if the cube is containe@ in
then it has two lifts one of which is containedd@*, otherwise its unique lift is contained aC*.
ThereforedC* contains at least twb-colored cubes. |

Example 6 The one-inclusion graph ofZzZmaximum concept class in thecube is depicted in Fig-
ure 5(a), along with its boundary of edges in Figure 5(b). Note that alt émlors are represented
by exactly two boundary edges in this case.

Having a large boundary is an important property of maximum classes tesidd follow from
contractibility.
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Example 7 Take a2-simplex with vertices B,C. Glue the edges AB to AC to form a cone. Next
glue the end loop BC to the edge AB . The result is a complex D with a single,vedge and
2-simplex, which is classically known as tthence hatcf. Figure 6). It is not hard to verify that D

is contractible, but has no (geometric) boundary.

Although Theorem 19 will not be explicitly used in the sequel, we return tnBaties of
maximum complexes later.

4. Euclidean Arrangements

Definition 20 Alinear arrangemeti a collection of > d oriented hyperplanes iRY. Each region
or cell in the complement of the arrangement is naturally associated witmeapt in{0,1}"; the
side of the " hyperplane on which a cell falls determines the concept'samponent. Aimple
arrangemens a linear arrangement in which any subset of d planes has a uniquéipaiommon
and all subsets of d 1 planes have an empty mutual intersection. Moreover any subset.af k
planes meet in a plane of dimensior-#&. Such a collection of n planes is also said to bgémeral
position

Many of the familiar operations on concept classes inrtfeelbe have elegant analogues on
arrangements.

e Projection orn]\{i} corresponds to removing tfi€ plane;

e The reductiorC' is the new arrangement given by the intersectio@'sfarrangement with
theit™ plane; and

e The corresponding lifted reduction is the collection of cells in the arrangetina&radjoin the
i" plane.

A k-cube in the one-inclusion graph corresponds to a collectiorf 6ERs, all having a common

(d —k)-face, which is contained in the intersectionkgblanes, and an edge corresponds to a pair
of cells which have a common face on a single plane. The following resuleisalidelsbrunner
(1987).

Lemma 21 The concept class C {0,1}" induced by a simple linear arrangement of n planes in
RY is d-maximum.

Proof Note thatC has VC dimension at modt since general position is invariant to projection, that
is, nod+ 1 planes are shattered. Sir¢és the union of al-complete collection of cubes (every cell
containsd-intersection points in its boundary) it follows th@tis d-maximum (Rubinstein et al.,
2009). [ |

Example 8 Consider the simple linear arrangementid shown in Figure 7(b). The given labeling
of its cells map to the concept class in #ieube enumerated in Figure 7(a) with one-inclusion
graph shown in Figure 5(a). This class is maximum with VC-dimerion
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X1 X2 X3 X4
Vo |0 O O O
vv |1 0 O O
Vo 0 1 0 0
v (0O O 1 O
\Z1 1 0 1 0
vs (1 1 0 O
Vg 0 1 1 0
V7 1 0 0 1
v 1 1 0 1
Vg 0 1 0 1
vo[ O 1 1 1

(a) (b)

Figure 7: (a) The enumeration of the 2-maximum clas§0ri}* in Figure 5(a) and (b) a simple
linear line arrangement corresponding to the class, with each cell pordisg to a
unique vertex.

Corollary 22 Let A be a simple linear arrangement of n hyperplane®thwith corresponding
d-maximum GZ {0,1}". The intersection of A with a generic hyperplane corresponds(tb-al)-
maximum class GC C. In particular if all d-intersection points of A lie to one side of the generic
hyperplane, then Qies on the boundary of C; an@C is the disjoint union of tw¢d — 1)-maximum
sub-classes.

Proof The intersection oA with a generic hyperplane is again a simple arrangementhyfper-
planes but now ilR%~1. Hence by Lemma 2C' is a(d — 1)-maximum class in tha-cube.C' C C
since the adjacency relationships on the cells of the intersection are inHesitethose ofA.

Suppose that alii-intersections irA lie in one half-space of the generic hyperplaf2.is the
union of a(d — 1)-complete collection. We claim that each of théde- 1)-cubes is a face of exactly
oned-cube inC and is thus iPC. A (d —1)-cube inC’' corresponds to a line ihkwhered — 1 planes
mutually intersect. Théd — 1)-cube is a face of d-cube inC iff this line is further intersected by
ad™ plane. This occurs for exactly one plane, which is closest to the gengréiane along this
intersection line. For once thekintersection point is reached, when following along the line away
from the generic plane, a new cell is entered. This verifies the secondfplae result.

Consider two parallel generic hyperplartesh, such that ald-intersection points oA lie in
between them. We claim that ea@h— 1)-cube indC is in exactly one of the concept classes in-
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duced by the intersection éfwith h; andA with hy. Consider an arbitraryd — 1)-cube indC. As
before this cube corresponds to a region of a line formed by a mutualantiEns ofd — 1 planes.
Moreover this region is a ray, with one end-point at-intersection. Because the ray begins at a
point between the generic hyperplamesh,, it follows that the ray must cross exactly one of these.
[ |

Example 9 To illustrate, consider th&-maximum class in Figure 5(a) that corresponds to the
simple linear arrangement in Figure 7(b). The boundary, shown inté&i(b) is clearly a disjoint
union of twol-maximum classes—in this case sticks.

Corollary 23 Let A be a simple linear arrangement of n hyperplaneRfrand let CC {0,1}" be
the corresponding d-maximum class. Then C considered as a cubitgllex is homeomorphic to
the d-ball B'; and dC considered as &d — 1)-cubical complex is homeomorphic to the— 1)-
sphere $-1.

Proof We construct a Voronoi cell decomposition corresponding to the sikimtersection points
inside a very large ball in Euclidean space. By inductiondprwe claim that this is a cubical
complex and the vertices and edges correspond to the@laBy induction, on each hyperplane,
the induced arrangement has a Voronoi cell decomposition whicfdis-d)-cubical complex with
edges and vertices matching the one-inclusion graph for the t&ll @irresponding to the label
associated with the hyperplane. It is not hard to see that the Voronaiefgied by al-intersection
point p on this hyperplane is d-cube. In fact, it5(d — 1)-faces correspond to the Voronoi cells
for p, on each of thal hyperplanes passing through We also see that thid-cube has a single
vertex in the interior of each of thé!2ells of the arrangement adjacentitoln this way, it follows
that the vertices of this Voronoi cell decomposition are in bijective comedence to the cells of
the hyperplane arrangement. Finally the edges of the Voronoi cells pasglththe faces in the
hyperplanes. So these correspond bijectively to the edg€s ad there is one edge for each face
of the hyperplanes. Using a very large ball, containing alldhietersection points, the boundary
faces become spherical cells. In fact, these form a spherical Vocetialecomposition, so it is
easy to replace these by linear ones by taking the convex hull of theiresrti8o a piecewise
linear cubical complex is constructed, which has one-skeleton (graph consisting of all vertices
and edges) isomorphic to the one-inclusion graptCtor

Finally we want to prove that is homeomorphic t&%. This is quite easy by construction. For
we see tha€ is obtained by dividing ufB® into Voronoi cells and replacing the spherical boundary
cells by linear ones, using convex hulls of the boundary vertices. Tageps is clearly given by a
homeomorphism by projection. In fact, the homeomorphism preserves tgiRiture so is a PL
homeomorphism. |

Example 10 Consider again the one-inclusion graph in Figure 5(a) correspondiraZanaximum
concept class in thd-cube. It is trivial to see via inspection that this class, when viewed as a
simplicial complex, is homeomorphic to a disc; similarly its boundary, higldidhn Figure 5(b),

is homeomaorphic to a circle.

1236



A GEOMETRICAPPROACH TOSAMPLE COMPRESSION

Figure 8: The simple linear line arrangement from Figure 7(b) correspgnd the concept class
enumerated in Figure 7(a) and visualized in Figure 5(a). The arrangénirethe process
of being swept by the dashed line.

The following example demonstrates that not all maximum classes of VC-dinmedsiwe
homeomorphic to thd-ball. The key to such examples is branching.

Example 11 A simple linear arrangement iR corresponds to points on the line—cells are simply
intervals between these points and so correspondingaximum classes are sticks. Any tree that
is not a stick can therefore not be represented as a simple linear armaegeinR and is also not
homeomorphic to thé-ball which is simply the intervdl-1, 1].

As Kuzmin and Warmuth (2007) did previously, consider a generic hyaeed sweeping
across a simple linear arrangem@nt begins with alld-intersection points oA lying in its positive
half-space#f,. The concept corresponding to celis peeled fronC when|#. Nc| = 1, that is,h
crosses the last-intersection point adjoining. At any step in the process, the result of peeljng
vertices fromC to reachC;, is captured by the arrangemeH N A for the appropriaté.

Example 12 Figure 7(a) enumerates the 11 vertices &-maximum class in thé-cube. Figures 8
and 5(a) display a hyperplane arrangement in Euclidean space andiigswi cell decomposition,
corresponding to this maximum class. In this case, sweeping the veréishkd line across the
arrangement corresponds to a partial corner peeling of the conclags with peeling sequencg v
Vg, V5, Vo, V2, Vo. What remains is th&-maximum sticKvi, V3, va, Vg, V10}.
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Next we resolve the first half of Kuzmin and Warmuth (2007, Conjecture 1)

Theorem 24 Any d-maximum class C {0,1}" corresponding to a simple linear arrangement A
can be corner peeled by sweeping A, and this process is a valid unlatmiggiession scheme for
C of size d.

Proof We must show that as tH& d-intersection poinp; is crossed, there is a corner vertexapf |
peeled away. It then follows that sweeping a generic hyperfaossA corresponds to corner
peelingC to a(d — 1)-maximum sub-clas§’ C dC by Corollary 22. Moreove€’ corresponds to a
simple linear arrangement afhyperplanes ifR9-1.

We proceed by induction omh, noting that ford = 1 corner peeling is trivial. Considéras it
approaches thg" d-intersection poinp;. Thed planes defining this point intersefein a simple
arrangement of hyperplanes dn There is a compact cell for the arrangement oh, which
is a d-simpleX and shrinks to a point as passes througlp;. We claim that the celt for the
arrangemenA, whose intersection with is A, is a corner vertex; of Cj_;. Consider the lines
formed by intersections of — 1 of thed hyperplanes, passing through. Each is a segment
starting atp; and ending ah without passing through any othé+intersection points. So all faces
of hyperplanes adjacent tomeeth in faces ofA. Thus, there are no edges@j_; starting at the
vertex corresponding tp;, except for those in the cul@ _;, which consists of all cells adjacent to
pj in the arrangemer. Soc corresponds to a corner vertexof thed-cubeC;_, in Cj_;. Finally,
just after the simplex is a point,is no longer in#,. and sov; is corner peeled fror@;_.

Theorem 16 completes the proof that this corner peelinG obnstitutes unlabeled compres-
sion. |

Corollary 25 The sequence of cube§,C . ’C\,cp removed when corner peeling by sweeping simple

linear arrangements, is of non-increasing dimension. In fact, there(@reubes of dimension d,
then(,",) cubes of dimension-€ 1, etc.

While corner peeling and min peeling share some properties in common, thdigtamet proce-
dures. Notice that sweeping produces a monotonic corner-peelingresgjlas cubes are removed
in order of non-increasing dimensions.

Example 13 Consider sweeping a simple linear arrangement correspondin@tmaximum class.
After all but one2-intersection point has been swept, the corresponding corner-petded G is
the union of a singl@-cube with al-maximum stick. Min peeling applied t@ @ould first peel a
leaf, while sweeping must peel tBeube next.

A second example is the class irBa&ube which consists of six vertices, so that two opposite
vertices, for exampleQ00 and 111 are not included. This class cannot be corner peeled as the
one-inclusion graph consists of six edges forming a single cycle. On tke ludind, it has many
min-peeling schemes.

An interesting question is if a class has a corner-peeling scheme, dogigsahave a min-
peeling scheme which is also a corner-peeling scheme? This is givereai@b0 below.

3. Ais a topological simplex—the convex hull dft- 1 affinely independent points 9.
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The next result follows from our counter-examples to Kuzmin & Warmuth’simmirm degree
conjecture (Rubinstein et al., 2009).

Corollary 26 There is no constant ¢ so that all maximal classes of VC-dimension decambed-
ded into maximum classes corresponding to simple hyperplane arramjeif dimension € c.

5. Hyperbolic Arrangements

To motivate the introduction of hyperbolic arrangements, note that lingaerplane arrangements
can be efficiently described, since each hyperplane is determined byititsoamal and distance

from the origin. Similarly, a hyperbolic hyperplane is a hypersphere. &anitbe parametrized by
its center—a point on the ideal sphere at infinity—and its radlius.

However the family of hyperbolic hyperplanes has more flexibility than lingpetplanes since
there are many disjoint hyperbolic hyperplanes, whereas in the linempofsparallel hyperplanes
do not meet. Thus we turn to hyperbolic arrangements to represent adaitpetion of concept
classes than those represented by simple linear arrangements.

We briefly discuss the Klein model of hyperbolic geometry (Ratcliffe, 19@4,7). Consider
the open unit balH¥ in RX. Geodesics (lines of shortest length in the geometry) are given by
intersections of straight lines &K with the unit ball. Similarly planes of any dimension between 2
andk — 1 are given by intersections of such plane®inhwith the unit ball. Note that such planes
are completely determined by their spheres of intersection with the unit sBhéravhich is called
the ideal boundary of hyperbolic spal. Note that in the appropriate metric, the ideal boundary
consists of points which are infinitely far from all points in the interior of thé ball.

We can now see immediately that a simple hyperplane arrangemgl§tdan be described by
taking a simple hyperplane arrangemenfifhand intersecting it with the unit ball. However we
require an important additional property to mimic the Euclidean case. Namelgidwhe constraint
that every subcollection af of the hyperplanes itk has mutual intersection points insit, and
that no(d + 1)-intersection point lies ifilX. We need this requirement to obtain that the resulting
class is maximum.

Definition 27 A simple hyperboliad-arrangemenis a collection of n hyperplanes iH* with the
property that every sub-collection of d hyperplanes mutually interseaet (k— d)-dimensional
hyperbolic plane, and that every sub-collection af il hyperplanes mutually intersect as the empty
set.

Corollary 28 The concept class C corresponding to a simple d-arrangement efibgtic hyper-
planes inHX is d-maximum in the k-cube.

Proof The result follows by the same argument as before. Projection canaibéisany(d + 1)-
cube and the class is a complete uniom-afubes, so igl-maximum. |

The key to why hyperbolic arrangements represent many new maximuneslessthat they
allow flexibility of choosingd andk independently. This is significant because the unit ball can be

4. Note also that hyperbolic hyperplanes are ‘linear’ in the sense thaatkdilled by a family of geodesics, which are
shortest paths or lines in the hyperbolic metric.
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chosen to miss much of the intersections of the hyperplanes in Euclidean $jate that the new
maximum classes are embedded in maximum classes induced by arrangertiesds bfperplanes
in Euclidean space.

A simple example is any 1-maximum class. It is easy to see that this can be realited
hyperbolic plane by choosing an appropriate family of lines and the uniirbtile appropriate po-
sition. In fact, we can choose sets of pairs of points on the unit circle hwiiitbe the intersections
with our lines. So long as these pairs of points have the property that the saraleof the circle
between them are disjoint, the lines will not cross inside the disk and the dldsimaximum class
will be represented.

Corner-peeling maximum classes represented by hyperbolic-hypegali@angements proceeds
by sweeping, just as in the Euclidean case. Note first that intersectidhe baf/perplanes of the
arrangement with the moving hyperplane appear precisely when thererss iatérsection at the
ideal boundary. Thus it is necessary to slightly perturb the collection péfpyanes to ensure
that only one new intersection with the moving hyperplane occurs at any timie. &0 that new
intersections of the sweeping hyperplane with the various lower dimengtaras of intersection
between the hyperplanes appear similarly at the ideal boundary. Thetanpolaim to check is
that the intersection at the ideal boundary between the moving hyperpidreelawer dimensional
plane, consisting entirely afintersection points, corresponds to a corner-peeling move. We include
two examples to illustrate the validity of this claim.

Example 14 In the case of d-maximum class coming from disjoint lineshi, a cell can disap-
pear when the sweeping hyperplane meets a line at an ideal point. This iceleed a vertex of the
tree, that is, a corner-vertex.

Example 15 Assume that we have a family ®flanes in the uniB-ball which meet in pairs in
single lines, but there are no triple points of intersection, correspondirggZenaximum class. A
corner-peeling move occurs when a region bounded by two half disksua interval disappears,
in the positive half space bounded by the sweeping hyperplane. Sugiva can be visualized by
taking a slice out of an orange. Note that the final point of contact betweehyperplane and the
region is at the end of a line of intersection between two planes on the ideatiboy.

We next observe that sweeping by generic hyperbolic hyperplanesaaatorner peeling of the
corresponding maximum class, extending Theorem 24. As the geneictigpe sweeps across
hyperbolic space, not only do swept cells correspond to cornedlscabes but also to corners of
lower dimensional cubes as well. Moreover, the order of the dimensiotieafubes which are
corner peeled can be arbitrary—Ilower dimensional cubes may be qreled before all the higher
dimensional cubes are corner peeled. This is in contrast to Euclide@pasuts (cf. Corollary 25).
Similar to Euclidean sweepouts, hyperbolic sweepouts correspond terquealing and not min
peeling.

Theorem 29 Any d-maximum classC {0, 1}" corresponding to a simple hyperbolic d-arrangement
A can be corner peeled by sweeping A with a generic hyperbolic hyperpla

Proof We follow the same strategy of the proof of Theorem 24. For sweepinggarbplic space
HX, the generic hyperplarteis initialized as tangent tHX¥. As h is swept acrosE, new intersec-
tions appear withh just afterh meets the non-empty intersection of a subset of hyperplarfewith
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Figure 9: 2-maximum classes {0, 1}* that can be represented as hyperbolic arrangements but not
as Euclidean arrangements.

the ideal boundary. EadfrcubeC’ in C still corresponds to the cells adjacent to the intersection
I of d hyperplanes. But nod is a k— d)-dimensional hyperbolic hyperplane. A celadjacent
to I is corner peeled precisely whérlast intersectg at a point oflc at the ideal boundary. As
for simple linear arrangements, the general positioAof{h} ensures that corner-peeling events
never occur simultaneously. For the case d + 1, as for the simple linear arrangements just prior
to the corner peeling af, #{. Ncis homeomorphic to & + 1)-simplex with a missing face on the
ideal boundary. And so as in the simple linear case dhigersection point corresponds to a corner
d-cube. In the cask> d+ 1, #, Nc becomes 4d+ 1)-simplex (as before) multiplied bigk—9-1,
If k=d, then the main difference is just before corner peeling,of/, N c is homeomorphic to a
k-simplex which may be either closed (hence in the intericHbf or with a missing face on the
ideal boundary. The rest of the argument remains the same, excepifanportant observation.
Although swept corners in hyperbolic arrangements can be of cubdiffering dimensions,
these dimensions never excakdnd so the proof that sweeping simple linear arrangements induces
d-compression schemes is still valid. |

Example 16 Constructed with lifting, Figure 9 completes the enumeration, up to symmethg of
2-maximum classes if0, 1}4 begun with Example 12. These cases cannot be represented as simple
Euclidean linear arrangements, since their boundaries do not satisfyathéition of Corollary 23

but can be represented as hyperbolic arrangements as in FigureidOres 11(a) and 11(b) display

the sweeping of a general hyperplane across the former arrangeandrthe corresponding corner
peeling. Notice that the corner-peeled cubes’ dimensions decredsham increase.
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() (b)

Figure 10: Hyperbolic-hyperplane arrangements corresponding takses in Figure 9. In both
cases the four hyperbolic planes meet in 6 straight line segments (nohshdwe
planes’ colors correspond to the edges’ colors in Figure 9.

Corollary 30 There is no constant ¢ so that all maximal classes of VC-dimension dbeam-
bedded into maximum classes corresponding to simple hyperbolicgigperarrangements of VC-
dimension dt c.

This result follows from our counter-examples to Kuzmin & Warmuth’s minimuigrele con-
jecture (Rubinstein et al., 2009).

Corollary 28 gives a proper superset of simple linear-hyperplarmmgement-induced maxi-
mum classes as hyperbolic arrangements. We will prove in Section 7 that»thoma classes
can be represented as PL-hyperplane arrangements in a ball. Thabe émpological analogue
of hyperbolic-hyperplane arrangements. If the boundary of the beghi®ved, then we obtain an
arrangement of PL hyperplanes in Euclidean space.

6. Infinite Euclidean and Hyperbolic Arrangements

We consider a simple example of an infinite maximum class which admits cornergeaaliha
compression scheme analogous to those of previous sections.

Example 17 Let L be the set of lines in the plane of the forml= {(x,y) | x=m} and Lon41 =
{(x,y) | y=n} for m,n € N. Let \po, Von, Vimo, @and \in be the cells bounded by the linéls,, L3},
{Lz, L2n+1, L2n+3}, {L2m7 L2m+2, L3}, and{LZm, L2m+2, Lons1, L2n+3}, respectively. Then the cubical
complex C, with verticesyy, can be corner peeled and hence compressed, using a sweephbaet by
lines{(x,y) | X+ (1+¢)y =t} fort > 0 and any small fixed irrationa¢ > 0. C is a2-maximum
class and the unlabeled compression scheme is also d.size
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Figure 11: (a) The simple hyperbolic arrangement corresponding terteex@mum class if0,1}*
of Figure 9(a)—as shown in Figure 10(a)—with a generic sweepingrpigree shown
in several positions before and after it sweeps past four cells; aridglelass with the
first four corner-vertices peeled by the hyperbolic arrangemenggiwg. Notice that
three 2-cubes are peeled, then a 1-cube (all shown) followed bj&scu

To verify the properties of this example, notice that sweeping as speaifieesponds to corner
peeling the vertexyo, then the vertices o, vo1, then the remaining verticeg,,. The linesx+ (1+
€)y =t are generic as they pass through only one intersection poistaifa time. Additionally,
representing/oo by 0, von by {Lan+1}, Vmo by {Lom} andvmn by {Lom, L2ns1} constitutes a valid
unlabeled compression scheme. Note that the compression scheme istedssitla sweeping
across the arrangement in the direction of decredsifidnis is necessary to pick up the boundary
vertices ofC last in the sweepout process, so that they have either singleton mejatess or the
empty set. In this way, similar to Kuzmin and Warmuth (2007), we obtain a conipnessheme
so that every labeled sample of size 2 is associated with a unique con€gptivich is consistent
with the sample. On the other hand to obtain corner peeling, we need themweproceed with
t increasing so that we can begin at the boundary vertic€s of

In concluding this brief discussion, we note that many infinite collections oflgitmgperbolic
hyperplanes and Euclidean hyperplanes can also be corner pedledrapressed, even if inter-
section points and cells accumulate. However a key requirement in the Euchkdse is that the
concept clas€ has a non-empty boundary, when considered as a cubical complexasirap-
proach is to assume that all tdeintersections of the arrangement lie in a half-space. Moreover,
since the boundary must also admit corner peeling, we require more codisionilar to having
all the intersection points lying in an octant.

Example 18 In R3, choose the family of planeof the form B,.j = {x ¢ R3| x.1 = 1—1/n} for
n>1andic {0,1,2}. A corner-peeling scheme is induced by sweeping a generic phaaeR? |
X1+ 0xz + Bxg =t} across the arrangement, where t is a parameter arw, 3 are algebraically
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independent (in particular, no integral linear combination is rational) am@ are both close to
1. This example has similar properties to Example 17: the compressiomsciseagain given by
decreasing t whereas corner peeling corresponds to increasingte that cells shrink to points,
asx — 1 and the volume of cells converge to zero as me, or equivalently anyx— 1.

Example 19 In the hyperbolic planél?, represented as the unit circle centered at the origiiRn
choose the family of lines given by lon = {(X,y) | Xx=1—1/n} and Lon+1 = {(X,y) | X+ ny= 1},
for n> 1. This arrangement has corner peeling and compression schensstgisweeping across
L using the generic lingy =t}.

7. Piecewise-Linear Arrangements

PL hyperplanes have the advantage that they can be easily manipulatdtiby and pasting or
isotoping part of a hyperplane to a new position, keeping the rest of therphane fixed. How-
ever a disadvantage is that there is no simple way of describing a PL tepergimilar to the
parametrizations of either linear or hyperbolic hyperplanes. The metligusaf of our main re-
sults about representing maximum classes and corner peeling, reqtlisgBiplane arrangements.
We conjecture that PL-hyperplane arrangements are equivalentéodnfic ones. This would give
an interesting geometric approach of forming all maximum classes as simpleblparrange-
ments.

A PL hyperplanes the image of a proper piecewise-linear homeomorphism frontkthel)-
ball B<"1 into BX, that is, the inverse image of the bound&y?! of the k-ball is $2 (Rourke
and Sanderson, 1982). éimple PL d-arrangemeris an arrangement of PL hyperplanes such
that every subcollection of hyperplanes meet transversely ifka— j)-dimensional PL plane for
2 < j <dand every subcollection af+ 1 hyperplanes are disjoint.

Corollary 31 The concept class C corresponding to a simple d-arrangement of/pérplanes in
BX is d-maximum in the k-cube.

Proof The result follows by the same argument as in the linear or hyperbolic.c&egction
cannot shatter anfd + 1)-cube and the class is a complete unionl-@ubes, so isl-maximum. B

7.1 Maximum Classes are Represented by Simple PL-Hyperplane Arraregnents

Our aim is to prove the following theorem by a series of steps.

Theorem 32 Every d-maximum class C {0,1}" can be represented by a simple arrangement of
PL hyperplanes in an n-ball. Moreover the corresponding simple ayeament of PL hyperspheres
in the (n— 1)-sphere also represents C, so long as d + 1.

7.1.1 BEVMBEDDING A d-MAXIMUM CuBICAL COMPLEX IN THE N-CUBE INTO AN n-BALL

We begin with ad-maximum cubical compleg C {0,1}" embedded intg0, 1]". This gives a nat-
ural embedding o€ into R". Take a small regular neighborhogd of C so that the boundagN\’

of AL will be a closed manifold of dimensiom— 1. Note that( is contractible because it has a
deformation retraction ont@ and sod?\( is a homology(n— 1)-sphere (by a standard, well-known

1244



A GEOMETRICAPPROACH TOSAMPLE COMPRESSION

Figure 12: A 1-maximum class (thick solid lines) with its fattening (thin solid lines wiints),
bisecting sets (dashed lines) and induced complementary cells.

argument from topology due to Mazur 1961). Our aim is to prove &gtis an (n— 1)-sphere
and 4 is ann-ball. There are two ways of proving this: show tlea is simply connected and
invoke the well-known solution to the generalized Poigcapnjecture (Smale, 1961), or use the
cubical structure of tha-cube andC to directly prove the result. We adopt the latter approach, al-
though the former works fine. The advantage of the latter is that it predbegequired hyperplane
arrangement, not just the structure0f andA\/(.

7.1.2 BSECTING SETS

For each coloi, there is a hyperplang in R" consisting of all vectors witfi" coordinate equal

to 1/2. We can easily arrange the choice of regular neighbortgodf C so thatAf = B N A

is a regular neighborhood &N PR in B. (We call Af a bisecting segs it intersect€ along the
‘center’ of the reduction in thé" coordinate direction, see Figure 12.) But then si@ceP, is a
cubical complex corresponding to the reduct@nby induction onn, we can assert that{ is an
(n—1)-ball. Similarly the intersectiong{ N ‘A can be arranged to be regular neighborhoods of
(d — 2)-maximum classes and are also balls of dimensier2, etc. In this way, we see that if we
can show thaf\( is ann-ball, then the induction step will be satisfied and we will have produced a
PL-hyperplane arrangement (the system\pfn 4() in a ball.

7.1.3 SHIFTING

To complete the induction step, we use the technique of shifting (Alon, 1988kFE 1983; Haus-
sler, 1995). In our situation, this can be viewed as the converse of liftirgnely if a colori is
chosen, then the cubical compl€xhas a lifted reductio€’ consisting of alld-cubes containing
theit" color. By shifting, we can move down any of the lifted components, obtaigeplitting C
open alondC’, from the level; = 1 to the levek; = 0, to form a new cubical complex*. We claim
that the regular neighborhood Gfis a ball if and only if the same is true f@*. But this is quite
straightforward, since the operation of shifting can be thought of as glmimponents of, split
open along’, continuously from levek = 1 tox; = 0. So there is an isotopy of the attaching maps
of the components onto the lifted reduction, using the product structure ddttier. It is easy then
to check that this does not affect the homeomorphism type of the regugdnbroehood and so the
claim of shift invariance is proved.
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Figure 13: The (a) top and (b) bottom of Figure 9(b) (i.e., the 2-cubes §em above and below,
respectively) both give part of the boundary of a regular neigrdmmitinR3.

But repeated shifting finishes with the downwards closed maximum classtog®f all ver-
tices in then-cube with at mostl coordinates being one and the remaining coordinates all being
zero. It is easy to see that the corresponding cubical contplesstar-like, that is, contains all the
straight line segments from the origin to any poin€inlf we choose a regular neighborhogdto
also be star-like, then it is obvious thaf is ann-ball, using radial projection. Hence our induction
is complete and we have shown that asnaximum class i{0,1}" can be represented by a family
of PL hyperplanes in the-ball.

7.1.4 IDEAL BOUNDARY

To complete the proof of Theorem 32, B\ = S™ denote the boundary of theball A’ con-
structed above (cf. Figure 13). Each PL hyperplane intersects thesespha PL hypersphere of
dimensiomn — 2. It remains to show this arrangement of hyperspheres gives the séicalcom-
plex asC, unlessn=d + 1.

Suppose that > d+ 1. Then it is easy to see that each aelh the complement of the PL-
hyperplane arrangement #i{ has part of its boundary on the ideal boundafy. Letdc =dc, U
dc_, wheredc; is the intersection of with the ideal boundary angt_ is the closure odc\ oc, .

Itis now straightforward to verify that the face structur@of is equivalent to the face structure
of dc_. Note that any family of at mostPL hyperplanes meetin a PL ball properly embeddet{in
Sincen > d + 1, the smallest dimension of such a ball is two, and hence its boundary isatedn
Thendc_ has faces which are PL balls obtained in this way of dimension varying betweel
andn— 1. Each of these faces has boundary a PL sphere which is a face.dbo this establishes
a bijection between the facesad, and those ofc_. Itis easy to check that the cubical complexes
corresponding to the PL hyperplanes and to the PL hyperspheresaante.

Note that ifn = d + 1, then anyd-maximum clas€ C {0,1}9*+! is obtained by taking all the
d-faces of thed + 1)-cube which contain a particular vertex. S@s ad-ball and the ideal boundary
of A is ad-sphere. The cubical complex associated with the ideal boundary is tidedaiiof
C, that is, two copies of glued together along their boundaries. The proof of Theorem 32 is now
complete.
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Example 20 Consider the unique bounded bel@wmaximum clas€ C {0,1}°. We claim thaC
cannot be realized as an arrangement of PL hyperplanes ir8tball B. Note that our method
givesC as an arrangement in"Band this example shows thaf B the best one might hope for in
terms of dimension of the hyperplane arrangement.

For suppose tha€ could be realized by any PL-hyperplane arrangement3n Bhen clearly
we can also embed into B®. The vertex y= {0}° has link given by the complete graph K &n
vertices inC. (Bylink, we mean the intersection of the boundary of a small ball3rcéntered at
vo with €.) But as is well known, K is not planar, that is, cannot be embeddedtietplane or
2-sphere. This contradiction shows that no such arrangement is pessib

7.2 Maximum Classes with Manifold Cubical Complexes

We prove a partial converse to Corollary 23: ilanaximum class has a ball as cubical complex,
then it can always be realized by a simple PL-hyperplane arrangem&ft in

Theorem 33 Suppose that € {0,1}" is a d-maximum class. Then the following properties of C,
considered as a cubical complex, are equivalent:

() There is a simple arrangement A of n PL hyperplaneR3rwhich represents C.
(ii) C is homeomorphic to the d-ball.

(iii) Cis ad-manifold with boundary.

Proof To prove (i) implies (ii), we can use exactly the same argument as CorollariN@g (ii)
trivially implies (iii). So it remains to show that (iii) implies (i). The proof procedisdouble
induction onn,d. The initial cases where eithdr= 1 orn =1 are very easy.

Assume tha€ is a manifold. Letp denote thé™ coordinate projection. Thep(C) is obtained
by collapsingC' x [0, 1] ontoC', whereC' is the reduction. As before, I be the linear hyperplane
in R", where thei coordinate takes value/2. Viewing C as a manifold embedded in thme
cube, since? intersectsC transversely, we see th@t x {1/2} is a proper submanifold «&. But
it is easy to check that collapsir@ x [0,1] to C' in C produces a new manifold which is again
homeomorphic t€. (The product regio' x [0,1] in C can be expanded to a larger product region
C' x [—¢,1+¢] and so collapsing shrinks the larger region to one of the same homeomotghism
namelyC' x [—¢,€] ). So we conclude that the projectigiC) is also a manifold. By induction on
n, it follows that there is a PL-hyperplane arrangem&ntonsisting oh— 1 PL hyperplanes i&¢,
which representp(C).

Next, observe that the reducti@} can be viewed as a properly embedded submanhbid
BY, whereM is a union of some of théd — 1)-dimensional faces of the Voronoi cell decomposition
corresponding t@, described in Corollary 23. By induction ahwe conclude that' is also repre-
sented byr PL hyperplanes i9~1. But then since condition (i) implies (ii), it follows thad is PL
homeomorphic t®%-2, since the underlying cubical complex fotis a(d — 1)-ball. So it follows
thatAU {M} is a PL-hyperplane arrangementBf representing. This completes the proof that
condition (iii) implies (i). |
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8. Corner Peeling2-Maximum Classes

We give a separate treatment for the case of 2-maximum classes, sincenplisrghan the gen-
eral case and shows by a direct geometric argument, that represebtatosimple family of PL
hyperplanes or PL hyperspheres implies a corner-peeling scheme.

Theorem 34 Every2-maximum class can be corner peeled.

Proof By Theorem 32, we can represent any 2-maximum d¢lass{0, 1}" by a simple family of

PL hypersphere$S} in S'~1. Every pair of hypersphere, Sj intersects in arin — 3)-spheres;

and there are no intersection points between any three of these hygrespBonsider the family

of spheres5j, for i fixed. These are disjoint hyperspheresiso we can choose an innermost one
Sk which bounds arin — 2)-ball B; in § not containing any other of these spheres. Moreover there
are two ballsB;, Bz bounded by§y on S. We call the twa(n— 1)-ballsQ», Qs bounded byB; U By,

B; UB3 respectively irS'1, which intersect only along;, quadrants

AssumeB; is innermost org,. Then the quadrar®, has both faceBs, B, innermost. Itis easy
to see that such a quadrant corresponds to a corner ver@xinich can be peeled. Moreover,
after peeling, we still have a family of PL hyperspheres which give eaangament corresponding
to the new peeled class. The only difference is that@gltisappears, by interchangifgj, B, on
the corresponding spher8sS; and then slightly pulling the faces apart. il 3, we can visualize
a pair of disks on two intersecting spheres with a common boundary circlen péeling can be
viewed as moving these two disks until they coincide and then pulling the fgstipasecond). So
it is clear that if we can repeatedly show that a quadrant can be foundwatinnermost faces,
until all the intersections between the hyperspheres have been rentloedye will have corner
peeledC to a 1-maximum class, that is, a tree. So peeling will be established.

Suppose neither of the two quadra@ts Qs has both faces innermost. Consi@rsay and let
{&} be the family of spheres intersecting the interior of the fBgeAmongst these spheres, there
is clearly at least on&; so that the intersectio&p, is innermost orS,. But thenS<B bounds an
innermost balB, in S whose interior is disjoint from all the spher€S,}. Similarly, we see that
S bounds a balBs which is the intersection of the spheggwith the quadran@,. We get a new
quadrant bounded b, U Bs which is strictly smaller tha®, and has at least one innermost face.
But clearly this process must terminate—we cannot keep finding smallenzaitsquadrants and
so a smallest one must have both faces innermost. |

9. Corner Peeling Finite Maximum Classes

Above, simple PL-hyperplane arrangements inrHeall B" are defined. For the purposes of this
section, we study a slightly more general class of arrangements. Everlesamangement is in
this larger class, but the latter class has many good properties. In Exag@ertaximal class is
represented by a 2-contractible hyperbolic-hyperplane arrangeByeobntrast, simple hyperplane
arrangements always represent maximum classes.

Definition 35 Suppose that a finite arrangemehof PL hyperplanegPy }, each properly embed-
ded in an n-ball B, satisfies the following conditions:
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i. Each k-subcollection of hyperplanes either intersects transverselyPin plane of dimension
n—Kk, or has an empty intersection; and

ii. The maximum number of hyperplanes which mutually intersectisd

Then we say that the arrangemeis d-contractible

The arrangements in Definition 35 are calddontractible because we prove later that their
corresponding one-inclusion graphs are strongly contractible cubiraplexes of dimensiod.
Moreover we now prove that the corresponding one-inclusion giaaes VC dimension exactly.

Lemma 36 The one-inclusion graph corresponding to a d-contractible arrangemefhas VC-
dimension d.

Proof We observe first of all, that sincg has a subcollection af hyperplanes which mutually
intersect, the corresponding one-inclusion gréptas ad-subcube, when considered as a cubical
complex. But then the VC dimension 0&fis clearly at leastl. On the other hand, suppose that
the VC dimension of was greater thad. Then there is a projection &f which shatters some
(d+1)-cube. But this projection can be viewed as deleting all the hyperplan@seatept for a
subcollection ofd + 1 hyperplanes. However, by assumption, such a collection cannotamgve
mutual intersection points. It is easy to see that any such an arrangeasattrnost 21 — 1 com-
plementary regions and hence cannot represer{dthel)-cube. This completes the proof. W

Definition 37 A one-inclusion graph is strongly contractibldf it is contractible as a cubical
complex and moreover, all reductions and multiple reductioris afe also contractible.

Definition 38 Thecomplexityof a PL-hyperplane arrangemertis the lexicographically ordered
pair (r,s), where r is the number of regions in the complemer®,aind s is the smallest number of
regions in any half space on one side of an individual hyperplari2 in

We allow several different hyperplanes to be used for a single swgppigess. So a hyperplane
P may start sweeping across an arrangenten®ne of the half spaces defined Bycan become a
new ballB, with a new arrangemer®, defined by restriction of’ to the half spac®,.. Then a
second generic hyperplafécan start sweeping across this new arranger®enf his process may
occur several times. It is easy to see that sweeping a single generiplaypeas in Theorem 29,
applies to such a multi-hyperplane process. Below we show that a suitablelensitipeping of a
PL-hyperplane arrangemeftgives a corner-peeling sequence of all finite maximum classes.

The following states our main theorem.

Theorem 39 Assume tha® is a d-contractible PL-hyperplane arrangement in the n-b&ll Bhen
there is a d-corner-peeling scheme for this collectin

Corollary 40 There is no constant k so that every finite maximal class of VC-dimedsian be
embedded into a maximum class of VC-dimensierkd
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Arrangement P Arrangement P'
() (b)
Figure 14: (a) An example PL-hyperplane arrangenteand (b) the result of a Pachner move of
hyperpland?; on P.

Proof By Theorem 39, every maximum class has a peeling scheme which suetessmoves
vertices from the one-inclusion graph, so that the vertices being detaeel/er have degree more
thand. But Rubinstein et al. (2007) gave examples of maximal classes of VC-dioreth which
have a core of the one-inclusion graph of size k for any constank. Recall that a core is a sub-
graph and its size is the minimum degree of all the vertices. Having a peeliamsajives an upper
bound on the size of any core and so the result follows. |

9.1 Proof of Main Theorem

The proof is by induction on the complexity . Since we are dealing with the class af
contractible PL-hyperplane arrangements, it is easy to see that if amgpsssplit operalong some
fixed hyperplané; in the arrangement (see Figures 14-15), then the result is two newamants
. ,P_ each of which contains fewer hyperplanes and also fewer complemeataons than the
initial one. The new arrangements have smaller complexity thamd arek—, k’-contractible for
somek, k' < d. This is the key idea of the construction.

To examine this splitting process in detail, first note that each hyperfard P is either
disjoint from P, or splits alongP; into two hyperplane®; ,P;. We can now construct the new
PL-hyperplane arrangements , P_ in the ballsB. ,B_ obtained by splitting® alongP;. Note
thatoB, = PLUD, anddB_ = PLUD_ whereD, ,D_ are balls of dimensiom— 1 which have
a common boundary with;. It is easy to verify that?, ,P_ satisfy similar hypotheses to the
original arrangement. Observe that the maximum number of mutually interségregplanes in
P.,P_ may decrease relative to this number #®yrafter the splitting operation. The reason is that
the hyperpland; ‘disappears’ after splitting and so if all maximum subcollectiongPoivhich
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Ball B, Ball B

P

2
Arrangement P Arrangement P

Figure 15: Result of splitting” in Figure 14(a) along hyperplarig.

mutually intersect, all contaiRy, then this number is smaller fa®?, , P as compared to the initial
arrangemen®. This number shows that,, 7. can bek- or k'-contractible, fok, k' < d as well as
the cases wherfe k' =d.

Start the induction with any arrangement with one hyperplane. This givesdgions and
complexity (2,1). The corresponding graph has one edge and two vertices and digviansbe
corner peeled.

We now describe the inductive step. There are two cases. In the fsatnaghe arrangement
has complexityr, 1). The corresponding graph has a vertex which belongs to only one saigan
be corner peeled. This gives an arrangement with fewer hyperpaidedearly the complexity has
decreased tér — 1,s) for somes. This completes the inductive step for the first case.

For the second case, assume thatatbntractible hyperplane arrangements with complexity
smaller thar(r,s) have corner-peeling sequences and1. Choose ang-contractible hyperplane
arrangemen® with complexity(r,s). Select a hyperplar® which splits the arrangement into two
smaller arrangement®, , P_ in the ballsB,,B_. By our definition of complexity, it is easy to see
that however we chood®, the complexity of each aP,, P_ will be less than that of?. However,

a key requirement for the proof will be that we selBgtso that it has precisely complementary
regions for?,, that is,P; has fewest complementary regions in one of its halfspaces, amongst all
hyperplanes in the arrangement.

Since?, has smaller complexity thafm, s), by our inductive hypothesis, it can be corner peeled
(cf. Figure 16). If any of the corner-peeling moves®f is a corner-peeling move faP, then
the argument follows. For any corner-peeling movePajives a PL-hyperplane arrangement with
fewer complementary cells thah and thus smaller complexity thdns). Hence by the inductive
hypothesis, it follows tha® can be corner peeled.

Next, suppose that no corner-peeling movePofis a corner-peeling move fa®. In particular,
the first corner-peeling move faP, must occur for a celR, in the complement of?, which is
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Figure 16: Partial corner-peeling sequence for(Big, P, ) arrangement split from the arrangement
of Figure 15, in the proof of Theorem 39.

adjacent taP;. (Clearly any corner-peeling move fat_, which occurs at a regioR; with a face
on D, will be a corner-peeling move faP.) R, must be a product of &-simplexA with a copy
of R™¥ with one face orP; and the other faces on planes®f This is because a corner-peeling
move can only occur at a cell with this type of face structure, as descib&deorem 29. The
corresponding effect on the one-inclusion graph is peeling of a vettéh is a corner of a’-cube

in the binary class corresponding to the arrangenfeniwhered’ < d.

Now even though such a cdf, does not give a corner-peeling move By we can pushP;
acrossR,. The effect of this is to move the complementary dll from B* to B~. Moreover,
since we assumed that the hyperpl&éeatisfiesP™ has a minimum numbesof complementary
regions, it follows that the move pushifgacrossR, produces a new arrangemefit with smaller
complexity (r,s— 1) than the original arrangememt. Hence by our inductive assumptiof;
admits a corner-peeling sequence.

To complete the proof, we need to show that existence of a corner-pegqence forP*
implies that the original arrangemefthas at least one corner-peeling move. Recall Bhahas
face structure given bg x R™ % with one face o, and the other faces on planes®f Consider
the subcompleld of the one-inclusion graph consisting of all the regions sharing a vertexce of
dimensiork for 1 <k <n—1with R,. Itis not difficult to see thadt is ad’-ball consisting ofi’ + 1
cubes, each of dimensiafi. (As examples, iti’ = 2, U consists of 3 2-cubes forming a hexagon
and ifd’ = 3, U consists of 4 3-cubes with boundary a rhombic dodecahedron.)

Consider the first corner-peeling move on the arrangen®nt Note that the one-inclusion
graphs ofP* and differ precisely by replacingy with U’, that is, by a Pachner move. Hence this
first corner-peeling move must occur at a vertgxvhose degree is affected by this replacement,
since otherwise, the corner-peeling move would also appl® &md the proof would be complete.
In fact, if vi has the same number of adjacent edges before and after the Pachieertimeovit
must belong to the same single maximum dimension cube before and after tmePacive. (The
only cubes altered by the Pachner move are the ones)init is easy to see thaty; must belong
to 0U = dU’ and must have degrek in P*. Sov; is a corner of a singld’-cube forU’ and does
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Vi
U U’
U U
V3 V3
V3 \e)
Pachner vy Peel v, Peel v, Peel v,
—_ — — —
v,
V2 V2

Figure 17: A 2-maximum complex in the 3-cube. After a Pachner move vewices vs, etc. can
be corner-peeled.

not belong to any other edges or cubes of the one inclusion graphfdn U (and hence also in
P), v1 belongs tad’-cubes of dimensiod’ and so has degre# + 1. After peeling away; and its
correspondingl’-cube, we still have d’-ball with only d’-cubes, (cf. Figure 17).

Consider the next corner-peeling move. We claim that it must again beeatexv, belonging
to 0U’. The reason is that only vertices belongindXohave degree reduced by our first corner-
peeling move. So if this second move did not occur at a verted’pthen it could be used as
a corner-peeling move of our initial arrangemeht There may be several choices fer. For
example, ifd’ = 2, thenU’ is a hexagonal disk and removing one 2-cube ftdhgives a choice
which could be either of the two vertices which are corners of a singléd2-tl’, (cf. Figure 17).
Note that a vertex which is a corner of a single cub&irremains so after corner peeling\at
Note also that, cannot belong to any edges of the one-inclusion graph which are b as for
vy, if Vo can be used for corner peeling.

We can continue examining corner-peeling move®band find that all must occur at vertices
in dU’, until the unique interior vertex is ready to be peeled, that is, belongs tgke sinbe. (See
Figure 17.) The key to understanding this is that firstly, when we initially pelgi\certices indU’,
these are not adjacent to any vertices of the one-inclusion graph outsatel so cannot produce
any new opportunities for corner peeling of vertices nad inSecondly, if the unique interior vertex
v of U’ can be corner peeled, after sufficiently many vertice8Unh have been peeled, then new
vertices indU’ become candidates for peeling. For although these latter vertices may beradga
vertices outsid&)’, afterv has been peeled, they may become a corner vertex of a unique maximal
cube.

But now a final careful examination of this situation shows that there mustlbast one vertex
of U which belongs to a singlé’-cube inU and to no other edges iA. So this will give our initial
corner-peeling move ap.

To elaborate, we can describkas the set ofi’-cubes which share the vert¢®,0,...,0) in
the (d’ + 1)-cube{0,1}9+1. ThenU’ consists of all thel’-cubes in{0,1}%* which contain the
vertex(1,1,...,1). Now assume that an initial sequence of corner peeling of vertiogtd’iallows
the next step to be corner peeling of the unique interior verté¥ote that in the notation above,
corresponds to the vertés,1,...,1).
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As in Figure 17, we may assume that after the corner peeling corresgatadihe initial se-
guence of vertices idU’, that there is a singld’-cube left inU’ containingv. Without loss of gen-
erality, suppose this is the cube with vertices with= 1 where the coordinates axe Xz, ..., Xg 11
in {0,1}9+1, But then, it follows that there are no vertices outdileadjacent to any of the initial
sequence of vertices, which are all the verticefrl } 9+ with x; = 0, except for(0,0, ... ,0). But
now the vertex0,1,...,1) has the property that we want - it is contained in a unidgueube inU
and is adjacent to no other vertices outditleThis completes the proof.

9.2 Peeling Classes with Generic Linear or Generic Hyperbolic Arrangemeist

In this subsection, we study a special clasd-agbntractible arrangements. If a collection of hyper-
planes in am-manifold is in general position, then they have the property in the followifigitlen.
Then a key idea in differential or PL topology is that any collection can bathligerturbed to be
in general position. See Rourke and Sanderson (1982) for a discudsthese issues in the PL
case.

Definition 41 A linear or hyperbolic-hyperplane arrangemenin R" or H" respectively, is called
generig if any subcollection of k hyperplanes®f for 2 < k < n has the property that there are no
intersection points or the subcollection intersects transversely in a planienehdion rn- k.

Corollary 42 Suppose? is a generic linear or hyperbolic-hyperplane arrangemeniRithor H"
and amongst all subcollections #f the largest with an intersection point in common, has d hyper-
planes. Ther? admits a d-corner-peeling scheme.

Remark 43 The proof of Corollary 42 is immediate since it is obvious that any genermalfior
hyperbolic-hyperplane arrangement is a d-contractible PL-hypemplarrangement, where d is the
cardinality of the largest subcollection of hyperplanes which mutually iet#rsNote that many
generic linear, hyperbolic or d-contractible PL-hyperplane arrangeits do not embed in any sim-
ple linear, hyperbolic or PL-hyperplane arrangement. For if there tave hyperplanes irP which
are disjoint, then this is an obstruction to enlarging the arrangement by gdalilditional hyper-
planes to obtain a simple arrangement. Hence this shows that Theoremo@%cps compression
schemes, by corner peeling, for a considerably larger class of arlasion graphs than just max-
imum one-inclusion graphs. However it seems possible that d-conteBtibhyperplanes always
embed in d-maximum classes, by ‘undoing’ the operation of sweepthganer peeling, which
pulls apart the hyperplanes.

10. Peeling Infinite Maximum Classes with Finite-DimensionbBArrangements

We seek infinite classes represented by arrangements satisfying thewatitioos as above. Note
that any finite subclass of such an infinite class then satisfies these comnditidrso can be corner
peeled. Hence any such a finite subclass has a complementary Ragitioh has face structure of
the product of al’-simplex with a copy oR"™¢ with one face on the boundary Bf. To find such
a region in the complement of our infinite collecti@we must impose some conditions.

One convenient condition (cf. the proof of Theorem 39) is that a IpfapeP, in P can be
found which splitsB" into piecesB.,B_ so that one, saB, gives a new arrangement for which the
maximum number of mutually intersecting hyperplanes is strictly less than th@&t fassume that
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the new arrangement satisfies a similar condition, and we can keep splittingramgét to disjoint
hyperplanes.

It is not hard to prove that such arrangements always have peelingrsszs. Moreover the
peeling sequence does give a compression scheme. This sketch essabksfollowing.

Theorem 44 Suppose that a countably infinite collecti@rof PL hyperplaneg§Py }, each properly
embedded in an n-ball'Bsatisfies the following conditions:

i. P satisfies the conditions of d-contractible arrangements as in Definition 85 an

ii. There is an ordering of the planes if so that if we split B successively along the planes,
then at each stage, at least one of the two resulting balls has an arragenith a smaller
maximum number of planes which mutually intersect.

Then there is a d-corner-peeling schemefpand this provides a d-unlabeled compression scheme.

Example 21 Rubinstein and Rubinstein (2008) give an example that satisfies the agswsrgf
Theorem 44. Namely iR" choose the positive octatt= {(Xa, X2, ...Xn) : X; > 0}. InsideO choose
the collection of hyperplanes given by=m for all 1 <i < n and m> 1 a positive integer. There
are many more examples, we present only a very simple model lae.aTgraph inside the unit
disk D with a single vertex of degré@sand the three end vertices @b. Now choose a collection
of disjoint embedded arcs representing hyperplanes with en@®and meeting one of the edges
of the graph in a single point. We choose finitely many such arcs along tthe gfaph edges and
an infinite collection along one arc. This gives a very simple family of hypeeglaatisfying the
hypotheses of Theorem 44. Higher dimensional examples with inteségiierplanes based on
arbitrary trees can be constructed in a similar manner.

11. Contractibility, Peeling and Arrangements

In this section, we characterize the concept classes which have dusincgraphs representable
by d-contractible PL-hyperplane arrangements.

Theorem 45 Assume that” is a concept class in the binary n-cube and d is the largest dimension
of embedded cubes in its one-inclusion grépiT he following are equivalent.

i. I is a strongly contractible cubical complex.

ii. There is a d-contractible PL-hyperplane arrangeméhin an n-ball which represents.

Proof To prove that impliesii, we use some important ideas in the topology of manifolds. The
cubical complexC is naturally embedded into the binamycube, which can be considered as an
n-ball B". A regular neighborhool of ¢ homotopy retracts ontg and so is contractible. Now we
can use a standard argument from algebraic and geometric topologyéotpaiN is a ball. Firstly,

ON is simply connected, assuming that d > 2. For given a loop i@N, it bounds a disk iN by
contractibility. SinceC is ad-dimensional complex and—d > 2 it follows that this disk can be
pushed offC by transversality and then pushed idtd. But now we can follow a standard argument
using the solution of the Poindaconjecture in all dimensions (Perelman, 2002; Freedman, 1982;
Smale, 1961). By duality, it follows thaN is a homotopy(n— 1)-sphere and so by the Poinéar
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conjecturegN is an(n— 1)-sphere. Another application of the Poing@onjecture shows thatis
ann-ball.

Next, the bisecting planes of the binamcube meet tha-ball N in neighborhoods of reduc-
tions. Hence the assumption that each reduction is contractible enablesarshode that these
intersections are also PL hyperplanesNin Therefore the PL-hyperplane arrangement has been
constructed which represents It is easy to see that this arrangement is inddembntractible,
since strong contractibility implies that all multiple reductions are contractible anutersections
of subfamilies of PL hyperplanes are either empty or are contractible anue lptanes, by the same
argument as the previous paragraph. (Note that such intersectioaspmmmd to multiple reductions
of ')

Finally to show thaii impliesi, by Theorem 39, a-contractible PL-hyperplane arrangement
P has a peeling sequence and so the corresponding one-inclusiomgiapbntractible. This fol-
lows since a corner-peeling move can be viewed as a homotopy retractibthe® reductions and
multiple reductions are also representeddbcontractible hyperplane arrangements, since these
correspond to the restriction df to the intersection of a finite subfamily of hyperplanesfofit is
straightforward to check that these new arrangementd’azentractible, completing the proofll

Remark 46 Note that any one-inclusion graph which satisfies the hypotheses of Theorem 45
admits a corner-peeling sequence. From the proof abbvaust be contractible if it has a peeling
sequence. Howevér does not have to be strongly contractible. A simple example can be found
in the binary 3-cube, with coordinate directionsykz. Definel’ to be the union of four edges,
labeled xy,z X. It is easy to see thdt has a peeling sequence and is contractible but not strongly
contractible. For the bisecting hyperplane transverse to the x directiotgher two points, so the
reduction* is a pair of vertices, which is not contractible.

Note that all maximum classes are strongly contractible, as are also allrliaed hyperbolic
arrangements, by Corollary 42 and Theorem 45.

12. Future Directions: Compression Schemes for Maximal Clases

In this section, we compare two maximal classes of VC-dimension 2 in the bireaupel For the
first, we show that the one-inclusion graph is not contractible and threréiere is no peeling or
corner-peeling scheme. There is an unlabeled compression scherttaslisiinot associated with
either peeling or a hyperplane arrangement. For the second, the dusienagraph is contractible
but not strongly contractible. However there are simple corner-pedtimgnses and a related com-
pression scheme. Note that the relation between the compression schethe anther-peeling
scheme is not as straightforward as in our main result above. Finally feetwnd example, there
is a non simple hyperplane arrangement consisting of lines in the hypertaie which represents
the class. It would be interesting to know if there are many maximal classeh athioit such non
simple representations and if there is a general procedure to find dedamiapression schemes.

Example 22 Let C be the maximal class of VC-dimens®m the 4-cube with concepts and labels
shown in Figure 18(a). This forms an unlabeled compression schepie.tiat the one-inclusion
graph is not connected, consisting of fdcubes with common vertex at the origin 0000 and an
isolated vertex at 1111. So since a contractible complex is connectednéhimausion graph
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Concept Label Concept Label
0000 0 0000 0
1000 X1 1000 X1
0100 X2 0100 X2
0010 X3 0010 X3
0001 Xa 1100 X1 X2
1100 X1 X2 0110 X2X3
0011 X3X4 1010 X1X3
0110 XoX3 1011 XoX4
1001 X1X4 1101 X3X4
1111 XqX3, XoXa 0111 X1X4

(@) (b)

Figure 18: VC-2 maximal classes from (a) Example 22 and (b) Example 23.

cannot be contractible. Moreover any hyperplane arrangemenesgmts a connected complex so
there cannot be such an arrangement for this example. This exampéesartie class (up to flipping
coordinate labels) as in Kuzmin and Warmuth (2007, Table 2) but thgreato be some errors
there in describing the compression scheme.

Example 23 Let C be the maximal class of VC-dimens®m the 4-cube with concepts and labels
defined in Figure 18(b). The class is enlarged by adding an extra védt& » to complete the
labeling.

This forms an unlabeled compression scheme and is the same as in Knzhiifaemuth (2007,
Table 1). The one-inclusion graph is contractible, consisting of tBreabes with common vertex
0100 and three edges attached to th2smubes. It is easy to form a hyperbolic-line arrangement
consisting of three lines meeting in three points forming a triangle and threeefuittes near the
boundary of the hyperbolic plane which do not meet any other line.

It is easy to see that there is a corner-peeling sequence, but theré $1clo an obvious way
of using this to form a compression scheme. The idea is that the lghetames from picking
the origin at 0000 and considering the shortest path to the origin as givindatbel. There are
numerous ways of corner peeling this one-inclusion complex. The tmy comment is that the
final vertices 0111, 1011, 1101 and 1111 are labeled in a differentnerarNamely putting the
origin at 0000 means that 0111 has shortest path with lajpelx. We replace this by the labelx
since clearly this satisfies the no-clashing condition. Then the final veltek Has the remaining
label x4 to uniquely specify it.

13. Conclusions and Open Problems

We saw in Corollary 23 thal-maximum classes represented by simple linear-hyperplane arrange-
ments inRY have underlying cubical complexes that are homeomorphiaitball. Hence the VC
dimension and the dimension of the cubical complex are the same. Moreoveeanem 33, we
proved that-maximum classes represented by PL-hyperplane arrangemétftsine those whose
underlying cubical complexes are manifolds or equivaletithalls.
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Question 47 Does every simple PL-hyperplane arrangement $n\Bhere every subcollection of
d planes transversely meet in a point, represent the same conceptadasome simple linear-
hyperplane arrangement?

Question 48 What is the connection between the VC dimension of a maximum class ifguced
a simple hyperbolic-hyperplane arrangement and the smallest dinreoktoyperbolic space con-
taining such an arrangement? In particular, can the hyperbolic spacedaion be chosen to only
depend on the VC dimension and not the dimension of the binary cubériogtte class?

We gave an example of a 2-maximum class in the 5-cube that cannot bedealiadyperbolic-
hyperplane arrangement #2>. Note that the Whitney embedding theorem (Rourke and Sanderson,
1982) proves that any cubical complex of dimensioembeds ifR24. Can such an embedding be
used to construct a hyperbolic arrangementfiff! or a PL arrangement iR2?

The structure of the boundary of a maximum class is strongly related torcoeeéng. For
Euclidean-hyperplane arrangements, the boundary of the corgisganaximum class is homeo-
morphic to a sphere by Corollaries 22 and 23.

Question 49 Is there a characterization of the cubical complexes that can occureabdhindary
of a maximum class? Characterize maximum classes with isomorphic driesd

Question 50 Does a corner-peeling scheme exist with corner vertex sequena@eghavnimum
degree?

Theorem 32 suggests the following.

Question 51 Can any d-maximum class {®,1}" be represented by a simple arrangement of hy-
perplanes inH"?

Question 52 Which compression schemes arise from sweeping across simple blypésgperplane
arrangements?

Kuzmin and Warmuth (2007) note that there are unlabeled compressionestteat are cyclic.
In Proposition 17 we show that corner-peeling compression schememflikpeeling) are acyclic.
So compression schemes arising from sweeping across simple arratgerhéyperplanes in
Euclidean or hyperbolic space are also acyclic. Does acyclicity chamectsuch compression
schemes?

We have established peeling of all finite maximum and a family of infinite maximumeddss
representing them as PL-hyperplane arrangements and sweeping byemgétigric hyperplanes.
A larger class of arrangements has these properties—namely those whitle@ntractible—and
we have shown that the corresponding one-inclusion graphs arisgiyethe strongly contractible
ones. Finally we have established that theredaneaximal classes that cannot be embedded in any
(d+ k)-maximum classes for any constantSome important open problems along these lines are
the following.

Question 53 Prove peeling of maximum classes using purely combinatorial arguments
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Question 54 Can all maximal classes be peeled by representing them by hyperplamgements
and then using a sweeping technique (potentially solving the Sample Caibpitgsconjecture)?
The obvious candidate for this approach is to use d-contractible PL-pjguez arrangements.

Question 55 What about more general collections of infinite maximum classes, oiténdimange-
ments?

Question 56 Is it true that any d-contractible PL-hyperplane arrangement is edaivtao a hyperbolic-
hyperplane arrangement?

Question 57 Is it true that all strongly contractible classes, with largest dimension dubks can
be embedded in maximum classes of VC-dimension d?
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