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Abstract

The Sample Compression Conjecture of Littlestone & Warmuthhas remained unsolved for a quar-
ter century. While maximum classes (concept classes meetingSauer’s Lemma with equality) can be
compressed, the compression of general concept classes reduces to compressing maximal classes
(classes that cannot be expanded without increasing VC dimension). Two promising ways forward
are: embedding maximal classes into maximum classes with atmost a polynomial increase to VC
dimension, and compression via operating on geometric representations. This paper presents pos-
itive results on the latter approach and a first negative result on the former, through a systematic
investigation of finite maximum classes. Simple arrangements of hyperplanes in hyperbolic space
are shown to represent maximum classes, generalizing the corresponding Euclidean result. We
show that sweeping a generic hyperplane across such arrangements forms an unlabeled compres-
sion scheme of size VC dimension and corresponds to a specialcase of peeling the one-inclusion
graph, resolving a recent conjecture of Kuzmin & Warmuth. A bijection between finite maximum
classes and certain arrangements of piecewise-linear (PL)hyperplanes in either a ball or Euclidean
space is established. Finally we show thatd-maximum classes corresponding to PL-hyperplane
arrangements inRd have cubical complexes homeomorphic to ad-ball, or equivalently complexes
that are manifolds with boundary. A main result is that PL arrangements can be swept by a moving
hyperplane to unlabeledd-compressanyfinite maximum class, forming a peeling scheme as con-
jectured by Kuzmin & Warmuth. A corollary is that somed-maximal classes cannot be embedded
into any maximum class of VC-dimensiond+ k, for any constantk. The construction of the PL
sweeping involves Pachner moves on the one-inclusion graph, corresponding to moves of a hyper-
plane across the intersection ofd other hyperplanes. This extends the well known Pachner moves
for triangulations to cubical complexes.

Keywords: sample compression, hyperplane arrangements, hyperbolicand piecewise-linear ge-
ometry, one-inclusion graphs

1. Introduction

Maximumconcept classes have the largest cardinality possible for their given VCdimension. Such
classes are of particular interest as their special recursive structureunderlies all general sample
compression schemes known to-date (Floyd, 1989; Warmuth, 2003; Kuzminand Warmuth, 2007).
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It is this structure that admits many elegant geometric and algebraic topologicalrepresentations
upon which this paper focuses.

Littlestone and Warmuth (1986) introduced the study ofsample compression schemes, defined
as a pair of mappings for given concept classC: a compression functionmapping aC-labeled
n-sample to a subsequence of labeled examples and areconstruction functionmapping the sub-
sequence to a concept consistent with the entiren-sample. A compression scheme of bounded
size—the maximum cardinality of the subsequence image—was shown to imply learnability. The
converse—that classes of VC-dimensiond admit compression schemes of sized—has become one
of the oldest unsolved problems actively pursued within learning theory (Floyd, 1989; Helmbold
et al., 1992; Ben-David and Litman, 1998; Warmuth, 2003; Hellerstein, 2006; Kuzmin and War-
muth, 2007; Rubinstein et al., 2007, 2009; Rubinstein and Rubinstein, 2008). Interest in the conjec-
ture has been motivated by its interpretation as the converse to the existence of compression bounds
for PAC learnable classes (Littlestone and Warmuth, 1986), the basis of practical machine learning
methods on compression schemes (Marchand and Shawe-Taylor, 2003;von Luxburg et al., 2004),
and the conjecture’s connection to a deeper understanding of the combinatorial properties of concept
classes (Rubinstein et al., 2009; Rubinstein and Rubinstein, 2008). Recently Kuzmin and Warmuth
(2007) achieved compression of maximum classes without the use of labels.They also conjectured
that their elegant min-peeling algorithm constitutes such an unlabeledd-compression scheme for
d-maximum classes.

As discussed in our previous work (Rubinstein et al., 2009), maximum classes can be fruitfully
viewed ascubical complexes. These are also topological spaces, with each cube equipped with a
natural topology of open sets from its standard embedding into Euclidean space. We proved that
d-maximum classes correspond tod-contractible complexes—topological spaces with an identity
map homotopic to a constant map—extending the result that 1-maximum classes have trees for
one-inclusion graphs. Peeling can be viewed as a special form of contractibility for maximum
classes. However, there are many non-maximum contractible cubical complexes that cannot be
peeled, which demonstrates that peelability reflects more detailed structure ofmaximum classes
than given by contractibility alone.

In this paper we approach peeling from the direction of simple hyperplane arrangement rep-
resentations of maximum classes. Kuzmin and Warmuth (2007, Conjecture 1) predicted thatd-
maximum classes corresponding to simple linear-hyperplane arrangements could be unlabeledd-
compressed by sweeping a generic hyperplane across the arrangement, and that concepts are min
peeled as their corresponding cell is swept away. We positively resolvethe first part of the conjec-
ture and show that sweeping such arrangements corresponds to a new form ofcorner peeling, which
we prove is distinct from min peeling. Whilemin peelingremoves minimum degree concepts from
a one-inclusion graph, corner peeling peels vertices that are containedin unique cubes of maximum
dimension.

We explore simple hyperplane arrangements in hyperbolic geometry, which we show correspond
to a set of maximum classes, properly containing those represented by simplelinear Euclidean ar-
rangements. These classes can again be corner peeled by sweeping. Citing the proof of existence of
maximum unlabeled compression schemes due to Ben-David and Litman (1998),Kuzmin and War-
muth (2007) ask whether unlabeled compression schemes for infinite classes such as positive half
spaces can be constructed explicitly. We present constructions for illustrative but simpler classes,
suggesting that there are many interesting infinite maximum classes admitting explicitcompression
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schemes, and under appropriate conditions, sweeping infinite Euclidean,hyperbolic or PL arrange-
ments corresponds to compression by corner peeling.

Next we prove that all maximum classes in{0,1}n are represented as simple arrangements of
piecewise-linear (PL) hyperplanes in then-ball. This extends previous work by Gärtner and Welzl
(1994) on viewing simple PL-hyperplane arrangements as maximum classes.The close relationship
between such arrangements and their hyperbolic versions suggests thatthey could be equivalent.
Resolving the main problem left open in the preliminary version of this paper (Rubinstein and
Rubinstein, 2008), we show that sweeping ofd-contractible PL arrangements does compress all
finite maximum classes by corner peeling, completing (Kuzmin and Warmuth, 2007, Conjecture 1).

We show that a one-inclusion graphΓ can be represented by ad-contractible PL-hyperplane
arrangement if and only ifΓ is a strongly contractible cubical complex. This motivates the nomen-
clature ofd-contractible for the class of arrangements of PL hyperplanes. Note thenthat these
one-inclusion graphs admit a corner-peeling scheme of the same sized as the largest dimension of
a cube inΓ. Moreover if such a graphΓ admits a corner-peeling scheme, then it is a contractible
cubical complex. We give a simple example to show that there are one-inclusion graphs which
admit corner-peeling schemes but are not strongly contractible and so are not represented by ad-
contractible PL-hyperplane arrangement.

Compressingmaximal classes—classes which cannot be grown without an increase to their VC
dimension—is sufficient for compressing all classes, as embedded classes trivially inherit compres-
sion schemes of their super-classes. This reasoning motivates the attempt toembedd-maximal
classes intoO(d)-maximum classes (Kuzmin and Warmuth, 2007, Open Problem 3). We present
non-embeddability results following from our earlier counter-examples to Kuzmin & Warmuth’s
minimum degree conjecture (Rubinstein et al., 2009), and our new results oncorner peeling. We
explore with examples, maximal classes that can be compressed but not peeled, and classes that are
not strongly contractible but can be compressed.

Finally, we investigate algebraic topological properties of maximum classes. Most notably we
characterized-maximum classes, corresponding to simple linear Euclidean arrangements, as cubical
complexes homeomorphic to thed-ball. The result that such classes’ boundaries are homeomorphic
to the (d− 1)-sphere begins the study of the boundaries of maximum classes, which areclosely
related to peeling. We conclude with several open problems.

2. Background

We begin by presenting relevant background material on algebraic topology, computational learning
theory, and sample compression.

2.1 Algebraic Topology

Definition 1 A homeomorphismis a one-to-one and onto map f between topological spaces such
that both f and f−1 are continuous. Spaces X and Y are said to behomeomorphicif there exists a
homeomorphism f: X→Y.

Definition 2 A homotopyis a continuous map F: X× [0,1]→ Y. Theinitial map is F restricted
to X×{0} and thefinal mapis F restricted to X×{1}. We say that the initial and final maps are
homotopic. A homotopy equivalencebetween spaces X and Y is a pair of maps f: X → Y and
g : Y→ X such that f◦g and g◦ f are homotopic to the identity maps on Y and X respectively. We

1223



RUBINSTEIN AND RUBINSTEIN

say that X and Y have thesame homotopy typeif there is a homotopy equivalence between them. A
deformation retractionis a special homotopy equivalence between a space X and a subspace A⊆X.
It is a continuous map r: X→ X with the properties that the restriction of r to A is the identity map
on A, r has range A and r is homotopic to the identity map on X.

Definition 3 A cubical complexis a union of solid cubes of the form[a1,b1]× . . .× [am,bm], for
bounded m∈ N, such that the intersection of any two cubes in the complex is either a cubicalface
of both cubes or the empty-set.

Definition 4 A contractible cubical complexX is one which has the same homotopy type as a one
point space{p}. X is contractible if and only if the constant map from X to p is a homotopy
equivalence.

Definition 5 A simplicial complexis a union of simplices, each of which is affinely equivalent1

to the convex hull of k+ 1 points (0,0, . . . ,0),(1,0, . . . ,0), . . .(0,0, . . . ,1) in R
k, for some k. The

intersection of any two simplices in the complex is either a face of both simplices or the empty-set.
A map f: X→Y is calledsimplicial if X ,Y are simplicial complexes and f maps each simplex of X
to a simplex of Y so that vertices are mapped to vertices and the map is affinelinear. Asubdivision
of a simplicial complex is a new simplicial complex with the same underlying point-set obtained by
cutting up the original simplices into smaller simplices.

For a more formal treatment of simplicial complexes see (Rourke and Sanderson, 1982). We
will need the concepts of piecewise-linear (PL) manifolds and maps.

Definition 6 A mapping f: X→Y is calledpiecewise linear(PL) if X,Y are simplicial complexes
and there are subdivisions X⋆,Y⋆ of the respective complexes, so that f: X⋆ → Y⋆ is simplicial.
A PL homeomorphism f: X → Y is a bijection so that both f, f−1 are PL maps. A PL manifold
M is a space which is covered by open sets Uα for α ∈ I some index set, together with bijections
φα : Uα → Vα, where Vα is an open set inRn. Moreover when Uα ∩Uβ 6= /0, then the transition
functionφβ ◦φα

−1 : φα(Uα∩Uβ)→ φβ(Uα∩Uβ) is a PL homeomorphism. A pair(Uα,φα) is called
a chartfor M.

2.2 Pachner Moves

Pachner (1987) showed that triangulations of manifolds which are combinatorially equivalent after
subdivision are also equivalent by a series of moves which are now referred to as Pachner moves.
For the main result of this paper, we need a version of Pachner moves forcubical structures rather
than simplicial ones. The main idea of Pachner moves remains the same.

A Pachner movereplaces a topologicald-ballU divided intod-cubes, with another ballU ′ with
the same(d−1)-cubical boundary but with a different interior cubical structure. In dimensiond= 2,
for example, such an initial ballU can be constructed by taking three 2-cubes forming a hexagonal
disk and in dimensiond = 3, four 3-cubes forming a rhombic dodecahedron, which is a polyhedron
U with 12 quadrilateral faces in its boundary. The setU ′ of d-cubes is attached to the same boundary
as forU , that is,∂U = ∂U ′, as cubical complexes homeomorphic to the(d−1)-sphere. Moreover,
U ′ andU are isomorphic cubical complexes, but the gluing between their boundariesproduces

1. The simplices are related via an affine bijection.
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Figure 1: (a) An example linear-hyperplane arrangementP and (b) the result of a Pachner move of
hyperplaneP4 onP .

the boundary of the 3- or 4-cube, as a 2- or 3-dimensional cubical structure on the 2- or 3-sphere
respectively.

To better understand this move, consider the cubical face structure of theboundaryV of the
(d+1)-cube. This is ad-sphere containing 2d+2 cubes, each of dimensiond. There are many
embeddings of the(d−1)-sphere as a cubical subcomplex intoV, dividing it into a pair ofd-balls.
One ball is combinatorially identical toU and the other toU ′.

There are a whole series of Pachner moves in each dimensiond, but we are only interested in
the ones where the pair of ballsU,U ′ have the same numbers ofd-cubes. In Figure 1 a change in
a hyperplane arrangement is shown, which corresponds to a Pachnermove on the corresponding
one-inclusion graph (considered as a cubical complex).

2.3 Concept Classes and their Learnability

A concept class Condomain X, is a subset of the power set of setX or equivalentlyC⊆{0,1}X. We
primarily consider finite domains and so will writeC⊆ {0,1}n in the sequel, where it is understood
thatn= |X| and then dimensions orcolorsare identified with an ordering{xi}

n
i=1 = X.

Theone-inclusion graphG(C) of C⊆ {0,1}n is the graph with vertex-setC and edge-set con-
taining{u,v} ⊆C iff u andv differ on exactly one component (Haussler et al., 1994);G(C) forms
the basis of a prediction strategy with essentially-optimal worst-case expected risk. G(C) can be
viewed as a simplicial complex inRn by filling in each face with a product of continuous intervals
(Rubinstein et al., 2009). Each edge{u,v} in G(C) is labeled by the component on which the two
verticesu,v differ.

Example 1 An example concept class in{0,1}4 is enumerated in Figure 2(a). The corresponding
one-inclusion graph is visualized in Figure 2(b), making immediately apparent the interpretation of
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x1 x2 x3 x4

v0 0 0 0 0
v1 1 0 0 0
v2 0 1 0 0
v3 0 0 1 0
v4 1 0 1 0
v5 1 1 0 0
v6 0 1 1 0
v7 0 0 0 1
v8 1 0 0 1
v9 0 1 0 1
v10 0 0 1 1

(a)

0011

0010

0110

0100
1100

1000

1010

1001

0001

0000

0101

(b)

Figure 2: (a) A concept class in{0,1}4 that is maximum with VC-dim 2 and (b) the one-inclusion
graph of the concept class.

the object as a simplicial complex: in this case the concepts form vertices which are connected by
edges; these edges bound 2-cubes.

Probably Approximately Correct learnability of a concept classC⊆ {0,1}X is characterized by
the finiteness of the Vapnik-Chervonenkis (VC) dimension ofC (Blumer et al., 1989). One key to
all such results is Sauer’s Lemma.

Definition 7 The VC dimension of concept class C⊆ {0,1}X is defined asVC(C) =

sup
{

n
∣

∣

∣
∃Y ∈

(X
n

)

,ΠY(C) = {0,1}n
}

whereΠY(C) = {(c(x1), . . . ,c(xn)) | c∈C} ⊆ {0,1}n is the

projectionof C on sequence Y= (x1, . . . ,xn).

Lemma 8 (Vapnik and Chervonenkis, 1971; Sauer, 1972; Shelah, 1972) The cardinality of any

concept classes C⊆ {0,1}n is bounded by|C| ≤ ∑VC(C)
i=1

(n
i

)

.

Motivated by maximizing concept class cardinality under a fixed VC dimension,which is related
to constructing general sample compression schemes (see Section 2.4), Welzl (1987) defined the
following special classes.

Definition 9 Concept class C⊆ {0,1}X is called maximal if VC(C∪{c}) > VC(C) for all c ∈
{0,1}X\C. Furthermore ifΠY(C) satisfies Sauer’s Lemma with equality for each Y∈

(X
n

)

, for every
n ∈ N, then C is termedmaximum. If C ⊆ {0,1}n then C is maximum (and hence maximal) if C
meets Sauer’s Lemma with equality.

Example 2 The concept class of Example 1 has VC-dimension2 as witnessed by projecting onto
any two of the four available axes. Moreover its cardinality of11exactly meets Sauer’s Lemma with
equality, so the class is also maximum.
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Figure 3: The (a) projection (b) reduction and (c) tail of the concept class of Figure 2 with respect
to projecting on to the first three coordinates (i.e., projecting out the fourth coordinate).

The reduction of C ⊆ {0,1}n with respect to i ∈ [n] = {1, . . . ,n} is the classCi =
Π[n]\{i}

({

c∈C | i ∈ IG(C)(c)
})

whereIG(C)(c)⊆ [n] denotes the labels of the edges incident to vertex
c; a multiple reductionis the result of performing several reductions in sequence. Thetail of class
C is taili (C) =

{

c∈C | i /∈ IG(C)(c)
}

. Welzl showed that ifC is d-maximum, thenΠ[n]\{i}(C) andCi

are maximum of VC-dimensionsd andd−1 respectively.

Example 3 A projection, reduction and tail of the concept class of Figure 2 are shown in Fig-
ures 3(a)—3(c) respectively, when projecting onto coordinates{1,2,3}. In particular note that the
reduction, like the projection, is a class in the smaller3-cube while the tail is in the original4-
cube. Moreover note that the projection and reduction and maximum with VC-dimensions2 and1
respectively.

The results presented below relate to other geometric and topological representations of maxi-
mum classes existing in the literature. Under the guise of ‘forbidden labels’,Floyd (1989) showed
that maximumC⊆ {0,1}n of VC-dim d is the union of a maximally overlappingd-complete col-
lection of cubes(Rubinstein et al., 2009)—defined as a collection of( n

d) d-cubes which uniquely
project onto all( n

d) possible sets ofd coordinate directions. (An alternative proof was developed by
Neylon 2006.) It has long been known that VC-1 maximum classes have one-inclusion graphs that
are trees (Dudley, 1985); we previously extended this result by showing that when viewed as com-
plexes,d-maximum classes are contractibled-cubical complexes (Rubinstein et al., 2009). Finally
the cells of a simple linear arrangement ofn hyperplanes inRd form a VC-d maximum class in
then-cube (Edelsbrunner, 1987), but not all finite maximum classes correspond to such Euclidean
arrangements (Floyd, 1989).

Example 4 It is immediately clear from visual inspection that the2-maximum concept classes of
Figures 2 and 3(a) are composed of complete collections of2-cubes. Similarly the1-maximum class
of Figure 3(c) is a tree with one edge of each color.

2.4 Sample Compression Schemes

Littlestone and Warmuth (1986) showed that the existence of a compression scheme of finite size is
sufficient for learnability ofC, and conjectured the converse, that VC(C) = d < ∞ implies a com-
pression scheme of sized. Later Warmuth (2003) weakened the conjectured size toO(d). To-date it
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is only known that maximum classes can bed-compressed (Floyd, 1989). Unlabeled compression
was first explored by Ben-David and Litman (1998); Kuzmin and Warmuth (2007) defined unla-
beled compression as follows, and explicitly constructed schemes of sized for maximum classes.

Definition 10 Let C be a d-maximum class on a finite domain X. A mapping r is called arepresen-
tation mappingof C if it satisfies the following conditions:

1. r is a bijection between C and subsets of X of size at most d; and

2. [non-clashing] :2 Πr(c)∪r(c′)(c) 6= Πr(c)∪r(c′)(c
′) for all c,c′ ∈C, c 6= c′.

As with all previously published labeled schemes, all previously known unlabeled compression
schemes for maximum classes exploit their special recursive projection-reduction structure and so
it is doubtful that such schemes will generalize. Kuzmin and Warmuth (2007,Conjecture 2) conjec-
tured that theirmin-peelingalgorithm constitutes an unlabeledd-compression scheme for maximum
classes; it iteratively removes minimum degree vertices fromG(C), representing the corresponding
concepts by the remaining incident dimensions in the graph. The authors alsoconjectured that
sweeping a hyperplane in general position across a simple linear arrangement forms a compres-
sion scheme that corresponds to min peeling the associated maximum class (Kuzmin and Warmuth,
2007, Conjecture 1). A particularly promising approach to compressing general classes is via their
maximum-embeddings: a classC embedded in classC′ trivially inherits any compression scheme
for C′, and so an important open problem is to embed maximal classes into maximum classes with
at most a linear increase in VC dimension (Kuzmin and Warmuth, 2007, Open Problem 3).

3. Preliminaries

A first step towards characterizing and compressing maximum classes is a process of building them.
After describing this process oflifting we discuss compressing maximum classes by peeling, and
properties of the boundaries of maximum classes.

3.1 Constructing All Maximum Classes

The aim in this section is to describe an algorithm for constructing all maximum classes of VC-
dimensiond in then-cube. This process can be viewed as the inverse of mapping a maximum class
to itsd-maximum projection on[n]\{i} and the corresponding(d−1)-maximum reduction.

Definition 11 Let C,C′ ⊆ {0,1}n be maximum classes of VC-dimensions d,d−1 respectively, so
that C′ ⊂C, and let C1,C2⊂C be d-cubes, that is, d-faces of the n-cube{0,1}n.

1. C1,C2 areconnectedif there exists a path in the one-inclusion graphG(C) with end-points in C1
and C2; and

2. C1,C2 are said to be C′-connectedif there exists such a connecting path that further does not
intersect C′.

The C′-connected componentsof C are the equivalence classes of the d-cubes of C under the C′-
connectedness relation.

2. We abuse notation slightly by applying projections, originally defined to operate on concept classes in Definition 7,
to concepts.
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Algorithm 1 MAXIMUM CLASSES(n,d)

Given: n∈ N,d ∈ [n]
Returns: the set ofd-maximum classes in{0,1}n

1. if d = 0 then return {{v} | v ∈ {0,1}n} ;
2. if d = n then return {0,1}n ;
3. M ← /0 ;

for eachC∈MAXIMUM CLASSES(n−1,d),
C′ ∈MAXIMUM CLASSES(n−1,d−1) s.t.C′ ⊂C do

4. {C1, . . . ,Ck}←C′-connected components ofC ;

5. M ←M ∪
⋃

p∈{0,1}k

{

(C′×{0,1})∪
⋃

q∈[k]Cq×{pq}
}

;

done
6. return M ;

The recursive algorithm for constructing all maximum classes of VC-dimension d in then-cube,
detailed as Algorithm 1, considers each possibled-maximum classC in the(n−1)-cube and each
possible(d−1)-maximum subclassC′ of C as the projection and reduction of ad-maximum class
in the n-cube, respectively. The algorithmlifts C andC′ to all possible maximum classes in the
n-cube. ThenC′×{0,1} is contained in each lifted class; so all that remains is to find the tails from
the complement of the reduction in the projection. It turns out that eachC′-connected component
Ci of C can be lifted to eitherCi ×{0} or Ci ×{1} arbitrarily and independently of how the other
C′-connected components are lifted. The set of lifts equates to the set ofd-maximum classes in the
n-cube that project-reduce to(C,C′).

Lemma 12 MAXIMUM CLASSES(n,d) (cf. Algorithm 1) returns the set of maximum classes of VC-
dimension d in the n-cube for all n∈ N,d ∈ [n].

Proof We proceed by induction onnandd. The base cases correspond ton∈N,d∈{0,n} for which
all maximum classes, enumerated as singletons in then-cube and then-cube itself respectively, are
correctly produced by the algorithm. For the inductive step we assume that for n∈N,d ∈ [n−1] all
maximum classes of VC-dimensiond andd−1 in the(n−1)-cube are already known by recursive
calls to the algorithm. Given this, we will show that MAXIMUM CLASSES(n,d) returns onlyd-
maximum classes in then-cube, and that all such classes are produced by the algorithm.

Let classesC ∈ MAXIMUM CLASSES(n−1,d) andC′ ∈ MAXIMUM CLASSES(n−1,d−1) be
such thatC′ ⊂C. ThenC is the union of ad-complete collection andC′ is the union of a(d−1)-
complete collection of cubes that are faces of the cubes ofC. Consider a concept classC⋆ formed
fromC andC′ by Algorithm 1. The algorithm partitionsC intoC′-connected componentsC1, . . . ,Ck

each of which is a union ofd-cubes. WhileC′ is lifted toC′×{0,1}, some subset of the components
{Ci}i∈S0 are lifted to{Ci×{0}}i∈S0

while the remaining components are lifted to{Ci×{1}}i /∈S0
.

HereS0 ranges over all subsets of[k], selecting which components are lifted to 0; the complement
of S0 specifies those components lifted to 1. By definitionC⋆ is ad-complete collection of cubes
with cardinality equal to( n

≤d) since|C⋆| = |C′|+ |C| (Kuzmin and Warmuth, 2007). SoC⋆ is d-
maximum (Rubinstein et al., 2009, Theorem 34).

If we now consider anyd-maximum classC⋆⊆{0,1}n, its projection on[n]\{i} is ad-maximum
classC ⊆ {0,1}n−1 andC⋆i is the (d− 1)-maximum projectionC′ ⊂ C of all the d-cubes inC⋆
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Figure 4: 2-maximum concept classes in{0,1}4 constructed by lifting concept class Figure 3(a) as
the projection, and concept class Figure 3(b) as the reduction.

which contain colori. It is thus clear thatC⋆ must be obtained by lifting parts of theC′-connected
components ofC to the 1 level and the remainder to the 0 level, andC′ to C′×{0,1}. We will now
show that if the vertices of each component are not lifted to the same levels, then while the number
of vertices in the lift match that of ad-maximum class in then-cube, the number of edges are too
few for such a maximum class. Define a lifting operator onC asℓ(v) = {v}× ℓv, whereℓv⊆ {0,1}
and

|ℓv| =

{

2 , if v∈C′

1, if v∈C\C′
.

Consider now an edge{u,v} in G(C). By the definition of aC′-connected component there ex-
ists someCj such that eitheru,v ∈Cj\C′, u,v ∈C′ or WLOG u ∈Cj\C′,v ∈C′. In the first case
ℓ(u)∪ ℓ(v) is an edge in the lifted graph iffℓu = ℓv. In the second caseℓ(u)∪ ℓ(v) contains four
edges and in the last it contains a single edge. Furthermore, it is clear that this accounts for all edges
in the lifted graph by considering the projection of an edge in the lifted product. Thus any lift other
than those produced by Algorithm 1 induces strictly too few edges for ad-maximum class in the
n-cube (cf. Kuzmin and Warmuth, 2007, Corollary 7.5).

Example 5 Let C and C′ refer to the2- and1-maximum concept classes in Figures 3(a) and 3(b) re-
spectively. Then Figures 4(a), 4(b) and 2 make up all possible2-maximum classes (up to symmetry)
resulting from lifting projection C and reduction C′. Figure 2 corresponds to lifting no C′-connected
components of C; Figure 4(a) corresponds to lifting just one component;and Figure 4(b) corre-
sponds to lifting two components. (Note that Figure 4(a) and Figure 4(b) are actually equivalent
after a symmetry. )
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3.2 Corner Peeling

Kuzmin and Warmuth (2007, Conjecture 2) conjectured that their simplemin-peelingprocedure
is a valid unlabeled compression scheme for maximum classes. Beginning with a concept class
C0 = C ⊆ {0,1}n, min peeling operates by iteratively removing a vertexvt of minimum-degree
in G(Ct) to produce the peeled classCt+1 = Ct\{vt}. The concept class corresponding tovt is
then represented by the dimensions of the edges incident tovt in G(Ct), IG(Ct)(vt) ⊆ [n]. Providing
that no-clashing holds for the algorithm, the size of the min-peeling scheme is thelargest degree
encountered during peeling. Kuzmin and Warmuth predicted that this size is always at mostd for
d-maximum classes. We explore these questions for a related special case of peeling, where we
prescribe which vertex to peel at stept as follows.

Definition 13 We say that C⊆ {0,1}n can becorner peeledif there exists an ordering v1, . . . ,v|C|
of the vertices of C such that, for each t∈ [|C|] where C0 =C,

1. vt ∈Ct−1 and Ct =Ct−1\{vt};

2. There exists a unique cube C′t−1 of maximum dimension over all cubes in Ct−1 containing vt ;

3. The neighborsΓ(vt) of vt in G(Ct−1) satisfyΓ(vt)⊆C′t−1; and

4. C|C| = /0.

The vt are termed thecorner verticesof Ct−1 respectively. If d is the maximum degree of each vt in
G(Ct−1), then C is dcorner peeled.

Note that we do not constrain the cubesC′t to be of non-increasing dimension. It turns out that
an important property of maximum classes is invariant to this kind of peeling.

Definition 14 We call a class C⊆ {0,1}n shortest-path closedif for any u,v∈C,G(C) contains a
path connecting u,v of length‖u−v‖1.

Lemma 15 If C ⊆ {0,1}n is shortest-path closed and v∈C is a corner vertex of C, then C\{v} is
shortest-path closed.

Proof Consider a shortest-path closedC⊆ {0,1}n. Let c be a corner vertex ofC, and denote the
cube of maximum dimension inC, containingc, by C′. Consider{u,v} ⊆C\{c}. By assumption
there exists au-v-pathp of length‖u−v‖1 contained inC. If c is not in p thenp is contained in the
peeled productC\{c}. If c is in p thenp must crossC′ such that there is another path of the same
length which avoidsc, and thusC\{c} is shortest-path closed.

3.2.1 CORNERPEELING IMPLIES COMPRESSION

Theorem 16 If a maximum class C can be corner peeled then C can be d-unlabeled compressed.

Proof The invariance of the shortest-path closed property under corner peeling is key. The corner-
peeling unlabeled compression scheme represents eachvt ∈C by r(vt) = IG(Ct−1)(vt), the colors of
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Figure 5: (a) A 2-maximum class in the 4-cube and (b) its boundary highlighted by solid lines.

the cubeC′t−1 which is deleted fromCt−1 whenvt is corner peeled. We claim that any two ver-
ticesvs,vt ∈C have non-clashing representatives. WLOG, suppose thats< t. The classCs−1 must
contain a shortestvs-vt-pathp. Let i be the color of the single edge contained inp that is incident
to vs. Color i appears once inp, and is contained inr(vs). This implies thatvs,i 6= vt,i and that
i ∈ r(vs)∪ r(vt), and sovs|(r(vs)∪ r(vt)) 6= vt |(r(vs)∪ r(vt)). By construction,r(·) is a bijection
betweenC and all subsets of[n] of cardinality≤ VC(C).

If the oriented one-inclusion graph, with each edge directed away from the incident vertex rep-
resented by the edge’s color, has no cycles, then that representation’s compression scheme is termed
acyclic(Floyd, 1989; Ben-David and Litman, 1998; Kuzmin and Warmuth, 2007).

Proposition 17 All corner-peeling unlabeled compression schemes are acyclic.

Proof We follow the proof that the min-peeling algorithm is acyclic (Kuzmin and Warmuth,2007).
Let v1, . . . ,v|C| be a corner vertex ordering ofC. As a corner vertexvt is peeled, its unoriented inci-
dent edges are oriented away fromvt . Thus all edges incident tov1 are oriented away fromv1 and
so the vertex cannot take part in any cycle. Fort > 1 assumeVt = {vs | s< t} is disjoint from all
cycles. Thenvt cannot be contained in a cycle, as all incoming edges intovt are incident to some
vertex inVt . Thus the orientedG(C) is indeed acyclic.

3.3 Boundaries of Maximum Classes

We now turn to the geometric boundaries of maximum classes, which are closelyrelated to corner
peeling.

1232



A GEOMETRIC APPROACH TOSAMPLE COMPRESSION
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Figure 6: The first steps of building the dunce hat in Example 7.

Definition 18 The boundary∂C of a d-maximum class C is defined as all the(d− 1)-subcubes
which are the faces of a single d-cube in C.

Maximum classes, when viewed as cubical complexes, are analogous to soap films (an example
of a minimal energy surface encountered in nature), which are obtained when a wire frame is dipped
into a soap solution. Under this analogy the boundary corresponds to the wire frame and the number
of d-cubes can be considered the area of the soap film. An important propertyof the boundary of a
maximum class is that all lifted reductions meet the boundary multiple times.

Theorem 19 Every d-maximum class has boundary containing at least two(d−1)-cubes of every
combination of d−1 colors, for all d> 1.

Proof We use the lifting construction of Section 3.1. LetC⋆ ⊆ {0,1}n be a 2-maximum class and
consider colori ∈ [n]. Then the reductionC⋆i is an unrooted tree with at least two leaves, each of
which lifts to ani-colored edge inC⋆. Since the leaves are of degree 1 inC⋆i , the corresponding
lifted edges belong to exactly one 2-cube inC⋆ and so lie in∂C⋆. Consider now ad-maximum class
C⋆ ⊆ {0,1}n for d > 2, and make the inductive assumption that the projectionC = Π[n−1](C

⋆) has
two of each type of(d−1)-cube, and that the reductionC′ =C⋆n has two of each type of(d−2)-
cube, in their boundaries. Pickd−1 colorsI ⊆ [n]. If n∈ I then consider two(d−2)-cubes colored
by I\{xn} in ∂C′. By the same argument as in the base case, these lift to twoI -colored cubes in∂C⋆.
If n /∈ I then∂C contains twoI -colored(d−1)-cubes. For each cube, if the cube is contained inC′

then it has two lifts one of which is contained in∂C⋆, otherwise its unique lift is contained in∂C⋆.
Therefore∂C⋆ contains at least twoI -colored cubes.

Example 6 The one-inclusion graph of a2-maximum concept class in the4-cube is depicted in Fig-
ure 5(a), along with its boundary of edges in Figure 5(b). Note that all four colors are represented
by exactly two boundary edges in this case.

Having a large boundary is an important property of maximum classes that does not follow from
contractibility.
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Example 7 Take a2-simplex with vertices A,B,C. Glue the edges AB to AC to form a cone. Next
glue the end loop BC to the edge AB . The result is a complex D with a single vertex, edge and
2-simplex, which is classically known as thedunce hat(cf. Figure 6). It is not hard to verify that D
is contractible, but has no (geometric) boundary.

Although Theorem 19 will not be explicitly used in the sequel, we return to boundaries of
maximum complexes later.

4. Euclidean Arrangements

Definition 20 A linear arrangementis a collection of n≥ d oriented hyperplanes inRd. Each region
or cell in the complement of the arrangement is naturally associated with a concept in{0,1}n; the
side of the ith hyperplane on which a cell falls determines the concept’s ith component. Asimple
arrangementis a linear arrangement in which any subset of d planes has a unique point in common
and all subsets of d+1 planes have an empty mutual intersection. Moreover any subset of k< d
planes meet in a plane of dimension d−k. Such a collection of n planes is also said to be ingeneral
position.

Many of the familiar operations on concept classes in then-cube have elegant analogues on
arrangements.

• Projection on[n]\{i} corresponds to removing theith plane;

• The reductionCi is the new arrangement given by the intersection ofC’s arrangement with
the ith plane; and

• The corresponding lifted reduction is the collection of cells in the arrangement that adjoin the
ith plane.

A k-cube in the one-inclusion graph corresponds to a collection of 2k cells, all having a common
(d− k)-face, which is contained in the intersection ofk planes, and an edge corresponds to a pair
of cells which have a common face on a single plane. The following result is due to Edelsbrunner
(1987).

Lemma 21 The concept class C⊆ {0,1}n induced by a simple linear arrangement of n planes in
R

d is d-maximum.

Proof Note thatC has VC dimension at mostd, since general position is invariant to projection, that
is, nod+1 planes are shattered. SinceC is the union of ad-complete collection of cubes (every cell
containsd-intersection points in its boundary) it follows thatC is d-maximum (Rubinstein et al.,
2009).

Example 8 Consider the simple linear arrangement inR2 shown in Figure 7(b). The given labeling
of its cells map to the concept class in the4-cube enumerated in Figure 7(a) with one-inclusion
graph shown in Figure 5(a). This class is maximum with VC-dimension2.
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v9 0 1 0 1
v10 0 1 1 1
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Figure 7: (a) The enumeration of the 2-maximum class in{0,1}4 in Figure 5(a) and (b) a simple
linear line arrangement corresponding to the class, with each cell corresponding to a
unique vertex.

Corollary 22 Let A be a simple linear arrangement of n hyperplanes inR
d with corresponding

d-maximum C⊆ {0,1}n. The intersection of A with a generic hyperplane corresponds to a(d−1)-
maximum class C′ ⊆C. In particular if all d-intersection points of A lie to one side of the generic
hyperplane, then C′ lies on the boundary of C; and∂C is the disjoint union of two(d−1)-maximum
sub-classes.

Proof The intersection ofA with a generic hyperplane is again a simple arrangement ofn hyper-
planes but now inRd−1. Hence by Lemma 21C′ is a(d−1)-maximum class in then-cube.C′ ⊆C
since the adjacency relationships on the cells of the intersection are inheritedfrom those ofA.

Suppose that alld-intersections inA lie in one half-space of the generic hyperplane.C′ is the
union of a(d−1)-complete collection. We claim that each of these(d−1)-cubes is a face of exactly
oned-cube inC and is thus in∂C. A (d−1)-cube inC′ corresponds to a line inA whered−1 planes
mutually intersect. The(d−1)-cube is a face of ad-cube inC iff this line is further intersected by
a dth plane. This occurs for exactly one plane, which is closest to the generic hyperplane along this
intersection line. For once thed-intersection point is reached, when following along the line away
from the generic plane, a new cell is entered. This verifies the second part of the result.

Consider two parallel generic hyperplanesh1,h2 such that alld-intersection points ofA lie in
between them. We claim that each(d−1)-cube in∂C is in exactly one of the concept classes in-
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duced by the intersection ofA with h1 andA with h2. Consider an arbitrary(d−1)-cube in∂C. As
before this cube corresponds to a region of a line formed by a mutual intersection ofd−1 planes.
Moreover this region is a ray, with one end-point at ad-intersection. Because the ray begins at a
point between the generic hyperplanesh1,h2, it follows that the ray must cross exactly one of these.

Example 9 To illustrate, consider the2-maximum class in Figure 5(a) that corresponds to the
simple linear arrangement in Figure 7(b). The boundary, shown in Figure 5(b) is clearly a disjoint
union of two1-maximum classes—in this case sticks.

Corollary 23 Let A be a simple linear arrangement of n hyperplanes inR
d and let C⊆ {0,1}n be

the corresponding d-maximum class. Then C considered as a cubical complex is homeomorphic to
the d-ball Bd; and ∂C considered as a(d− 1)-cubical complex is homeomorphic to the(d− 1)-
sphere Sd−1.

Proof We construct a Voronoi cell decomposition corresponding to the set ofd-intersection points
inside a very large ball in Euclidean space. By induction ond, we claim that this is a cubical
complex and the vertices and edges correspond to the classC. By induction, on each hyperplane,
the induced arrangement has a Voronoi cell decomposition which is a(d−1)-cubical complex with
edges and vertices matching the one-inclusion graph for the tail ofC corresponding to the label
associated with the hyperplane. It is not hard to see that the Voronoi celldefined by ad-intersection
point p on this hyperplane is ad-cube. In fact, its(d− 1)-faces correspond to the Voronoi cells
for p, on each of thed hyperplanes passing throughp. We also see that thisd-cube has a single
vertex in the interior of each of the 2d cells of the arrangement adjacent top. In this way, it follows
that the vertices of this Voronoi cell decomposition are in bijective correspondence to the cells of
the hyperplane arrangement. Finally the edges of the Voronoi cells pass through the faces in the
hyperplanes. So these correspond bijectively to the edges ofC, as there is one edge for each face
of the hyperplanes. Using a very large ball, containing all thed-intersection points, the boundary
faces become spherical cells. In fact, these form a spherical Voronoi cell decomposition, so it is
easy to replace these by linear ones by taking the convex hull of their vertices. So a piecewise
linear cubical complexC is constructed, which has one-skeleton (graph consisting of all vertices
and edges) isomorphic to the one-inclusion graph forC.

Finally we want to prove thatC is homeomorphic toBd. This is quite easy by construction. For
we see thatC is obtained by dividing upBd into Voronoi cells and replacing the spherical boundary
cells by linear ones, using convex hulls of the boundary vertices. This process is clearly given by a
homeomorphism by projection. In fact, the homeomorphism preserves the PL-structure so is a PL
homeomorphism.

Example 10 Consider again the one-inclusion graph in Figure 5(a) corresponding toa 2-maximum
concept class in the4-cube. It is trivial to see via inspection that this class, when viewed as a
simplicial complex, is homeomorphic to a disc; similarly its boundary, highlighted in Figure 5(b),
is homeomorphic to a circle.
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Figure 8: The simple linear line arrangement from Figure 7(b) corresponding to the concept class
enumerated in Figure 7(a) and visualized in Figure 5(a). The arrangement is in the process
of being swept by the dashed line.

The following example demonstrates that not all maximum classes of VC-dimension d are
homeomorphic to thed-ball. The key to such examples is branching.

Example 11 A simple linear arrangement inR corresponds to points on the line—cells are simply
intervals between these points and so corresponding1-maximum classes are sticks. Any tree that
is not a stick can therefore not be represented as a simple linear arrangement inR and is also not
homeomorphic to the1-ball which is simply the interval[−1,1].

As Kuzmin and Warmuth (2007) did previously, consider a generic hyperplane h sweeping
across a simple linear arrangementA. h begins with alld-intersection points ofA lying in its positive
half-spaceH+. The concept corresponding to cellc is peeled fromC when|H+∩c| = 1, that is,h
crosses the lastd-intersection point adjoiningc. At any step in the process, the result of peelingj
vertices fromC to reachCj , is captured by the arrangementH+∩A for the appropriateh.

Example 12 Figure 7(a) enumerates the 11 vertices of a2-maximum class in the4-cube. Figures 8
and 5(a) display a hyperplane arrangement in Euclidean space and its Voronoi cell decomposition,
corresponding to this maximum class. In this case, sweeping the vertical dashed line across the
arrangement corresponds to a partial corner peeling of the conceptclass with peeling sequence v7,
v8, v5, v9, v2, v0. What remains is the1-maximum stick{v1,v3,v4,v6,v10}.
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Next we resolve the first half of Kuzmin and Warmuth (2007, Conjecture 1).

Theorem 24 Any d-maximum class C⊆ {0,1}n corresponding to a simple linear arrangement A
can be corner peeled by sweeping A, and this process is a valid unlabeledcompression scheme for
C of size d.

Proof We must show that as thej th d-intersection pointp j is crossed, there is a corner vertex ofCj−1

peeled away. It then follows that sweeping a generic hyperplaneh acrossA corresponds to corner
peelingC to a(d−1)-maximum sub-classC′ ⊆ ∂C by Corollary 22. MoreoverC′ corresponds to a
simple linear arrangement ofn hyperplanes inRd−1.

We proceed by induction ond, noting that ford = 1 corner peeling is trivial. Considerh as it
approaches thej th d-intersection pointp j . Thed planes defining this point intersecth in a simple
arrangement of hyperplanes onh. There is a compact cell∆ for the arrangement onh, which
is a d-simplex3 and shrinks to a point ash passes throughp j . We claim that the cellc for the
arrangementA, whose intersection withh is ∆, is a corner vertexv j of Cj−1. Consider the lines
formed by intersections ofd− 1 of the d hyperplanes, passing throughp j . Each is a segment
starting atp j and ending ath without passing through any otherd-intersection points. So all faces
of hyperplanes adjacent toc meeth in faces of∆. Thus, there are no edges inCj−1 starting at the
vertex corresponding top j , except for those in the cubeC′j−1, which consists of all cells adjacent to
p j in the arrangementA. Soc corresponds to a corner vertexv j of thed-cubeC′j−1 in Cj−1. Finally,
just after the simplex is a point,c is no longer inH+ and sov j is corner peeled fromCj−1.

Theorem 16 completes the proof that this corner peeling ofC constitutes unlabeled compres-
sion.

Corollary 25 The sequence of cubes C′0, . . . ,C
′
|C|, removed when corner peeling by sweeping simple

linear arrangements, is of non-increasing dimension. In fact, there are
(n

d

)

cubes of dimension d,
then

( n
d−1

)

cubes of dimension d−1, etc.

While corner peeling and min peeling share some properties in common, they aredistinct proce-
dures. Notice that sweeping produces a monotonic corner-peeling sequence, as cubes are removed
in order of non-increasing dimensions.

Example 13 Consider sweeping a simple linear arrangement corresponding to a2-maximum class.
After all but one2-intersection point has been swept, the corresponding corner-peeledclass Ct is
the union of a single2-cube with a1-maximum stick. Min peeling applied to Ct would first peel a
leaf, while sweeping must peel the2-cube next.

A second example is the class in a3-cube which consists of six vertices, so that two opposite
vertices, for example,000 and 111 are not included. This class cannot be corner peeled as the
one-inclusion graph consists of six edges forming a single cycle. On the other hand, it has many
min-peeling schemes.

An interesting question is if a class has a corner-peeling scheme, does it always have a min-
peeling scheme which is also a corner-peeling scheme? This is given as Question 50 below.

3. ∆ is a topological simplex—the convex hull ofd+1 affinely independent points inRd.
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The next result follows from our counter-examples to Kuzmin & Warmuth’s minimum degree
conjecture (Rubinstein et al., 2009).

Corollary 26 There is no constant c so that all maximal classes of VC-dimension d canbe embed-
ded into maximum classes corresponding to simple hyperplane arrangements of dimension d+c.

5. Hyperbolic Arrangements

To motivate the introduction of hyperbolic arrangements, note that linear-hyperplane arrangements
can be efficiently described, since each hyperplane is determined by its unit normal and distance
from the origin. Similarly, a hyperbolic hyperplane is a hypersphere. So itcan be parametrized by
its center—a point on the ideal sphere at infinity—and its radius.4

However the family of hyperbolic hyperplanes has more flexibility than linear hyperplanes since
there are many disjoint hyperbolic hyperplanes, whereas in the linear case only parallel hyperplanes
do not meet. Thus we turn to hyperbolic arrangements to represent a larger collection of concept
classes than those represented by simple linear arrangements.

We briefly discuss the Klein model of hyperbolic geometry (Ratcliffe, 1994,pg. 7). Consider
the open unit ballHk in R

k. Geodesics (lines of shortest length in the geometry) are given by
intersections of straight lines inRk with the unit ball. Similarly planes of any dimension between 2
andk−1 are given by intersections of such planes inR

k with the unit ball. Note that such planes
are completely determined by their spheres of intersection with the unit sphereSk−1, which is called
the ideal boundary of hyperbolic spaceHk. Note that in the appropriate metric, the ideal boundary
consists of points which are infinitely far from all points in the interior of the unit ball.

We can now see immediately that a simple hyperplane arrangement inH
k can be described by

taking a simple hyperplane arrangement inR
k and intersecting it with the unit ball. However we

require an important additional property to mimic the Euclidean case. Namely we add the constraint
that every subcollection ofd of the hyperplanes inHk has mutual intersection points insideHk, and
that no(d+1)-intersection point lies inHk. We need this requirement to obtain that the resulting
class is maximum.

Definition 27 A simple hyperbolicd-arrangementis a collection of n hyperplanes inHk with the
property that every sub-collection of d hyperplanes mutually intersect ina (k− d)-dimensional
hyperbolic plane, and that every sub-collection of d+1 hyperplanes mutually intersect as the empty
set.

Corollary 28 The concept class C corresponding to a simple d-arrangement of hyperbolic hyper-
planes inHk is d-maximum in the k-cube.

Proof The result follows by the same argument as before. Projection cannot shatter any(d+1)-
cube and the class is a complete union ofd-cubes, so isd-maximum.

The key to why hyperbolic arrangements represent many new maximum classes is that they
allow flexibility of choosingd andk independently. This is significant because the unit ball can be

4. Note also that hyperbolic hyperplanes are ‘linear’ in the sense that they are filled by a family of geodesics, which are
shortest paths or lines in the hyperbolic metric.
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chosen to miss much of the intersections of the hyperplanes in Euclidean space. Note that the new
maximum classes are embedded in maximum classes induced by arrangements oflinear hyperplanes
in Euclidean space.

A simple example is any 1-maximum class. It is easy to see that this can be realizedin the
hyperbolic plane by choosing an appropriate family of lines and the unit ballin the appropriate po-
sition. In fact, we can choose sets of pairs of points on the unit circle, which will be the intersections
with our lines. So long as these pairs of points have the property that the smaller arcs of the circle
between them are disjoint, the lines will not cross inside the disk and the desired 1-maximum class
will be represented.

Corner-peeling maximum classes represented by hyperbolic-hyperplane arrangements proceeds
by sweeping, just as in the Euclidean case. Note first that intersections ofthe hyperplanes of the
arrangement with the moving hyperplane appear precisely when there is a first intersection at the
ideal boundary. Thus it is necessary to slightly perturb the collection of hyperplanes to ensure
that only one new intersection with the moving hyperplane occurs at any time. Note also that new
intersections of the sweeping hyperplane with the various lower dimensionalplanes of intersection
between the hyperplanes appear similarly at the ideal boundary. The important claim to check is
that the intersection at the ideal boundary between the moving hyperplane and a lower dimensional
plane, consisting entirely ofd intersection points, corresponds to a corner-peeling move. We include
two examples to illustrate the validity of this claim.

Example 14 In the case of a1-maximum class coming from disjoint lines inH2, a cell can disap-
pear when the sweeping hyperplane meets a line at an ideal point. This cellis indeed a vertex of the
tree, that is, a corner-vertex.

Example 15 Assume that we have a family of2-planes in the unit3-ball which meet in pairs in
single lines, but there are no triple points of intersection, corresponding toa 2-maximum class. A
corner-peeling move occurs when a region bounded by two half disks and an interval disappears,
in the positive half space bounded by the sweeping hyperplane. Such a region can be visualized by
taking a slice out of an orange. Note that the final point of contact between the hyperplane and the
region is at the end of a line of intersection between two planes on the ideal boundary.

We next observe that sweeping by generic hyperbolic hyperplanes induces corner peeling of the
corresponding maximum class, extending Theorem 24. As the generic hyperplane sweeps across
hyperbolic space, not only do swept cells correspond to corners ofd-cubes but also to corners of
lower dimensional cubes as well. Moreover, the order of the dimensions ofthe cubes which are
corner peeled can be arbitrary—lower dimensional cubes may be cornerpeeled before all the higher
dimensional cubes are corner peeled. This is in contrast to Euclidean sweepouts (cf. Corollary 25).
Similar to Euclidean sweepouts, hyperbolic sweepouts correspond to corner peeling and not min
peeling.

Theorem 29 Any d-maximum class C⊆{0,1}n corresponding to a simple hyperbolic d-arrangement
A can be corner peeled by sweeping A with a generic hyperbolic hyperplane.

Proof We follow the same strategy of the proof of Theorem 24. For sweeping in hyperbolic space
H

k, the generic hyperplaneh is initialized as tangent toHk. As h is swept acrossHk, new intersec-
tions appear withA just afterh meets the non-empty intersection of a subset of hyperplanes ofA with
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Figure 9: 2-maximum classes in{0,1}4 that can be represented as hyperbolic arrangements but not
as Euclidean arrangements.

the ideal boundary. Eachd-cubeC′ in C still corresponds to the cells adjacent to the intersection
IC′ of d hyperplanes. But nowIC′ is a (k−d)-dimensional hyperbolic hyperplane. A cellc adjacent
to IC′ is corner peeled precisely whenh last intersectsc at a point ofIC′ at the ideal boundary. As
for simple linear arrangements, the general position ofA∪{h} ensures that corner-peeling events
never occur simultaneously. For the casek= d+1, as for the simple linear arrangements just prior
to the corner peeling ofc, H+∩c is homeomorphic to a(d+1)-simplex with a missing face on the
ideal boundary. And so as in the simple linear case, thisd-intersection point corresponds to a corner
d-cube. In the casek> d+1,H+∩c becomes a(d+1)-simplex (as before) multiplied byRk−d−1.
If k = d, then the main difference is just before corner peeling ofc, H+ ∩ c is homeomorphic to a
k-simplex which may be either closed (hence in the interior ofH

k) or with a missing face on the
ideal boundary. The rest of the argument remains the same, except forone important observation.

Although swept corners in hyperbolic arrangements can be of cubes ofdiffering dimensions,
these dimensions never exceedd and so the proof that sweeping simple linear arrangements induces
d-compression schemes is still valid.

Example 16 Constructed with lifting, Figure 9 completes the enumeration, up to symmetry, ofthe
2-maximum classes in{0,1}4 begun with Example 12. These cases cannot be represented as simple
Euclidean linear arrangements, since their boundaries do not satisfy the condition of Corollary 23
but can be represented as hyperbolic arrangements as in Figure 10. Figures 11(a) and 11(b) display
the sweeping of a general hyperplane across the former arrangement and the corresponding corner
peeling. Notice that the corner-peeled cubes’ dimensions decrease and then increase.
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(a) (b)

Figure 10: Hyperbolic-hyperplane arrangements corresponding to theclasses in Figure 9. In both
cases the four hyperbolic planes meet in 6 straight line segments (not shown). The
planes’ colors correspond to the edges’ colors in Figure 9.

Corollary 30 There is no constant c so that all maximal classes of VC-dimension d canbe em-
bedded into maximum classes corresponding to simple hyperbolic-hyperplane arrangements of VC-
dimension d+c.

This result follows from our counter-examples to Kuzmin & Warmuth’s minimum degree con-
jecture (Rubinstein et al., 2009).

Corollary 28 gives a proper superset of simple linear-hyperplane arrangement-induced maxi-
mum classes as hyperbolic arrangements. We will prove in Section 7 that all maximum classes
can be represented as PL-hyperplane arrangements in a ball. These are the topological analogue
of hyperbolic-hyperplane arrangements. If the boundary of the ball isremoved, then we obtain an
arrangement of PL hyperplanes in Euclidean space.

6. Infinite Euclidean and Hyperbolic Arrangements

We consider a simple example of an infinite maximum class which admits corner peeling and a
compression scheme analogous to those of previous sections.

Example 17 LetL be the set of lines in the plane of the form L2m = {(x,y) | x= m} and L2n+1 =
{(x,y) | y= n} for m,n∈ N. Let v00, v0n, vm0, and vmn be the cells bounded by the lines{L2,L3},
{L2,L2n+1,L2n+3}, {L2m,L2m+2,L3}, and{L2m,L2m+2,L2n+1,L2n+3}, respectively. Then the cubical
complex C, with vertices vmn, can be corner peeled and hence compressed, using a sweepout bythe
lines{(x,y) | x+(1+ ε)y = t} for t ≥ 0 and any small fixed irrationalε > 0. C is a2-maximum
class and the unlabeled compression scheme is also of size2.
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Figure 11: (a) The simple hyperbolic arrangement corresponding to the 2-maximum class in{0,1}4

of Figure 9(a)—as shown in Figure 10(a)—with a generic sweeping hyperplane shown
in several positions before and after it sweeps past four cells; and (b) the class with the
first four corner-vertices peeled by the hyperbolic arrangement sweeping. Notice that
three 2-cubes are peeled, then a 1-cube (all shown) followed by 2-cubes.

To verify the properties of this example, notice that sweeping as specified corresponds to corner
peeling the vertexv00, then the verticesv10,v01, then the remaining verticesvmn. The linesx+(1+
ε)y = t are generic as they pass through only one intersection point ofL at a time. Additionally,
representingv00 by /0, v0n by {L2n+1}, vm0 by {L2m} andvmn by {L2m,L2n+1} constitutes a valid
unlabeled compression scheme. Note that the compression scheme is associated with sweeping
across the arrangement in the direction of decreasingt. This is necessary to pick up the boundary
vertices ofC last in the sweepout process, so that they have either singleton representatives or the
empty set. In this way, similar to Kuzmin and Warmuth (2007), we obtain a compression scheme
so that every labeled sample of size 2 is associated with a unique concept inC, which is consistent
with the sample. On the other hand to obtain corner peeling, we need the sweepout to proceed with
t increasing so that we can begin at the boundary vertices ofC.

In concluding this brief discussion, we note that many infinite collections of simple hyperbolic
hyperplanes and Euclidean hyperplanes can also be corner peeled and compressed, even if inter-
section points and cells accumulate. However a key requirement in the Euclidean case is that the
concept classC has a non-empty boundary, when considered as a cubical complex. An easy ap-
proach is to assume that all thed-intersections of the arrangement lie in a half-space. Moreover,
since the boundary must also admit corner peeling, we require more conditions, similar to having
all the intersection points lying in an octant.

Example 18 In R
3, choose the family of planesP of the form P3n+i = {x ∈R3 | xi+1 = 1−1/n} for

n≥ 1 and i∈ {0,1,2}. A corner-peeling scheme is induced by sweeping a generic plane{x ∈ R
3 |

x1+αx2+βx3 = t} across the arrangement, where t is a parameter and1,α,β are algebraically
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independent (in particular, no integral linear combination is rational) andα,β are both close to
1. This example has similar properties to Example 17: the compression scheme is again given by
decreasing t whereas corner peeling corresponds to increasing t. Note that cells shrink to points,
asx→ 1 and the volume of cells converge to zero as n→ ∞, or equivalently any xi → 1.

Example 19 In the hyperbolic planeH2, represented as the unit circle centered at the origin inR
2,

choose the family of linesL given by L2n = {(x,y) | x= 1−1/n} and L2n+1 = {(x,y) | x+ny= 1},
for n≥ 1. This arrangement has corner peeling and compression schemes given by sweeping across
L using the generic line{y= t}.

7. Piecewise-Linear Arrangements

PL hyperplanes have the advantage that they can be easily manipulated, bycutting and pasting or
isotoping part of a hyperplane to a new position, keeping the rest of the hyperplane fixed. How-
ever a disadvantage is that there is no simple way of describing a PL hyperplane, similar to the
parametrizations of either linear or hyperbolic hyperplanes. The methods of proof of our main re-
sults about representing maximum classes and corner peeling, require PL-hyperplane arrangements.
We conjecture that PL-hyperplane arrangements are equivalent to hyperbolic ones. This would give
an interesting geometric approach of forming all maximum classes as simple hyperbolic arrange-
ments.

A PL hyperplaneis the image of a proper piecewise-linear homeomorphism from the(k−1)-
ball Bk−1 into Bk, that is, the inverse image of the boundarySk−1 of the k-ball is Sk−2 (Rourke
and Sanderson, 1982). Asimple PL d-arrangementis an arrangement ofn PL hyperplanes such
that every subcollection ofj hyperplanes meet transversely in a(k− j)-dimensional PL plane for
2≤ j ≤ d and every subcollection ofd+1 hyperplanes are disjoint.

Corollary 31 The concept class C corresponding to a simple d-arrangement of PL hyperplanes in
Bk is d-maximum in the k-cube.

Proof The result follows by the same argument as in the linear or hyperbolic cases. Projection
cannot shatter any(d+1)-cube and the class is a complete union ofd-cubes, so isd-maximum.

7.1 Maximum Classes are Represented by Simple PL-Hyperplane Arrangements

Our aim is to prove the following theorem by a series of steps.

Theorem 32 Every d-maximum class C⊆ {0,1}n can be represented by a simple arrangement of
PL hyperplanes in an n-ball. Moreover the corresponding simple arrangement of PL hyperspheres
in the(n−1)-sphere also represents C, so long as n> d+1.

7.1.1 EMBEDDING A d-MAXIMUM CUBICAL COMPLEX IN THE n-CUBE INTO AN n-BALL

We begin with ad-maximum cubical complexC⊆ {0,1}n embedded into[0,1]n. This gives a nat-
ural embedding ofC into R

n. Take a small regular neighborhoodN of C so that the boundary∂N
of N will be a closed manifold of dimensionn−1. Note thatN is contractible because it has a
deformation retraction ontoC and so∂N is a homology(n−1)-sphere (by a standard, well-known
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Figure 12: A 1-maximum class (thick solid lines) with its fattening (thin solid lines with points),
bisecting sets (dashed lines) and induced complementary cells.

argument from topology due to Mazur 1961). Our aim is to prove that∂N is an (n− 1)-sphere
andN is ann-ball. There are two ways of proving this: show that∂N is simply connected and
invoke the well-known solution to the generalized Poincaré conjecture (Smale, 1961), or use the
cubical structure of then-cube andC to directly prove the result. We adopt the latter approach, al-
though the former works fine. The advantage of the latter is that it produces the required hyperplane
arrangement, not just the structures of∂N andN .

7.1.2 BISECTING SETS

For each colori, there is a hyperplanePi in R
n consisting of all vectors withith coordinate equal

to 1/2. We can easily arrange the choice of regular neighborhoodN of C so thatNi = Pi ∩N
is a regular neighborhood ofC∩Pi in Pi . (We callNi a bisecting setas it intersectsC along the
‘center’ of the reduction in theith coordinate direction, see Figure 12.) But then sinceC∩Pi is a
cubical complex corresponding to the reductionCi , by induction onn, we can assert thatNi is an
(n− 1)-ball. Similarly the intersectionsNi ∩N j can be arranged to be regular neighborhoods of
(d−2)-maximum classes and are also balls of dimensionn−2, etc. In this way, we see that if we
can show thatN is ann-ball, then the induction step will be satisfied and we will have produced a
PL-hyperplane arrangement (the system ofNi in N ) in a ball.

7.1.3 SHIFTING

To complete the induction step, we use the technique of shifting (Alon, 1983; Frankl, 1983; Haus-
sler, 1995). In our situation, this can be viewed as the converse of lifting. Namely if a colori is
chosen, then the cubical complexC has a lifted reductionC′ consisting of alld-cubes containing
the ith color. By shifting, we can move down any of the lifted components, obtained by splittingC
open alongC′, from the levelxi = 1 to the levelxi = 0, to form a new cubical complexC⋆. We claim
that the regular neighborhood ofC is a ball if and only if the same is true forC⋆. But this is quite
straightforward, since the operation of shifting can be thought of as sliding components ofC, split
open alongC′, continuously from levelxi = 1 toxi = 0. So there is an isotopy of the attaching maps
of the components onto the lifted reduction, using the product structure of the latter. It is easy then
to check that this does not affect the homeomorphism type of the regular neighborhood and so the
claim of shift invariance is proved.
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(a) (b)

Figure 13: The (a) top and (b) bottom of Figure 9(b) (i.e., the 2-cubes seen from above and below,
respectively) both give part of the boundary of a regular neighborhood inR3.

But repeated shifting finishes with the downwards closed maximum class consisting of all ver-
tices in then-cube with at mostd coordinates being one and the remaining coordinates all being
zero. It is easy to see that the corresponding cubical complexC̃ is star-like, that is, contains all the
straight line segments from the origin to any point inC̃. If we choose a regular neighborhoodÑ to
also be star-like, then it is obvious thatÑ is ann-ball, using radial projection. Hence our induction
is complete and we have shown that anyd-maximum class in{0,1}n can be represented by a family
of PL hyperplanes in then-ball.

7.1.4 IDEAL BOUNDARY

To complete the proof of Theorem 32, let∂N = Sn−1 denote the boundary of then-ball N con-
structed above (cf. Figure 13). Each PL hyperplane intersects this sphere in a PL hypersphere of
dimensionn−2. It remains to show this arrangement of hyperspheres gives the same cubical com-
plex asC, unlessn= d+1.

Suppose thatn > d+1. Then it is easy to see that each cellc in the complement of the PL-
hyperplane arrangement inN has part of its boundary on the ideal boundary∂N . Let ∂c= ∂c+∪
∂c−, where∂c+ is the intersection ofc with the ideal boundary and∂c− is the closure of∂c\∂c+.

It is now straightforward to verify that the face structure of∂c+ is equivalent to the face structure
of ∂c−. Note that any family of at mostd PL hyperplanes meet in a PL ball properly embedded inN .
Sincen> d+1, the smallest dimension of such a ball is two, and hence its boundary is connected.
Then∂c− has faces which are PL balls obtained in this way of dimension varying between n−d
andn−1. Each of these faces has boundary a PL sphere which is a face of∂c+. So this establishes
a bijection between the faces of∂c+ and those of∂c−. It is easy to check that the cubical complexes
corresponding to the PL hyperplanes and to the PL hyperspheres are the same.

Note that ifn = d+1, then anyd-maximum classC⊆ {0,1}d+1 is obtained by taking all the
d-faces of the(d+1)-cube which contain a particular vertex. SoC is ad-ball and the ideal boundary
of N is a d-sphere. The cubical complex associated with the ideal boundary is the double 2C of
C, that is, two copies ofC glued together along their boundaries. The proof of Theorem 32 is now
complete.
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Example 20 Consider the unique bounded below2-maximum class̃C⊆ {0,1}5. We claim thatC̃
cannot be realized as an arrangement of PL hyperplanes in the3-ball B3. Note that our method
givesC̃ as an arrangement in B5 and this example shows that B4 is the best one might hope for in
terms of dimension of the hyperplane arrangement.

For suppose that̃C could be realized by any PL-hyperplane arrangement in B3. Then clearly
we can also embed̃C into B3. The vertex v0 = {0}5 has link given by the complete graph K on5
vertices inC̃. (By link, we mean the intersection of the boundary of a small ball in B3 centered at
v0 with C̃.) But as is well known, K is not planar, that is, cannot be embedded intothe plane or
2-sphere. This contradiction shows that no such arrangement is possible.

7.2 Maximum Classes with Manifold Cubical Complexes

We prove a partial converse to Corollary 23: if ad-maximum class has a ball as cubical complex,
then it can always be realized by a simple PL-hyperplane arrangement inR

d.

Theorem 33 Suppose that C⊆ {0,1}n is a d-maximum class. Then the following properties of C,
considered as a cubical complex, are equivalent:

(i) There is a simple arrangement A of n PL hyperplanes inR
d which represents C.

(ii) C is homeomorphic to the d-ball.

(iii) C is a d-manifold with boundary.

Proof To prove (i) implies (ii), we can use exactly the same argument as Corollary 23. Next (ii)
trivially implies (iii). So it remains to show that (iii) implies (i). The proof proceedsby double
induction onn,d. The initial cases where eitherd = 1 orn= 1 are very easy.

Assume thatC is a manifold. Letp denote theith coordinate projection. Thenp(C) is obtained
by collapsingCi× [0,1] ontoCi , whereCi is the reduction. As before, letPi be the linear hyperplane
in R

n, where theith coordinate takes value 1/2. Viewing C as a manifold embedded in then-
cube, sincePi intersectsC transversely, we see thatCi ×{1/2} is a proper submanifold ofC. But
it is easy to check that collapsingCi × [0,1] to Ci in C produces a new manifold which is again
homeomorphic toC. (The product regionCi× [0,1] in C can be expanded to a larger product region
Ci× [−ε,1+ε] and so collapsing shrinks the larger region to one of the same homeomorphismtype,
namelyCi× [−ε,ε] ). So we conclude that the projectionp(C) is also a manifold. By induction on
n, it follows that there is a PL-hyperplane arrangementA, consisting ofn−1 PL hyperplanes inBd,
which representsp(C).

Next, observe that the reductionCi can be viewed as a properly embedded submanifoldM in
Bd, whereM is a union of some of the(d−1)-dimensional faces of the Voronoi cell decomposition
corresponding toA, described in Corollary 23. By induction ond, we conclude thatCi is also repre-
sented byn PL hyperplanes inBd−1. But then since condition (i) implies (ii), it follows thatM is PL
homeomorphic toBd−1, since the underlying cubical complex forCi is a(d−1)-ball. So it follows
thatA∪{M} is a PL-hyperplane arrangement inBd representingC. This completes the proof that
condition (iii) implies (i).

1247



RUBINSTEIN AND RUBINSTEIN

8. Corner Peeling2-Maximum Classes

We give a separate treatment for the case of 2-maximum classes, since it is simpler than the gen-
eral case and shows by a direct geometric argument, that representationby a simple family of PL
hyperplanes or PL hyperspheres implies a corner-peeling scheme.

Theorem 34 Every2-maximum class can be corner peeled.

Proof By Theorem 32, we can represent any 2-maximum classC⊆ {0,1}n by a simple family of
PL hyperspheres{Si} in Sn−1. Every pair of hyperspheresSi ,Sj intersects in an(n−3)-sphereSi j

and there are no intersection points between any three of these hyperspheres. Consider the family
of spheresSi j , for i fixed. These are disjoint hyperspheres inSi so we can choose an innermost one
Sik which bounds an(n−2)-ball B1 in Si not containing any other of these spheres. Moreover there
are two ballsB2,B3 bounded bySik onSk. We call the two(n−1)-ballsQ2,Q3 bounded byB1∪B2,
B1∪B3 respectively inSn−1, which intersect only alongB1, quadrants.

AssumeB2 is innermost onSk. Then the quadrantQ2 has both facesB1,B2 innermost. It is easy
to see that such a quadrant corresponds to a corner vertex inC which can be peeled. Moreover,
after peeling, we still have a family of PL hyperspheres which give an arrangement corresponding
to the new peeled class. The only difference is that cellQ2 disappears, by interchangingB1,B2 on
the corresponding spheresSi ,Sk and then slightly pulling the faces apart. (Ifn= 3, we can visualize
a pair of disks on two intersecting spheres with a common boundary circle. Then peeling can be
viewed as moving these two disks until they coincide and then pulling the first past the second). So
it is clear that if we can repeatedly show that a quadrant can be found withtwo innermost faces,
until all the intersections between the hyperspheres have been removed,then we will have corner
peeledC to a 1-maximum class, that is, a tree. So peeling will be established.

Suppose neither of the two quadrantsQ2,Q3 has both faces innermost. ConsiderQ2 say and let
{Sα} be the family of spheres intersecting the interior of the faceB2. Amongst these spheres, there
is clearly at least oneSβ so that the intersectionSkβ is innermost onSk. But thenSkβ bounds an
innermost ballB4 in Sk whose interior is disjoint from all the spheres{Sα}. Similarly, we see that
Skβ bounds a ballB5 which is the intersection of the sphereSβ with the quadrantQ2. We get a new
quadrant bounded byB4∪B5 which is strictly smaller thanQ2 and has at least one innermost face.
But clearly this process must terminate—we cannot keep finding smaller and smaller quadrants and
so a smallest one must have both faces innermost.

9. Corner Peeling Finite Maximum Classes

Above, simple PL-hyperplane arrangements in then-ball Bn are defined. For the purposes of this
section, we study a slightly more general class of arrangements. Every simple arrangement is in
this larger class, but the latter class has many good properties. In Example 23, a maximal class is
represented by a 2-contractible hyperbolic-hyperplane arrangement.By contrast, simple hyperplane
arrangements always represent maximum classes.

Definition 35 Suppose that a finite arrangementP of PL hyperplanes{Pα}, each properly embed-
ded in an n-ball Bn, satisfies the following conditions:
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i. Each k-subcollection of hyperplanes either intersects transversely in aPL plane of dimension
n−k, or has an empty intersection; and

ii. The maximum number of hyperplanes which mutually intersect is d≤ n.

Then we say that the arrangementP is d-contractible.

The arrangements in Definition 35 are calledd-contractible because we prove later that their
corresponding one-inclusion graphs are strongly contractible cubicalcomplexes of dimensiond.
Moreover we now prove that the corresponding one-inclusion graphshave VC dimension exactlyd.

Lemma 36 The one-inclusion graphΓ corresponding to a d-contractible arrangementP has VC-
dimension d.

Proof We observe first of all, that sinceP has a subcollection ofd hyperplanes which mutually
intersect, the corresponding one-inclusion graphΓ has ad-subcube, when considered as a cubical
complex. But then the VC dimension ofΓ is clearly at leastd. On the other hand, suppose that
the VC dimension ofΓ was greater thand. Then there is a projection ofΓ which shatters some
(d+1)-cube. But this projection can be viewed as deleting all the hyperplanes ofP except for a
subcollection ofd+ 1 hyperplanes. However, by assumption, such a collection cannot haveany
mutual intersection points. It is easy to see that any such an arrangement has at most 2d+1−1 com-
plementary regions and hence cannot represent the(d+1)-cube. This completes the proof.

Definition 37 A one-inclusion graphΓ is strongly contractibleif it is contractible as a cubical
complex and moreover, all reductions and multiple reductions ofΓ are also contractible.

Definition 38 Thecomplexityof a PL-hyperplane arrangementP is the lexicographically ordered
pair (r,s), where r is the number of regions in the complement ofP , and s is the smallest number of
regions in any half space on one side of an individual hyperplane inP .

We allow several different hyperplanes to be used for a single sweeping process. So a hyperplane
P may start sweeping across an arrangementP . One of the half spaces defined byP can become a
new ballB+ with a new arrangementP+ defined by restriction ofP to the half spaceB+. Then a
second generic hyperplaneP′ can start sweeping across this new arrangementP+. This process may
occur several times. It is easy to see that sweeping a single generic hyperplane as in Theorem 29,
applies to such a multi-hyperplane process. Below we show that a suitable multiple sweeping of a
PL-hyperplane arrangementP gives a corner-peeling sequence of all finite maximum classes.

The following states our main theorem.

Theorem 39 Assume thatP is a d-contractible PL-hyperplane arrangement in the n-ball Bn. Then
there is a d-corner-peeling scheme for this collectionP .

Corollary 40 There is no constant k so that every finite maximal class of VC-dimensiond can be
embedded into a maximum class of VC-dimension d+k.
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Figure 14: (a) An example PL-hyperplane arrangementP and (b) the result of a Pachner move of
hyperplaneP4 onP .

Proof By Theorem 39, every maximum class has a peeling scheme which successively removes
vertices from the one-inclusion graph, so that the vertices being discarded never have degree more
thand. But Rubinstein et al. (2007) gave examples of maximal classes of VC-dimensiond which
have a core of the one-inclusion graph of sized+k for any constantk. Recall that a core is a sub-
graph and its size is the minimum degree of all the vertices. Having a peeling scheme gives an upper
bound on the size of any core and so the result follows.

9.1 Proof of Main Theorem

The proof is by induction on the complexity ofP . Since we are dealing with the class ofd-
contractible PL-hyperplane arrangements, it is easy to see that if any suchP is split openalong some
fixed hyperplaneP1 in the arrangement (see Figures 14–15), then the result is two new arrangements
P+,P− each of which contains fewer hyperplanes and also fewer complementaryregions than the
initial one. The new arrangements have smaller complexity thanP and arek−,k′-contractible for
somek,k′ ≤ d. This is the key idea of the construction.

To examine this splitting process in detail, first note that each hyperplanePα of P is either
disjoint from P1 or splits alongP1 into two hyperplanesP+

α ,P−α . We can now construct the new
PL-hyperplane arrangementsP+,P− in the ballsB+,B− obtained by splittingB along P1. Note
that ∂B+ = P1∪D+ and∂B− = P1∪D− whereD+,D− are balls of dimensionn− 1 which have
a common boundary withP1. It is easy to verify thatP+,P− satisfy similar hypotheses to the
original arrangement. Observe that the maximum number of mutually intersectinghyperplanes in
P+,P− may decrease relative to this number forP , after the splitting operation. The reason is that
the hyperplaneP1 ‘disappears’ after splitting and so if all maximum subcollections ofP which
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Figure 15: Result of splittingP in Figure 14(a) along hyperplaneP1.

mutually intersect, all containP1, then this number is smaller forP+,P− as compared to the initial
arrangementP . This number shows thatP+,P− can bek- or k′-contractible, fork,k′ < d as well as
the cases wherek,k′ = d.

Start the induction with any arrangement with one hyperplane. This gives two regions and
complexity(2,1). The corresponding graph has one edge and two vertices and obviously can be
corner peeled.

We now describe the inductive step. There are two cases. In the first, assume the arrangement
has complexity(r,1). The corresponding graph has a vertex which belongs to only one edge,so can
be corner peeled. This gives an arrangement with fewer hyperplanesand clearly the complexity has
decreased to(r−1,s) for somes. This completes the inductive step for the first case.

For the second case, assume that alld-contractible hyperplane arrangements with complexity
smaller than(r,s) have corner-peeling sequences ands> 1. Choose anyd-contractible hyperplane
arrangementP with complexity(r,s). Select a hyperplaneP1 which splits the arrangement into two
smaller arrangementsP+,P− in the ballsB+,B−. By our definition of complexity, it is easy to see
that however we chooseP1, the complexity of each ofP+,P− will be less than that ofP . However,
a key requirement for the proof will be that we selectP1 so that it has preciselys complementary
regions forP+, that is,P1 has fewest complementary regions in one of its halfspaces, amongst all
hyperplanes in the arrangement.

SinceP+ has smaller complexity than(r,s), by our inductive hypothesis, it can be corner peeled
(cf. Figure 16). If any of the corner-peeling moves ofP+ is a corner-peeling move forP , then
the argument follows. For any corner-peeling move ofP gives a PL-hyperplane arrangement with
fewer complementary cells thanP and thus smaller complexity than(r,s). Hence by the inductive
hypothesis, it follows thatP can be corner peeled.

Next, suppose that no corner-peeling move ofP+ is a corner-peeling move forP . In particular,
the first corner-peeling move forP+ must occur for a cellR+ in the complement ofP , which is
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Figure 16: Partial corner-peeling sequence for the(B+,P+) arrangement split from the arrangement
of Figure 15, in the proof of Theorem 39.

adjacent toP1. (Clearly any corner-peeling move forP+, which occurs at a regionR1 with a face
on D+, will be a corner-peeling move forP .) R+ must be a product of ad′-simplex∆ with a copy
of Rn−d′ , with one face onP1 and the other faces on planes ofP . This is because a corner-peeling
move can only occur at a cell with this type of face structure, as describedin Theorem 29. The
corresponding effect on the one-inclusion graph is peeling of a vertexwhich is a corner of ad′-cube
in the binary class corresponding to the arrangementP+, whered′ ≤ d.

Now even though such a cellR+ does not give a corner-peeling move forP , we can pushP1

acrossR+. The effect of this is to move the complementary cellR+ from B+ to B−. Moreover,
since we assumed that the hyperplaneP1 satisfiesP+ has a minimum numbers of complementary
regions, it follows that the move pushingP1 acrossR+ produces a new arrangementP ⋆ with smaller
complexity (r,s− 1) than the original arrangementP . Hence by our inductive assumption,P ⋆

admits a corner-peeling sequence.
To complete the proof, we need to show that existence of a corner-peelingsequence forP ⋆

implies that the original arrangementP has at least one corner-peeling move. Recall thatR+ has
face structure given by∆×R

n−d′ , with one face onP1 and the other faces on planes ofP . Consider
the subcomplexU of the one-inclusion graph consisting of all the regions sharing a vertex or face of
dimensionk for 1≤ k≤ n−1 with R+. It is not difficult to see thatU is ad′-ball consisting ofd′+1
cubes, each of dimensiond′. (As examples, ifd′ = 2, U consists of 3 2-cubes forming a hexagon
and ifd′ = 3,U consists of 4 3-cubes with boundary a rhombic dodecahedron.)

Consider the first corner-peeling move on the arrangementP ⋆. Note that the one-inclusion
graphs ofP ⋆ andP differ precisely by replacingU with U ′, that is, by a Pachner move. Hence this
first corner-peeling move must occur at a vertexv1 whose degree is affected by this replacement,
since otherwise, the corner-peeling move would also apply toP and the proof would be complete.
In fact, if v1 has the same number of adjacent edges before and after the Pachner move, then it
must belong to the same single maximum dimension cube before and after the Pachner move. (The
only cubes altered by the Pachner move are the ones inU .) It is easy to see that,v1 must belong
to ∂U = ∂U ′ and must have degreed′ in P ⋆. Sov1 is a corner of a singled′-cube forU ′ and does
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Figure 17: A 2-maximum complex in the 3-cube. After a Pachner move verticesv1,v2,v3, etc. can
be corner-peeled.

not belong to any other edges or cubes of the one inclusion graph forP ⋆. In U (and hence also in
P ), v1 belongs tod′-cubes of dimensiond′ and so has degreed′+1. After peeling awayv1 and its
correspondingd′-cube, we still have ad′-ball with onlyd′-cubes, (cf. Figure 17).

Consider the next corner-peeling move. We claim that it must again be at a vertexv2 belonging
to ∂U ′. The reason is that only vertices belonging toU ′ have degree reduced by our first corner-
peeling move. So if this second move did not occur at a vertex ofU ′, then it could be used as
a corner-peeling move of our initial arrangementP . There may be several choices forv2. For
example, ifd′ = 2, thenU ′ is a hexagonal disk and removing one 2-cube fromU ′ gives a choice
which could be either of the two vertices which are corners of a single 2-cube inU ′, (cf. Figure 17).
Note that a vertex which is a corner of a single cube inU ′ remains so after corner peeling atv1.
Note also thatv2 cannot belong to any edges of the one-inclusion graph which are not inU ′, as for
v1, if v2 can be used for corner peeling.

We can continue examining corner-peeling moves ofP ⋆ and find that all must occur at vertices
in ∂U ′, until the unique interior vertex is ready to be peeled, that is, belongs to a single cube. (See
Figure 17.) The key to understanding this is that firstly, when we initially peel only vertices in∂U ′,
these are not adjacent to any vertices of the one-inclusion graph outsideU ′ and so cannot produce
any new opportunities for corner peeling of vertices not inU ′. Secondly, if the unique interior vertex
v of U ′ can be corner peeled, after sufficiently many vertices in∂U ′ have been peeled, then new
vertices in∂U ′ become candidates for peeling. For although these latter vertices may be adjacent to
vertices outsideU ′, afterv has been peeled, they may become a corner vertex of a unique maximal
cube.

But now a final careful examination of this situation shows that there must beat least one vertex
of U which belongs to a singled′-cube inU and to no other edges inP . So this will give our initial
corner-peeling move ofP .

To elaborate, we can describeU as the set ofd′-cubes which share the vertex(0,0, . . . ,0) in
the (d′+1)-cube{0,1}d

′+1. ThenU ′ consists of all thed′-cubes in{0,1}d
′+1 which contain the

vertex(1,1, . . . ,1). Now assume that an initial sequence of corner peeling of vertices in∂U ′ allows
the next step to be corner peeling of the unique interior vertexv. Note that in the notation above,v
corresponds to the vertex(1,1, . . . ,1).
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As in Figure 17, we may assume that after the corner peeling corresponding to the initial se-
quence of vertices in∂U ′, that there is a singled′-cube left inU ′ containingv. Without loss of gen-
erality, suppose this is the cube with vertices withx1 = 1 where the coordinates arex1,x2, . . . ,xd′+1

in {0,1}d
′+1. But then, it follows that there are no vertices outsideU ′ adjacent to any of the initial

sequence of vertices, which are all the vertices in{0,1}d
′+1 with x1 = 0, except for(0,0, . . . ,0). But

now the vertex(0,1, . . . ,1) has the property that we want - it is contained in a uniqued′-cube inU
and is adjacent to no other vertices outsideU . This completes the proof.

9.2 Peeling Classes with Generic Linear or Generic Hyperbolic Arrangements

In this subsection, we study a special class ofd-contractible arrangements. If a collection of hyper-
planes in ann-manifold is in general position, then they have the property in the following definition.
Then a key idea in differential or PL topology is that any collection can be slightly perturbed to be
in general position. See Rourke and Sanderson (1982) for a discussion of these issues in the PL
case.

Definition 41 A linear or hyperbolic-hyperplane arrangementP in R
n or Hn respectively, is called

generic, if any subcollection of k hyperplanes ofP , for 2≤ k≤ n has the property that there are no
intersection points or the subcollection intersects transversely in a plane of dimension n−k.

Corollary 42 SupposeP is a generic linear or hyperbolic-hyperplane arrangement inR
n or Hn

and amongst all subcollections ofP , the largest with an intersection point in common, has d hyper-
planes. ThenP admits a d-corner-peeling scheme.

Remark 43 The proof of Corollary 42 is immediate since it is obvious that any generic linear or
hyperbolic-hyperplane arrangement is a d-contractible PL-hyperplane arrangement, where d is the
cardinality of the largest subcollection of hyperplanes which mutually intersect. Note that many
generic linear, hyperbolic or d-contractible PL-hyperplane arrangements do not embed in any sim-
ple linear, hyperbolic or PL-hyperplane arrangement. For if there aretwo hyperplanes inP which
are disjoint, then this is an obstruction to enlarging the arrangement by adding additional hyper-
planes to obtain a simple arrangement. Hence this shows that Theorem 39 produces compression
schemes, by corner peeling, for a considerably larger class of one-inclusion graphs than just max-
imum one-inclusion graphs. However it seems possible that d-contractible PL hyperplanes always
embed in d-maximum classes, by ‘undoing’ the operation of sweeping and corner peeling, which
pulls apart the hyperplanes.

10. Peeling Infinite Maximum Classes with Finite-Dimensional Arrangements

We seek infinite classes represented by arrangements satisfying the same conditions as above. Note
that any finite subclass of such an infinite class then satisfies these conditions and so can be corner
peeled. Hence any such a finite subclass has a complementary regionR which has face structure of
the product of ad′-simplex with a copy ofRn−d′ with one face on the boundary ofBn. To find such
a region in the complement of our infinite collectionP , we must impose some conditions.

One convenient condition (cf. the proof of Theorem 39) is that a hyperplanePα in P can be
found which splitsBn into piecesB+,B− so that one, sayB+ gives a new arrangement for which the
maximum number of mutually intersecting hyperplanes is strictly less than that forP . Assume that
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the new arrangement satisfies a similar condition, and we can keep splitting untilwe get to disjoint
hyperplanes.

It is not hard to prove that such arrangements always have peeling sequences. Moreover the
peeling sequence does give a compression scheme. This sketch establishes the following.

Theorem 44 Suppose that a countably infinite collectionP of PL hyperplanes{Pα}, each properly
embedded in an n-ball Bn, satisfies the following conditions:

i. P satisfies the conditions of d-contractible arrangements as in Definition 35 and

ii. There is an ordering of the planes inP so that if we split Bn successively along the planes,
then at each stage, at least one of the two resulting balls has an arrangement with a smaller
maximum number of planes which mutually intersect.

Then there is a d-corner-peeling scheme forP , and this provides a d-unlabeled compression scheme.

Example 21 Rubinstein and Rubinstein (2008) give an example that satisfies the assumptions of
Theorem 44. Namely inRn choose the positive octantO = {(x1,x2, . . .xn) : xi ≥ 0}. InsideO choose
the collection of hyperplanes given by xi = m for all 1≤ i ≤ n and m≥ 1 a positive integer. There
are many more examples, we present only a very simple model here. Take a graph inside the unit
disk D with a single vertex of degree3 and the three end vertices on∂D. Now choose a collection
of disjoint embedded arcs representing hyperplanes with ends on∂D and meeting one of the edges
of the graph in a single point. We choose finitely many such arcs along two ofthe graph edges and
an infinite collection along one arc. This gives a very simple family of hyperplanes satisfying the
hypotheses of Theorem 44. Higher dimensional examples with intersecting hyperplanes based on
arbitrary trees can be constructed in a similar manner.

11. Contractibility, Peeling and Arrangements

In this section, we characterize the concept classes which have one-inclusion graphs representable
by d-contractible PL-hyperplane arrangements.

Theorem 45 Assume thatC is a concept class in the binary n-cube and d is the largest dimension
of embedded cubes in its one-inclusion graphΓ. The following are equivalent.

i. Γ is a strongly contractible cubical complex.

ii. There is a d-contractible PL-hyperplane arrangementP in an n-ball which representsΓ.

Proof To prove thati implies ii , we use some important ideas in the topology of manifolds. The
cubical complexC is naturally embedded into the binaryn-cube, which can be considered as an
n-ball Bn. A regular neighborhoodN of C homotopy retracts ontoC and so is contractible. Now we
can use a standard argument from algebraic and geometric topology to prove thatN is a ball. Firstly,
∂N is simply connected, assuming thatn−d > 2. For given a loop in∂N, it bounds a disk inN by
contractibility. SinceC is ad-dimensional complex andn−d > 2 it follows that this disk can be
pushed offC by transversality and then pushed into∂N. But now we can follow a standard argument
using the solution of the Poincaré conjecture in all dimensions (Perelman, 2002; Freedman, 1982;
Smale, 1961). By duality, it follows that∂N is a homotopy(n−1)-sphere and so by the Poincaré
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conjecture,∂N is an(n−1)-sphere. Another application of the Poincaré conjecture shows thatN is
ann-ball.

Next, the bisecting planes of the binaryn-cube meet then-ball N in neighborhoods of reduc-
tions. Hence the assumption that each reduction is contractible enables us to conclude that these
intersections are also PL hyperplanes inN. Therefore the PL-hyperplane arrangement has been
constructed which representsΓ. It is easy to see that this arrangement is indeedd-contractible,
since strong contractibility implies that all multiple reductions are contractible and so intersections
of subfamilies of PL hyperplanes are either empty or are contractible and hence planes, by the same
argument as the previous paragraph. (Note that such intersections correspond to multiple reductions
of Γ.)

Finally to show thatii implies i, by Theorem 39, ad-contractible PL-hyperplane arrangement
P has a peeling sequence and so the corresponding one-inclusion graphΓ is contractible. This fol-
lows since a corner-peeling move can be viewed as a homotopy retraction. But then reductions and
multiple reductions are also represented byd′-contractible hyperplane arrangements, since these
correspond to the restriction ofP to the intersection of a finite subfamily of hyperplanes ofP . It is
straightforward to check that these new arrangements ared′-contractible, completing the proof.

Remark 46 Note that any one-inclusion graphΓ which satisfies the hypotheses of Theorem 45
admits a corner-peeling sequence. From the proof above,Γ must be contractible if it has a peeling
sequence. HoweverΓ does not have to be strongly contractible. A simple example can be found
in the binary3-cube, with coordinate directions x,y,z. DefineΓ to be the union of four edges,
labeled x,y,z,x. It is easy to see thatΓ has a peeling sequence and is contractible but not strongly
contractible. For the bisecting hyperplane transverse to the x direction meetsΓ in two points, so the
reductionΓx is a pair of vertices, which is not contractible.

Note that all maximum classes are strongly contractible, as are also all linear and hyperbolic
arrangements, by Corollary 42 and Theorem 45.

12. Future Directions: Compression Schemes for Maximal Classes

In this section, we compare two maximal classes of VC-dimension 2 in the binary 4-cube. For the
first, we show that the one-inclusion graph is not contractible and therefore there is no peeling or
corner-peeling scheme. There is an unlabeled compression scheme, butthis is not associated with
either peeling or a hyperplane arrangement. For the second, the one-inclusion graph is contractible
but not strongly contractible. However there are simple corner-peeling schemes and a related com-
pression scheme. Note that the relation between the compression scheme andthe corner-peeling
scheme is not as straightforward as in our main result above. Finally for thesecond example, there
is a non simple hyperplane arrangement consisting of lines in the hyperbolic plane which represents
the class. It would be interesting to know if there are many maximal classes which admit such non
simple representations and if there is a general procedure to find associated compression schemes.

Example 22 LetC be the maximal class of VC-dimension2 in the4-cube with concepts and labels
shown in Figure 18(a). This forms an unlabeled compression scheme. Note that the one-inclusion
graph is not connected, consisting of four2-cubes with common vertex at the origin 0000 and an
isolated vertex at 1111. So since a contractible complex is connected, the one-inclusion graph
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Concept Label
0000 /0
1000 x1

0100 x2

0010 x3

0001 x4

1100 x1x2

0011 x3x4

0110 x2x3

1001 x1x4

1111 x1x3, x2x4

(a)

Concept Label
0000 /0
1000 x1

0100 x2

0010 x3

1100 x1x2

0110 x2x3

1010 x1x3

1011 x2x4

1101 x3x4

0111 x1x4

(b)

Figure 18: VC-2 maximal classes from (a) Example 22 and (b) Example 23.

cannot be contractible. Moreover any hyperplane arrangement represents a connected complex so
there cannot be such an arrangement for this example. This example is the same class (up to flipping
coordinate labels) as in Kuzmin and Warmuth (2007, Table 2) but there appear to be some errors
there in describing the compression scheme.

Example 23 LetC be the maximal class of VC-dimension2 in the4-cube with concepts and labels
defined in Figure 18(b). The class is enlarged by adding an extra vertex1111 x4 to complete the
labeling.

This forms an unlabeled compression scheme and is the same as in Kuzmin and Warmuth (2007,
Table 1). The one-inclusion graph is contractible, consisting of three2-cubes with common vertex
0100 and three edges attached to these2-cubes. It is easy to form a hyperbolic-line arrangement
consisting of three lines meeting in three points forming a triangle and three further lines near the
boundary of the hyperbolic plane which do not meet any other line.

It is easy to see that there is a corner-peeling sequence, but there is not such an obvious way
of using this to form a compression scheme. The idea is that the label x1x4 comes from picking
the origin at 0000 and considering the shortest path to the origin as giving thelabel. There are
numerous ways of corner peeling this one-inclusion complex. The only other comment is that the
final vertices 0111, 1011, 1101 and 1111 are labeled in a different manner. Namely putting the
origin at 0000 means that 0111 has shortest path with label x2x3x4. We replace this by the label x1x4

since clearly this satisfies the no-clashing condition. Then the final vertex 1111 has the remaining
label x4 to uniquely specify it.

13. Conclusions and Open Problems

We saw in Corollary 23 thatd-maximum classes represented by simple linear-hyperplane arrange-
ments inRd have underlying cubical complexes that are homeomorphic to ad-ball. Hence the VC
dimension and the dimension of the cubical complex are the same. Moreover in Theorem 33, we
proved thatd-maximum classes represented by PL-hyperplane arrangements inR

d are those whose
underlying cubical complexes are manifolds or equivalentlyd-balls.
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Question 47 Does every simple PL-hyperplane arrangement in Bd, where every subcollection of
d planes transversely meet in a point, represent the same concept class as some simple linear-
hyperplane arrangement?

Question 48 What is the connection between the VC dimension of a maximum class inducedby
a simple hyperbolic-hyperplane arrangement and the smallest dimension of hyperbolic space con-
taining such an arrangement? In particular, can the hyperbolic space dimension be chosen to only
depend on the VC dimension and not the dimension of the binary cube containing the class?

We gave an example of a 2-maximum class in the 5-cube that cannot be realized as a hyperbolic-
hyperplane arrangement inH 3. Note that the Whitney embedding theorem (Rourke and Sanderson,
1982) proves that any cubical complex of dimensiond embeds inR2d. Can such an embedding be
used to construct a hyperbolic arrangement inH 2d or a PL arrangement inR2d?

The structure of the boundary of a maximum class is strongly related to corner peeling. For
Euclidean-hyperplane arrangements, the boundary of the corresponding maximum class is homeo-
morphic to a sphere by Corollaries 22 and 23.

Question 49 Is there a characterization of the cubical complexes that can occur as the boundary
of a maximum class? Characterize maximum classes with isomorphic boundaries.

Question 50 Does a corner-peeling scheme exist with corner vertex sequence having minimum
degree?

Theorem 32 suggests the following.

Question 51 Can any d-maximum class in{0,1}n be represented by a simple arrangement of hy-
perplanes inHn?

Question 52 Which compression schemes arise from sweeping across simple hyperbolic-hyperplane
arrangements?

Kuzmin and Warmuth (2007) note that there are unlabeled compression schemes that are cyclic.
In Proposition 17 we show that corner-peeling compression schemes (likemin-peeling) are acyclic.
So compression schemes arising from sweeping across simple arrangements of hyperplanes in
Euclidean or hyperbolic space are also acyclic. Does acyclicity characterize such compression
schemes?

We have established peeling of all finite maximum and a family of infinite maximum classes by
representing them as PL-hyperplane arrangements and sweeping by multiple generic hyperplanes.
A larger class of arrangements has these properties—namely those which are d-contractible—and
we have shown that the corresponding one-inclusion graphs are precisely the strongly contractible
ones. Finally we have established that there ared-maximal classes that cannot be embedded in any
(d+k)-maximum classes for any constantk. Some important open problems along these lines are
the following.

Question 53 Prove peeling of maximum classes using purely combinatorial arguments
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Question 54 Can all maximal classes be peeled by representing them by hyperplane arrangements
and then using a sweeping technique (potentially solving the Sample Compressibility conjecture)?
The obvious candidate for this approach is to use d-contractible PL-hyperplane arrangements.

Question 55 What about more general collections of infinite maximum classes, or infinite arrange-
ments?

Question 56 Is it true that any d-contractible PL-hyperplane arrangement is equivalent to a hyperbolic-
hyperplane arrangement?

Question 57 Is it true that all strongly contractible classes, with largest dimension d of cubes can
be embedded in maximum classes of VC-dimension d?

Acknowledgments

We thank Peter Bartlett for his very helpful feedback, and gratefully acknowledge the support of
the NSF through grants DMS-0434383 and DMS-0707060, and the support of the Siebel Scholars
Foundation.

References

N. Alon. On the density of sets of vectors.Discrete Mathematics, 46(2):199–202, 1983.

S. Ben-David and A. Litman. Combinatorial variability of Vapnik-Chervonenkis classes with ap-
plications to sample compression schemes.Discrete Applied Mathematics, 86(1):3–25, 1998.

A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Learnabilityand the Vapnik-
Chervonenkis dimension.Journal of the ACM, 36(4):929–965, 1989.

R. M. Dudley. The structure of some Vapnik-Chervonenkis classes. InL.M. Le Cam and R.A.
Olshen, editors,Proceedings of the Berkeley Conference in Honor of Jerzy Neyman, volume II,
pages 495–507. Wadsworth, 1985.

H. Edelsbrunner.Algorithms in Combinatorial Geometry, volume 10 ofEATCS Monographs on
Theoretical Computer Science. Springer-Verlag, 1987.

S. Floyd. Space-bounded learning and the Vapnik-Chervonenkis dimension. Technical Report
TR-89-061, ICSI, UC Berkeley, 1989.

P. Frankl. On the trace of finite sets.Journal of Combinatorial Theory (A), 34(1):41–45, 1983.

M. Freedman. The topology of four-dimensional manifolds.Journal of Differential Geometry, 17:
357–454, 1982.
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