

Erratum: Local Identification of Overcomplete Dictionaries

Karin Schnass

*University of Innsbruck
Technikerstraße 13
6020 Innsbruck, Austria*

KARIN.SCHNASS@UIBK.AC.AT

Editor: Francis Bach

The proof of Proposition 7 is incorrect, due to the wrong assumption that the set Σ_p is symmetric in the sense that either $(\sigma_1, \dots, \pm\sigma_i, \dots, \sigma_K) \in \Sigma_p$ or $(\sigma_1, \dots, \pm\sigma_i, \dots, \sigma_K) \notin \Sigma_p$. As Sebastian Kaiser and Felix Krahmer pointed out, if Σ_p had the described property, by iteratively flipping the signs we could reach all sign sequences so either Σ_p would be the set of all sign sequences or the empty set. A corrected proof can be found below:

Proof To prove the proposition we digress from the conventional scheme of first calculating the expectation of our objective function for both the original and a perturbed dictionary and then comparing and instead bound the difference of the expectations directly.

$$\begin{aligned} & \mathbb{E}_y \left(\max_{|I|=S} \|\Phi_I^* y\|_1 \right) - \mathbb{E}_y \left(\max_{|I|=S} \|\Psi_I^* y\|_1 \right) \\ &= \mathbb{E}_{p,\sigma,r} \left(\max_{|I|=S} \left\| \frac{\Phi_I^*(\Phi c_{p,\sigma} + r)}{\sqrt{1 + \|r\|_2^2}} \right\|_1 - \max_{|I|=S} \left\| \frac{\Psi_I^*(\Phi c_{p,\sigma} + r)}{\sqrt{1 + \|r\|_2^2}} \right\|_1 \right) \\ &= \mathbb{E}_{p,\sigma,r} \left(\frac{\max_{|I|=S} \|\Phi_I^*(\Phi c_{p,\sigma} + r)\|_1 - \max_{|I|=S} \|\Psi_I^*(\Phi c_{p,\sigma} + r)\|_1}{\sqrt{1 + \|r\|_2^2}} \right) := \mathbb{E}_{p,\sigma,r}(\Delta_{p,\sigma,r}) \end{aligned}$$

Again our strategy is to show that for a fixed p for most σ and r the maximal response of both the original dictionary and the perturbation is attained at I_p . The expressions we therefore need to lower (upper) bound for $i \in I_p$ ($i \notin I_p$) are

$$\begin{aligned} |\langle \phi_i, \Phi c_{p,\sigma} + r \rangle| &= \left| \sigma_i c_{p(i)} + \sum_{j \neq i} \sigma_j c_{p(j)} \langle \phi_i, \phi_j \rangle + \langle \phi_i, r \rangle \right|, \\ &= \left| c_{p(i)} + \sigma_i \sum_{j \neq i} \sigma_j c_{p(j)} \langle \phi_i, \phi_j \rangle + \sigma_i \langle \phi_i, r \rangle \right|, \\ |\langle \psi_i, \Phi c_{p,\sigma} + r \rangle| &= \left| \alpha_i \sigma_i c_{p(i)} + \alpha_i \sum_{j \neq i} \sigma_j c_{p(j)} \langle \phi_i, \phi_j \rangle + \omega_i \langle z_i, \Phi c_{p,\sigma} \rangle + \langle \psi_i, r \rangle \right| \\ &= \left| \alpha_i c_{p(i)} + \sigma_i \alpha_i \sum_{j \neq i} \sigma_j c_{p(j)} \langle \phi_i, \phi_j \rangle + \sigma_i \omega_i \langle z_i, \Phi c_{p,\sigma} \rangle + \sigma_i \langle \psi_i, r \rangle \right|. \end{aligned}$$

However, instead of using a worst case estimate for the gap between the responses of the original dictionary within and without I_p , we now make use of the fact that for most sign sequences we have a gap size of order $c_S - c_{S+1}$. This means that as soon

as $|\sum_{j \neq i} \sigma_j c_{p(j)} \langle \phi_i, \phi_j \rangle|$, $|\omega_i \langle z_i, \Phi c_{p,\sigma} \rangle|$ and the noise related terms $|\langle \phi_i, r \rangle|$ and $|\langle \psi_i, r \rangle|$ are of order $(c_S - c_{S+1})$ the maximal response of both the original dictionary and the perturbation is attained at I_p . In particular, setting $\delta_p(i) = -1$ for $i \in I_p$ and $\delta_p(i) = 1$ for $i \notin I_p$ defining the sets,

$$\Sigma_p := \bigcup_i \left\{ \sigma \text{ s.t. } \sigma_i \delta_p(i) \sum_{j \neq i} \sigma_j c_{p(j)} \langle \phi_i, \phi_j \rangle \geq \frac{c_S - c_{S+1}}{6} \right. \\ \left. \text{or } \sigma_i \delta_p(i) \omega_i \langle z_i, \Phi c_{p,\sigma} \rangle \geq \frac{c_S - c_{S+1} - \frac{3\varepsilon^2}{2}}{6} \right\},$$

for a fixed permutation p and

$$R := \bigcup_i \left\{ r \text{ s.t. } |\langle \phi_i, r \rangle| \geq \frac{c_S - c_{S+1}}{3} \text{ or } |\langle \psi_i, r \rangle| \geq \frac{c_S - c_{S+1}}{6} \right\},$$

we see that both maxima are attained at I_p as long as $\sigma \notin \Sigma_p$ and $r \notin R$. Using Hoeffding's inequality we get that

$$\mathbb{P} \left(\sigma_i \delta_p(i) \sum_{j \neq i} \sigma_j c_{p(j)} \langle \phi_i, \phi_j \rangle > t \right) \leq \exp \left(\frac{-t^2}{2 \sum_{j \neq i} c_{p(j)}^2 |\langle \phi_i, \phi_j \rangle|^2} \right) \leq \exp \left(\frac{-t^2}{2\mu^2} \right),$$

and similarly (compare also Proposition 6) we get that for $\varepsilon_i \neq 0$

$$\mathbb{P}(\sigma_i \delta_p(i) \omega_i \langle z_i, \Phi c_{p,\sigma} \rangle \geq s) \leq \exp \left(\frac{-s^2}{2\varepsilon_i^2} \right).$$

Setting $t = (c_S - c_{S+1})/6$, $s = (c_S - c_{S+1} - \frac{3\varepsilon^2}{2})/6$ and using a union bound then leads to

$$\mathbb{P}(\Sigma_p) \leq K \exp \left(-\frac{(c_S - c_{S+1} - \frac{3\varepsilon^2}{2})^2}{72\varepsilon^2} \right) + K \exp \left(\frac{-(c_S - c_{S+1})^2}{72\mu^2} \right). \quad (1)$$

Since the $r(i)$ are subgaussian with parameter ρ we have for any $v = (v_1 \dots v_d)$ and $t \geq 0$, $\mathbb{P}(|\langle v, r \rangle| \geq t) \leq \exp \left(-\frac{t^2}{2\rho^2 \|v\|_2^2} \right)$, see e.g. [31]. Taking a union bound over all ϕ_i, ψ_i with the corresponding choice for t then leads to the estimate

$$\mathbb{P}(R) \leq 2K \exp \left(-\frac{(c_S - c_{S+1})^2}{72\rho^2} \right) + 2K \exp \left(-\frac{(c_S - c_{S+1})^2}{18\rho^2} \right). \quad (2)$$

We now split the expectations over the sign and noise patterns for a fixed p to get

$$\begin{aligned} \mathbb{E}_{\sigma,r}(\Delta_{p,\sigma,r}) &= \int_{r \notin R} \mathbb{E}_\sigma(\Delta_{p,\sigma,r}) d\nu_r + \int_{r \in R} \mathbb{E}_\sigma(\Delta_{p,\sigma,r}) d\nu_r \\ &= \int_{r \notin R} \left(\sum_{\sigma \notin \Sigma_p} \mathbb{P}(\sigma) \Delta_{p,\sigma,r} \right) d\nu_r + \int_{r \notin R} \left(\sum_{\sigma \in \Sigma_p} \mathbb{P}(\sigma) \Delta_{p,\sigma,r} \right) d\nu_r \\ &\quad + \mathbb{E}_\sigma \left(\int_{r \in R} \Delta_{p,\sigma,r} d\nu_r \right). \end{aligned} \quad (3)$$

We start by bounding $\sum_{\sigma \notin \Sigma_p} \Delta_{p,\sigma,r}$ for a fixed $r \notin R$. We have

$$\begin{aligned}
 \sum_{\sigma \notin \Sigma_p} \Delta_{p,\sigma,r} &= \sum_{\sigma \notin \Sigma_p} \mathbb{P}(\sigma) \left(\frac{\|\Phi_{I_p}^*(\Phi c_{p,\sigma} + r)\|_1 - \|\Psi_{I_p}^*(\Phi c_{p,\sigma} + r)\|_1}{\sqrt{1 + \|r\|_2^2}} \right) \\
 &= (1 + \|r\|_2^2)^{-\frac{1}{2}} \sum_{\sigma \notin \Sigma_p} \sum_{i \in I_p} |\langle \phi_i, \Phi c_{p,\sigma} + r \rangle| - |\langle \psi_i, \Phi c_{p,\sigma} + r \rangle| \\
 &= (1 + \|r\|_2^2)^{-1/2} \sum_{i \in I_p} \sum_{\sigma \notin \Sigma_p} \sigma_i \langle \phi_i, \Phi c_{p,\sigma} + r \rangle - \sigma_i \langle \psi_i, \Phi c_{p,\sigma} + r \rangle \\
 &= (1 + \|r\|_2^2)^{-\frac{1}{2}} \sum_{i \in I_p} \sum_{\sigma \notin \Sigma_p} (1 - \alpha_i) |\langle \phi_i, \Phi c_{p,\sigma} + r \rangle| - \sigma_i \omega_i \langle z_i, \Phi c_{p,\sigma} + r \rangle.
 \end{aligned}$$

Define σ^i via setting $\sigma_i^i = -\sigma_i$ and $\sigma_j^i = \sigma_j$ for $j \neq i$. For every index $i \in I_p$ there are two types of sequences $\sigma \notin \Sigma_p$, those were $\sigma^i \notin \Sigma_p$ and those were $\sigma^i \in \Sigma_p$. Since $\omega_i \langle z_i, \Phi c_{p,\sigma} + r \rangle$ is independent of σ_i , in the sum over the first type of sequences the term is scaled once with σ_i and once with $\sigma_i^i = -\sigma_i$ and therefore cancels out. This leads to

$$\begin{aligned}
 \sum_{\sigma \notin \Sigma_p} \Delta_{p,\sigma,r} &= (1 + \|r\|_2^2)^{-\frac{1}{2}} \sum_{i \in I_p} \left(\sum_{\sigma \notin \Sigma_p} \frac{\varepsilon_i^2}{2} |\langle \phi_i, \Phi c_{p,\sigma} + r \rangle| - \sum_{\sigma \notin \Sigma_p: \sigma^i \in \Sigma_p} \sigma_i \omega_i \langle z_i, \Phi c_{p,\sigma} + r \rangle \right) \\
 &\geq (1 + \|r\|_2^2)^{-\frac{1}{2}} \sum_{i \in I_p} \left(\sum_{\sigma \notin \Sigma_p} \frac{\varepsilon_i^2}{2} |\langle \phi_i, \Phi c_{p,\sigma} + r \rangle| - \sum_{\sigma \notin \Sigma_p: \sigma^i \in \Sigma_p} \varepsilon_i \|\Phi c_{p,\sigma} + r\|_2 \right) \\
 &\geq (1 + \|r\|_2^2)^{-\frac{1}{2}} \sum_{i \in I_p} \left(\sum_{\sigma \notin \Sigma_p} \frac{\varepsilon_i^2}{2} |\langle \phi_i, \Phi c_{p,\sigma} + r \rangle| - \sum_{\sigma \in \Sigma_p} \varepsilon (\sqrt{B} + \|r\|_2) \right) \\
 &\geq (1 + \|r\|_2^2)^{-\frac{1}{2}} \left(\sum_{\sigma \notin \Sigma_p} \sum_{i \in I_p} \frac{\varepsilon_i^2}{2} |\langle \phi_i, \Phi c_{p,\sigma} + r \rangle| - \sum_{\sigma \in \Sigma_p} \varepsilon S (\sqrt{B} + \|r\|_2) \right). \quad (4)
 \end{aligned}$$

Before substituting this bound into (3) we develop a general bound on $\Delta_{p,\sigma,r}$. We have

$$\begin{aligned}
 \max_{|I|=S} \|\Psi_I^*(\Phi c_{p,\sigma} + r)\|_1 &= \max_{|I|=S} \sum_{i \in I} |\langle \alpha_i \phi_i + \omega_i z_i, \Phi c_{p,\sigma} + r \rangle| \\
 &\leq \max_{|I|=S} \sum_{i \in I} \left(1 - \frac{\varepsilon_i^2}{2} \right) |\langle \phi_i, \Phi c_{p,\sigma} + r \rangle| + \varepsilon_i \|\Phi c_{p,\sigma} + r\|_2 \\
 &\leq \max_{|I|=S} \sum_{i \in I} \left(1 - \frac{\varepsilon^2}{2} \right) |\langle \phi_i, \Phi c_{p,\sigma} + r \rangle| + \varepsilon (\sqrt{B} + \|r\|_2) \\
 &= \left(1 - \frac{\varepsilon^2}{2} \right) \max_{|I|=S} \|\Phi_I^*(\Phi c_{p,\sigma} + r)\|_1 + \varepsilon S (\sqrt{B} + \|r\|_2),
 \end{aligned}$$

which immediately leads to the lower bound

$$\begin{aligned}
 \Delta_{p,\sigma,r} &\geq (1 + \|r\|_2^2)^{-\frac{1}{2}} \left(\max_{|I|=S} \|\Phi_I^*(\Phi c_{p,\sigma} + r)\|_1 \frac{\varepsilon^2}{2} - \varepsilon S(\sqrt{B} + \|r\|_2) \right) \\
 &\geq (1 + \|r\|_2^2)^{-\frac{1}{2}} \left(\|\Phi_{I_p}^*(\Phi c_{p,\sigma} + r)\|_1 \frac{\varepsilon^2}{2} - \varepsilon S(\sqrt{B} + \|r\|_2) \right) \\
 &\geq (1 + \|r\|_2^2)^{-\frac{1}{2}} \left(\sum_{i \in I_p} \frac{\varepsilon_i^2}{2} |\langle \phi_i, \Phi c_{p,\sigma} + r \rangle| - \varepsilon S(\sqrt{B} + \|r\|_2) \right).
 \end{aligned}$$

Substituting the estimate above together with (4) into (3) we get

$$\begin{aligned}
 \mathbb{E}_{\sigma,r}(\Delta_{p,\sigma,r}) &\geq \int_{r \notin R} \frac{\mathbb{P}(\sigma)}{\sqrt{1 + \|r\|_2^2}} \left(\sum_{\sigma \notin \Sigma_p} \sum_{i \in I_p} \frac{\varepsilon_i^2}{2} |\langle \phi_i, \Phi c_{p,\sigma} + r \rangle| - \sum_{\sigma \in \Sigma_p} \varepsilon S(\sqrt{B} + \|r\|_2) \right) d\nu_r \\
 &\quad + \int_{r \notin R} \frac{\mathbb{P}(\sigma)}{\sqrt{1 + \|r\|_2^2}} \sum_{\sigma \in \Sigma_p} \left(\sum_{i \in I_p} \frac{\varepsilon_i^2}{2} |\langle \phi_i, \Phi c_{p,\sigma} + r \rangle| - \varepsilon S(\sqrt{B} + \|r\|_2) \right) d\nu_r \\
 &\quad + \mathbb{E}_\sigma \left(\int_{r \in R} \frac{1}{\sqrt{1 + \|r\|_2^2}} \left(\sum_{i \in I_p} \frac{\varepsilon_i^2}{2} |\langle \phi_i, \Phi c_{p,\sigma} + r \rangle| - \varepsilon S(\sqrt{B} + \|r\|_2) \right) d\nu_r \right),
 \end{aligned}$$

which after collecting all the terms, we can further bound as

$$\begin{aligned}
 \mathbb{E}_{\sigma,r}(\Delta_{p,\sigma,r}) &\geq \mathbb{E}_{\sigma,r} \left(\frac{\sum_{i \in I_p} \frac{\varepsilon_i^2}{2} |\langle \phi_i, \Phi c_{p,\sigma} + r \rangle|}{\sqrt{1 + \|r\|_2^2}} \right) \\
 &\quad - 2\mathbb{P}(\Sigma_p) \int_{r \notin R} \frac{\varepsilon S(\sqrt{B} + \|r\|_2)}{\sqrt{1 + \|r\|_2^2}} d\nu_r - \int_{r \in R} \frac{\varepsilon S(\sqrt{B} + \|r\|_2)}{\sqrt{1 + \|r\|_2^2}} d\nu_r \\
 &\geq \mathbb{E}_r \left(\frac{\sum_{i \in I_p} c_{p(i)} \frac{\varepsilon_i^2}{2}}{\sqrt{1 + \|r\|_2^2}} \right) - \varepsilon S(\sqrt{B} + 1) \cdot (2\mathbb{P}(\Sigma_p) + \mathbb{P}(R)). \tag{5}
 \end{aligned}$$

Taking the expectation over the permutations then yields

$$\begin{aligned}
 \mathbb{E}_{p,\sigma,r}(\Delta_{p,\sigma,r}) &\geq \mathbb{E}_r \mathbb{E}_p \left(\frac{\sum_{i \in I_p} c_{p(i)} \frac{\varepsilon_i^2}{2}}{\sqrt{1 + \|r\|_2^2}} \right) - \varepsilon S(\sqrt{B} + 1) \cdot (2\mathbb{E}_p \mathbb{P}(\Sigma_p) + \mathbb{P}(R)) \\
 &\geq \mathbb{E}_r \left(\frac{1}{\sqrt{1 + \|r\|_2^2}} \right) \frac{c_1 + \dots + c_S}{2K} \sum_i \varepsilon_i^2 - \varepsilon S(\sqrt{B} + 1) \cdot (2\mathbb{E}_p \mathbb{P}(\Sigma_p) + \mathbb{P}(R)).
 \end{aligned}$$

Using the probability estimates from (1)/(2) we see that $\mathbb{E}_{p,\sigma,r}(\Delta_{p,\sigma,r}) > 0$ is implied by

$$\varepsilon \geq \frac{4SK^2(\sqrt{B} + 1)}{C_r \gamma} \left(\exp \left(\frac{-(\beta - \frac{3\varepsilon^2}{2})^2}{72\varepsilon^2} \right) + \exp \left(\frac{-\beta^2}{72\mu^2} \right) + \exp \left(\frac{-\beta^2}{72\rho^2} \right) + \exp \left(\frac{-\beta^2}{18\rho^2} \right) \right),$$

where we have used the abbreviations $\gamma = c_1 + \dots + c_S$, $\beta = c_S - c_{S+1}$ and $C_r = \mathbb{E}_r((1 + \|r\|_2^2)^{-1/2})$. We now proceed by splitting the above condition. We define ε_{\min} by asking that

$$\frac{\varepsilon}{3} \geq \frac{4SK^2(\sqrt{B} + 1)}{C_r\gamma} \exp\left(-\frac{\beta^2}{72 \max\{\mu^2, \rho^2\}}\right) := \frac{\varepsilon_{\min}}{3}$$

and ε_{\max} implicitly by asking that

$$\frac{\varepsilon}{3} - \frac{\varepsilon^4}{81} \geq \frac{4SK^2(\sqrt{B} + 1)}{C_r\gamma} \exp\left(-\frac{(\beta - \frac{3\varepsilon^2}{2})^2}{72\varepsilon^2}\right).$$

Following the line of argument in the proof of Proposition 6, we see that the above condition is guaranteed as soon as

$$\varepsilon \leq \frac{\beta}{\frac{5}{2} + 9\sqrt{\log\left(\frac{112K^2S(\sqrt{B}+1)}{C_r\beta\gamma}\right)}} := \varepsilon_{\max}.$$

The statement follows from making sure that $\varepsilon_{\min} < \varepsilon_{\max}$. ■

Acknowledgments

I would like to thank Sebastian Kaiser and Felix Krahmer for pointing out the error.