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Abstract

Real-world machine learning applications may have requirements beyond accuracy, such as
fast evaluation times and interpretability. In particular, guaranteed monotonicity of the
learned function with respect to some of the inputs can be critical for user confidence.
We propose meeting these goals for low-dimensional machine learning problems by learn-
ing flexible, monotonic functions using calibrated interpolated look-up tables. We extend
the structural risk minimization framework of lattice regression to monotonic functions by
adding linear inequality constraints. In addition, we propose jointly learning interpretable
calibrations of each feature to normalize continuous features and handle categorical or miss-
ing data, at the cost of making the objective non-convex. We address large-scale learning
through parallelization, mini-batching, and random sampling of additive regularizer terms.
Case studies on real-world problems with up to sixteen features and up to hundreds of
millions of training samples demonstrate the proposed monotonic functions can achieve
state-of-the-art accuracy in practice while providing greater transparency to users.

Keywords: interpretability, interpolation, look-up tables, monotonicity

1. Introduction

Many challenging issues arise when making machine learning useful in practice. Evaluation
of the trained model may need to be fast. Features may be categorical, missing, or poorly
calibrated. A blackbox model may be unacceptable: users may require guarantees that
the function will behave sensibly for all samples, and prefer functions that are easier to
understand and debug. In this paper we address these practical issues, without trading-off
for accuracy.

We have found that a key interpretability issue in practice is whether the learned model
can be guaranteed to be monotonic with respect to some features. For example, suppose
the goal is to estimate the value of a used car, and one of the features is the number of km
it has been driven. If all the other feature values are held fixed, we expect the value of the
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Figure 1: Example 2× 2 interpolated look-up table functions over a unit square, with color
scale shown in (a). Each function is defined by a 2×2 lattice with four parameters,
which are the values of the function in the four corners (shown). The function is
linearly interpolated from its parameters (see Figure 2 for a pictorial description
of linear interpolation). The function in (b) is strictly monotonically increasing
in both features, which can be verified by checking that each upper parameter
is larger than the parameter below it, and that each parameter on the right is
larger than the parameter to its left. The function in (c) is strictly monotonically
increasing in the first feature, and monotonically increasing in the second feature
(but not strictly so since the parameters on the left are both zero). The function
in (d) is monotonically increasing in the first feature (one verifies this by noting
that 1 ≥ 0 and 0.4 ≥ 0.4), but non-monotonic in the second feature: on the
left side the function increases from 0 → 0.4, but on the right side the function
decreases from 1→ 0.4. The function in (e) is a saddle function interpolating an
exclusive-OR, and is non-monotonic in both features.

used car to never increase as the number of km driven increases. But a model learned from
a small set of noisy samples may not, in fact, respect this prior knowledge.

In this paper, we propose learning monotonic, efficient, and flexible functions by con-
straining and calibrating interpolated look-up tables in a structural risk minimization frame-
work. Learning monotonic functions is difficult, and previously published work has only
been illustrated on small problems (see Table 1). Our experimental results demonstrate
learning flexible, guaranteed monotonic functions on more features and data than prior
work, and that these functions achieve state-of-the-art performance on real-world problems.

The parameters of an interpolated look-up table are simply values of the function,
regularly spaced in the input space, and these values are interpolated to compute f(x) for
any x. See Figures 1 and 2 for examples of 2× 2 and 2× 3 look-up tables and the functions
produced by interpolating them. Each parameter has a clear meaning: it is the value of the
function for a particular input, for a set of inputs on a regular grid. These parameters can
be individually read and checked to understand the learned function’s behavior.

Interpolating look-up tables is a classic strategy for representing low-dimensional func-
tions. For example, backs of old textbooks have pages of look-up tables for one-dimensional
functions like sin(x), and interpolating look-up tables is standardized by the ICC Profile for
the three and four dimensional nonlinear transformations needed to color manage printers
(Sharma and Bala, 2002). In this paper we interpolate look-up tables defined over much
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Figure 2: Figure illustrates a 3×2 lattice function and multilinear interpolation, with color
scale given by (a) and parameters as shown. The lattice function shown is contin-
uous everywhere, and differentiable everywhere except at the boundary between
lattice cells, which is the vertical edge joining the middle parameters 5 and 8. As
shown in (b), to evaluate f(x), any x that falls in the left cell of the lattice is
linearly interpolated from the parameters at the vertices of the left cell, here 6,
3, 5 and 8. Linear interpolation is linear not in x but in the lattice parameters,
that is f(x) is a weighted combination of the parameter values 6, 3, 5, and 8. The
weights on the parameters are the areas of the four boxes formed by the dotted
lines drawn orthogonally through x, with each parameter weighted by the area
of the box farthest from it, so that as x moves closer to a parameter the weight
on that parameter gets bigger. Because the dotted lines partition a unit square
cell, the sum of these linear interpolation weights is always one. As shown in (c),
samples like the marked x that fall in the right cell of the lattice are interpolated
from that cell’s parameters: 8, 5, 6 and 8.

larger feature spaces. Using an efficient linear interpolation method we refer to as sim-
plex interpolation, the interpolation of a D-dimensional look-up table can be computed in
O(D logD) time. For example, we found that interpolating a look-up table defined over
D = 20 features takes only 2 microseconds on a standard CPU. The number of parameters
in the look-up table scales as 2D, which limits the size of D, but still enables us to learn
higher-dimensional flexible monotonic functions than ever before.

Estimating the parameters of an interpolated look-up table using structural risk mini-
mization was proposed by Garcia and Gupta (2009) and called lattice regression. Lattice
regression can be viewed as a kernel method that uses the explicit nonlinear feature transfor-
mation formed by mapping an input x ∈ [0, 1]D to a vector of linear interpolation weights

φ(x) ∈ ∆2D over the 2D vertices of the look-up table cell that contains x, where ∆ de-
notes the standard simplex. Then the function is linear in these transformed features:
f(x) = θTφ(x). We will refer to the look-up table parameters θ as the lattice, and to the
interpolated look-up table f(x) as the lattice function. Earlier work in lattice regression
focused on learning highly nonlinear functions over 2 to 4 features with fine-grained lattices,
such as a 17 × 17 × 17 lattice for modeling a color printer or super-resolution of spherical
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images (Garcia et al., 2010, 2012). In this paper, we apply lattice regression to more generic
machine learning problems with D = 5 to 16 features, and show that 2D lattices work well
for many real-world classification and ranking problems, especially when paired with jointly
trained one-dimensional pre-processing functions.

We begin with a survey of related work in machine learning of interpretable and mono-
tonic functions. Then we review lattice regression in Section 3. The main contribution is
learning monotonic lattices in Section 4. We discuss efficient linear interpolation in Section
5. We propose an interpretable torsion lattice regularizer in Section 6. We propose jointly
learning one-dimensional calibration functions in Section 7, and consider two strategies for
supervised handling of missing data for lattice regression in Section 8. In Section 9, we
consider strategies for speeding up training and handling large-scale problems and large-
scale constraint-handling. A series of case studies in Section 10 experimentally explore the
paper’s proposals, and demonstrate that monotonic lattice regression achieves similar ac-
curacy as a random forest, and that monotonicity is a common issue that arises in many
different applications. The paper ends with conclusions and open questions in Section 11.

2. Related Work

We give a brief overview of related work in interpretable machine learning, then survey
related work in learning monotonic functions.

2.1 Related Work in Interpretable Machine Learning

Two key themes of the prior work on interpretable machine learning are (i) interpretable
function classes, and (ii) preferring simpler functions within a function class.

2.1.1 Interpretable Function Classes

The function classes of decision trees and rules are generally regarded as relatively inter-
pretable. Näıve Bayes classifiers can be interpreted in terms of weights of evidence (Good,
1965; Spiegelhalter and Knill-Jones, 1984). Similarly, linear models form an interpretable
function class in that the parameters dictate the relative importance of each feature. Lin-
ear approaches can be generalized to sum nonlinear components, as in generalized additive
models (Hastie and Tibshirani, 1990) and some kernel methods, while still retaining some
of their interpretable aspects.

The function class of interpolated look-up tables is interpretable in that the function’s
parameters are the look-up table values, and so are semantically meaningful: they are simply
examples of the function’s output, regularly spaced in the domain. Given two look-up tables
with the same structure and the same features, one can analyze how their functions differ
by analyzing how the look-up table parameters differ. Analyzing which parameters change
by how much can help answer questions like “If I add training examples and re-train, what
changes about the model?”

2.1.2 Prefer Simpler Functions

Another body of work focuses on choosing simpler functions within a function class, opti-
mizing an objective of the form: minimize empirical error and maximize simplicity, where

4



Monotonic Look-Up Tables

simplicity is usually defined as some manifestation of Occam’s Razor or variant of Kol-
mogorov complexity. For example, Ishibuchi and Nojima (2007) minimize the number of
fuzzy rules in a rule set, Osei-Bryson (2007) prunes a decision tree for interpretability,
Rätsch et al. (2006) finds a sparse convex combination of kernels for a multi-kernel sup-
port vector machine, and Nock (2002) prefers smaller committees of ensemble classifiers.
Similarly, Garcia et al. (2009) measure the interpretability of rule-based classifiers in terms
of the number of rules and number of features used. More generally, this category of in-
terpretability includes model selection criteria like the Bayesian information criterion and
Akaike information criterion (Hastie et al., 2001), sparsity regularizers like sparse linear re-
gression models, and feature selection methods. Other approaches to simplicity may include
simplified structure in graphical models or neural nets, such as the structured neural nets
of Strannegaard (2012).

While sparsity-based approaches to interpretability can provide regularization that re-
duces over-fitting and hence increases accuracy, it has also been noted that such strategies
may create a trade-off between interpretability and accuracy (Casillas et al., 2002; Nock,
2002; Yu and Xiao, 2012; Shukla and Tripathi, 2012). We hypothesize this occurs when the
assumed simpler structure is a poor model of the true function.

Monotonicity is another way to choose a semantically simpler function to increase in-
terpretability (and regularize). Our case studies in Section 10 illustrate that when applied
to problems where monotonicity is warranted true, we do not see a trade-off with accuracy.

2.2 Related Work in Monotonic Functions

A function f(x) is monotonically increasing with respect to feature d if f(xi) ≥ f(xj) for
any two feature vectors xi, xj ∈ RD where xi[d] ≥ xj [d] and xi[m] = xj [m] for m 6= d.

A number of approaches have been proposed for enforcing and encouraging monotonicity
in machine learning. The computational complexity of these algorthims tends to be high,
and most methods scale poorly in the number of features D and samples n, as summarized
in Table 1.

We detail the related work in the following sections organized by the type of machine
learning, but these methods could instead be organized by strategy, which mostly falls into
one of four categories:

1. Constrain a more flexible function class to be monotonic, such as linear functions with
positive coefficients, or a sigmoidal neural network with positive weights.

2. Post-process by pruning or reducing monotonicity violations after training.

3. Penalize monotonicity violations by pairs of samples or sample derivatives when train-
ing.

4. Re-label samples to be monotonic before training.

2.2.1 Monotonic Linear and Polynomial Functions

Linear functions can be easily constrained to be monotonic in certain inputs by requiring
the corresponding slope coefficients to be non-negative, but linear functions are not suf-
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ficiently flexible for many problems. Polynomial functions (equivalently, linear functions
with pre-defined crosses of features) can also be easily forced to be monotonic by requiring
all coefficients to be positive. However, this is only a sufficient and not necessary condition:
there are monotonic polynomials whose coefficients are not all positive. For example, con-
sider the simple case of second degree multilinear polynomials defined over the unit square
f : [0, 1]2 → R such that:

f(x) = a0 + a1x[0] + a2x[1] + a3x[0]x[1]. (1)

Restricting the function to a bounded domain the domain x ∈ [0, 1]2 and forcing the deriva-
tive to be positive over that domain, one sees that the complete set of monotonic functions
of the form (1) on the unit square is described by four linear inequalities:

a1 > 0 a2 > 0
a1 + a3 > 0 a2 + a3 > 0.

The general problem of checking whether a particular choice of polynomial coefficients
produces a monotonic function requires checking whether the polynomial’s derivative (also
a polynomial) is positive everywhere, which is equivalent to checking if the derivative has
any real roots, which can be computationally challenging (see, for example, Sturm’s theorem
for details).

Functions of the form (1) can be equivalently expressed as a 2 × 2 lattice interpolated
with multilinear interpolation, but as we will show in Section 4, with this alternate param-
eterization it is easier to check and enforce the complete set of monotonic functions.

2.2.2 Monotonic Splines

In this paper we extend lattice regression, which is a spline method with fixed knots on
a regular grid and a linear kernel (Garcia et al., 2012), to be monotonic. There have
been a number of proposals to learn monotonic one-dimensional splines. For example,
building on Ramsay (1998), Shively et al. (2009) parameterize the set of all smooth and
strictly monotonic one-dimensional functions using an integrated exponential form f(x) =
a+

∫ x
0 e

b+u(t)dt, and showed better performance than the monotone functions estimators of
Neelon and Dunson (2004) and Holmes and Heard (2003) for smooth functions. In other
related spline work, Villalobos and Wahba (1987) considered smoothing splines with linear
inequality constraints, but did not address monotonicity.

2.2.3 Monotonic Decision Trees and Forests:

Stumps and forests of stumps are easily constrained to be monotonic. However, for deeper
or broader trees, all pairs of leaves must be checked to verify monotonicity (Potharst and
Feelders, 2002b). Non-monotonic trees can be pruned to be monotonic using various strate-
gies that iteratively reduce the non-monotonic branches (Ben-David, 1992; Potharst and
Feelders, 2002b). Monontonicity can also be encouraged during tree construction by pe-
nalizing the splitting criterion to reduce the number of non-monotonic leaves a split would
create (Ben-David, 1995). Potharst and Feelders (2002a) achieved completely flexible mono-
tonic trees using a strategy akin to bogosort (Gruber et al., 2007): train many trees on
different random subsets of the training samples, then select one that is monotonic.
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Method Monotonicity Strategy Guaranteed Monotonic? Max D Max n

Archer and Wang (1993) neural net constrain function yes 2 50
Wang (1994) neural net constrain function yes 1 150
Mukarjee and Stern (1994) kernel estimate post-process yes 2 2447
Ben-David (1995) tree penalize splits yes 8 125
Sill and Abu-Mostafa (1997) neural net penalize pairs no 6 550
Sill (1998) neural net constrain function yes 10 196
Kay and Ungar (2000) neural net constrain function yes 1 100
Potharst and Feelders (2002a) tree randomize yes 8 60
Potharst and Feelders (2002b) tree prune yes 11 1090
Spouge et al. (2003) isotonic regression constrain yes 2 100,000
Duivesteijn and Feelders (2008) k-NN re-label samples no 12 768
Lauer and Bloch (2008) svm sample derivatives no none none
Dugas et al. (2000, 2009) neural net constrain function yes 4 3434
Shively et al. (2009) spline constrain function yes 1 100
Kotlowski and Slowinski (2009) rule-based re-label samples yes 11 1728
Daniels and Velikova (2010) neural net constrain function yes 6 174
Riihimäki and Vehtari (2010) Gaussian process sample derivatives no 7 1222
Qu and Hu (2011) neural net derivatives / constrain yes 1 30
Neumann et al. (2013) neural net sample derivatives no 3 625

Table 1: Some related work in learning monotonic functions. Many of these methods guarantee a monotonic solution, but some
only encourage monotonicity. The last two columns gives the largest number of features D and the largest number of
samples n used in any of the experiments in that paper (generally not the same experiment).
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2.2.4 Monotonic Support Vector Machines

With a linear kernel, it may be easy to check and enforce monotonicity of support vector
machines, but for nonlinear kernels it will be more challenging. Lauer and Bloch (2008)
encouraged support vector machines to be more monotonic by constraining the derivative of
the function at the training samples. Riihimäki and Vehtari (2010) used the same strategy
to encourage more monotonic Gaussian processes.

2.2.5 Monotonic Neural Networks

In perhaps the earliest work on monotonic neural networks, Archer and Wang (1993) adap-
tively down-weighted samples during training whose gradient updates would violate mono-
tonicity, to produce a positive weighted neural net. Other researchers explicitly proposed
constraining the weights to be positive in a single hidden-layer neural network with the
sigmoid or other monotonic nonlinear transformation (Wang, 1994; Kay and Ungar, 2000;
Dugas et al., 2000, 2009; Minin et al., 2010). Dugas et al. (2009) showed with simulations
of four features and 400 training samples that both bias and variance were reduced by en-
forcing monotonicity. However, Daniels and Velikova (2010) showed this approach requires
D hidden layers to arbitrarily approximate any D-dimensional monotonic function. In ad-
dition to a general proof, they provide a simple and realistic example of a two-dimensional
monotonic function that cannot be fit with one hidden layer and positive weights.

Abu-Mostafa (1993) and Sill and Abu-Mostafa (1997) proposed regularizing a function
to be more monotonic by penalizing squared deviations in monotonicity for virtual pairs
of input samples that are added for this purpose. Unfortunately, it generally does not
guarantee monotonicity everywhere, only with respect to those virtual input pairs. (And in
fact, to guarantee monotonicity for the sampled pairs, an exact penalty function would be
needed with a sufficiently large regularization parameter to ensure the regularization was
equivalent to a constraint).

Lauer and Bloch (2008), Riihimäki and Vehtari (2010), and Neumann et al. (2013)
encouraged extreme learning machines to be more monotonic by constraining the derivative
of the function to be positive for a set of sampled points.

Qu and Hu (2011) did a small-scale comparison of encouraging monotonicity by con-
straining input pairs to be monotonic, versus encouraging monotonic neural nets by con-
straining the function’s derivatives at a subset of samples (analogous to Lauer and Bloch
(2008)), versus using a sigmoidal function with positive weights. They concluded the
positive-weight sigmoidal function is best.

Sill (1998) proposed a guaranteed monotonic neural network with two hidden layers
by requiring the first linear layer’s weights to be positive, using hidden nodes that take
the maximum of groups of first layer variables, and a second hidden layer that takes the
minimum of the maxima. The resulting surface is piecewise linear, and as such can represent
any continuous differentiable function arbitrarily well. The resulting objective function
is not strictly convex, but the authors propose training such monotonic networks using
gradient descent where samples are associated with one active hyperplane at each iteration.
Daniels and Velikova (2010) generalized this approach to handle the “partially monotonic”
case that the function is only monotonic with respect to some features.

8



Monotonic Look-Up Tables

2.2.6 Isotonic Regression and Monotonic Nearest Neighbors

Isotonic regression re-labels the input samples with values that are monotonic and close to
the original labels. These monotonically re-labeled samples can then be used, for example,
to define a monotonic piecewise constant or piecewise linear surface. This is an old approach;
see Barlow et al. (1972) for an early survey. Isotonic regression can be solved in O(n) time
if monotonicity implies a total ordering of the n samples. But for usual multi-dimensional
machine learning problems, monotonicity implies only a partial order, and solving the n-
parameter quadratic program is generally O(n4), and O(n3) for two-dimensional samples
(Spouge et al., 2003). Also problematic for large n is the O(n) evaluation time for new
samples.

Mukarjee and Stern (1994) proposed a suboptimal monotonic kernel regression that is
computationally easier to train than isotonic regression. It computes a standard kernel
estimate, then locally upper and lower bounds it to enforce monotonicity.

The isotonic separation method of Chandrasekaran et al. (2005) is like the work of Abu-
Mostafa (1993) in that it penalizes violations of monotonicity by pairs of training samples.
Like isotonic regression, the output is a re-labeling of the original samples, the solution is
at least O(n3) in the general case, and evaluation time is O(n).

Ben-David et al. (1989); Ben-David (1992) constructed a monotonic rule-based classifier
by sequentially adding training examples (each of which defines a rule) that do not violate
monotonicity restrictions.

Duivesteijn and Feelders (2008) proposed re-labeling samples before applying nearest
neighbors based on a monotonicity violation graph with the training examples at the ver-
tices. Coupled with a proposed modified version of k-NN, they can enforce monotonic
outputs. Similar pre-processing of samples can be used to encourage any subsequently
trained classifier to be more monotonic (Feelders, 2010).

Similarly, Kotlowski and Slowinski (2009) try to solve the isotonic regression problem to
re-label the dataset to be monotonic, then fit a monotonic ensemble of rules to the re-labeled
data, requiring zero training error. They showed overall better performance than the ordinal
learning model of Ben-David et al. (1989) and isotonic separation (Chandrasekaran et al.,
2005).

3. Review of Lattice Regression

Before proposing monotonic lattice regression, we review lattice regression (Garcia and
Gupta, 2009; Garcia et al., 2012). Key notation is listed in Table 2.

Let Md ∈ N be a hyperparameter specifying the number of vertices in the look-up

table (that is, lattice) for the dth feature. Then the lattice is a regular grid of M
4
=

M1 × M2 × . . .MD parameters placed at natural numbers so that the lattice spans the

hyper-rectangle M 4
= [0,M1 − 1]× [0,M2 − 1]× . . . [0,MD − 1]. See Figure 1 for examples

of 2× 2 lattices, and Figure 2 for an example 3× 2 lattice. For machine learning problems
we find Md = 2 for all d to often work well in practice, as detailed in the case studies in
Section 10. For image processing applications with only two to four features, much larger
values of Md were needed (Garcia et al., 2012).
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D number of features
n number of samples
Md ∈ N number of vertices in the lattice along the dth feature
M ∈ N total number of vertices in the lattice: M =

∏
dMd

M hyper-rectangular span of the lattice: [0,M1 − 1]× . . .× [0,MD − 1]
xi ith training sample with D components. Domain depends on section.
yi ∈ R ith training sample label
x[d] dth component of feature vector x
φ(x) ∈ [0, 1]M linear interpolation weights for x
θ ∈ RM lattice values (parameters)
vj ∈ {0, 1}D jth vertex of a 2D lattice

Table 2: Key Notation

The feature values are assumed to be bounded and linearly scaled to fit the lattice, so
that the dth feature vector value x[d] lies in [0,Md − 1]. (We propose learning non-linear
scalings of features jointly with the lattice parameters in Section 7.)

Lattice regression is a kernel method that maps x ∈M to a transformed feature vector
φ(x) ∈ [0, 1]M . The values of φ(x) are the interpolation weights for x for the 2D indices
corresponding to the 2D vertices of the hypercube surrounding x; for all other indices,
φ(x) = 0.

The function f(x) is linear in φ(x) such that f(x) = θTφ(x). That is, the function
parameters θ each correspond to a vertex in the lattice, and f(x) linearly interpolates the
θ for the lattice cell containing x.

Before reviewing the lattice regression objective for learning the parameters θ, we review
standard multilinear interpolation to define φ(x).

3.1 Multilinear Interpolation

Multilinear interpolation is the multi-dimensional generalization of the familiar bilinear
interpolation that is commonly used to up-sample images. See Figure 2 for a pictorial
explanation.

For notational simplicity, we assume a 2D lattice such that x ∈ [0, 1]D. For multi-cell
lattices, the same math and logic is applied to the lattice cell containing the x. Denote the
kth component of φ(x) as φk(x). Let vk ∈ {0, 1}D be the kth vertex of the unit hypercube.
The multilinear interpolation weight on the vertex vk is

φk(x) =

D−1∏
d=0

x[d]vk[d](1− x[d])1−vk[d]. (2)

Note the exponents in (2) are vk and 1 − vk[d], which either equal 0 and 1, or equal 1
and 0, so these exponents act like selectors that multiply in either x[d] or 1− x[d] for each
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dimension d. Equivalently, one can write

φk(x) =

D−1∏
i=0

((1− bit[i, k]) (1− x[i]) + bit[i, k]x[i]) , (3)

where bit[i, k] ∈ {0, 1} denotes the ith bit of vertex vk, and can be computed bit[i, k] =
(k � i) &1 using bitwise arithmetic.

The resulting f(x) = θTφ(x) is a multilinear polynomial over each lattice cell. For
example, a 2× 2 lattice interpolated with multilinear interpolation gives:

f(x) = θ[0](1− x[0])(1− x[1]) + θ[1]x[0](1− x[1]) + θ[2](1− x[0])x[1] + θ[3]x[0]x[1]. (4)

Expanding (4), one sees it is a different parameterization of the multilinear function given
in (1), where the parameter vectors are related by a linear matrix transform: a = Tθ
for T ∈ R4×4. But the θ parameterization has the advantage that each parameter is the
function value for a feature vector at the vertex of the lattice (see Figure 1), and as we show
in Section 4, makes it easier to learn the complete set of monotonic functions.

The linear interpolation is applied per lattice cell. At lattice cell boundaries the resulting
function is continuous, but not differentiable. The overall function is piecewise polynomial,
and hence a spline, and can be equivalently formulated using a linear basis function. Higher-
order basis functions like the popular cubic spline will lead to smoother and potentially
slightly more accurate functions (Garcia et al., 2012). However, higher-order basis functions
destroy the interpretable localized effect of the parameters, and increase the computational
complexity.

The multilinear interpolation weights are just one type of linear interpolation. In general,
linear interpolation weights are defined as solutions to the system of D + 1 equations:

2D∑
k=0

φk(x)vk = x and
2D∑
k=0

φk(x) = 1. (5)

This system of equations is under-determined and has many solutions for an x in the
convex hull of a lattice cell. The multilinear interpolation weights given in (2) are the
maximum entropy solution to (5) (Gupta et al., 2006), and thus have good noise averaging
and smoothness properties compared to other solutions. We discuss a more efficient linear
interpolation in Sec. 5.2.

3.2 The Lattice Regression Objective

Consider the standard supervised machine learning set-up of a training set of randomly
sampled pairs {(xi, yi)} pairs, where xi ∈ M and yi ∈ R, for i = 1, . . . , n. Historically,
people created look-up tables by first fitting a function h(x) to the {xi, yi} using a regression
algorithm such as a neural net or local linear regression, and then evaluating h(x) on a
regular grid to produce the look-up table values (Sharma and Bala, 2002). However, even
if they fit the function to minimize empirical risk on the training samples, they did not
minimize the actual empirical risk because these approaches did not take into account that
the trained look-up table would be interpolated at run-time, and this interpolation changes
the error on the training samples.
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Garcia and Gupta (2009) proposed directly optimizing the look-up table parameters
θ to minimize the actual empirical error between the training labels and the interpolated
look-up table:

arg min
θ∈RM

n∑
i=1

`(yi, θ
Tφ(xi)) +R(θ), (6)

where ` is a loss function such as squared error, φ(xi) ∈ [0, 1]M is the vector of linear
interpolation weights over the lattice for training sample xi (detailed in Section 3.1 and Sec.
5.2), f(xi) = θTφ(xi) is the linear interpolation of xi from the look-up table parameters θ,
and R(θ) is a regularizer on the lattice parameters. In general, we assume the loss ` and
regularizer R are convex functions of θ so that solving (6) is a convex optimization. Prior
work focused on squared error loss, and used graph regularizers R(θ) of the form θTKθ for
some PSD matrix K, in which case (6) has a closed-form solution which can be computed
with sparse matrix inversions (Garcia and Gupta, 2009; Garcia et al., 2010, 2012).

4. Monotonic Lattices

In this section we propose constraining lattice regression to learn monotonic functions.

4.1 Monotonicity Constraints For a Lattice

In general, simply checking whether a nonlinear function is monotonic can be quite difficult
(see the related work in Section 2.2). But for a linearly interpolated look-up table, checking
for monotonicity is relatively easy: if the lattice values increase in a given direction, then
the function increases in that direction. See Figure 1 for examples. Specifically, one must
check that θs > θr for each pair of adjacent look-up table parameters θr and θs. If all
features are specified to be monotonic for a 2D lattice, this results in D2D−1 pairwise linear
inequality constraints to check.

These same pairwise linear inequality constraints can be imposed when learning the
parameters θ to ensure a monotonic function is learned. The following result establishes
these constraints are sufficient and necessary for a 2D lattice to be monotonically increasing
in the dth feature (the result extends trivially to larger lattices):

Lemma 1 (Monotonicity Constraints) Let f(x) = θTφ(x) for x ∈ [0, 1]D and φ(x)
given in (2). The partial derivative ∂f(x)/∂x[d] > 0 for fixed d and any x iff θk′ > θk for
all k, k′ such that vk[d] = 0, vk′ [d] = 1 and vk[m] = vk′ [m] for all m 6= d.

Proof First we show the constraints are necessary to ensure monotonicity. Consider
the function values f(vk) and f(vk′) for some adjacent pair of vertices vk, vk′ that differ
only in the dth feature. For f(vk) and f(vk′), all of the interpolation weight falls on θk
or θk′ respectively, such that f(vk) = θk and f(vk′) = θk′ . So θk′ > θk is necessary for
∂f(x)/∂x[d] > 0 everywhere.

Next we show the constraints are sufficient to ensure monotonicity. Pair the terms in
the interpolation f(x) = θTφ(x) corresponding to adjacent parameters θk, θk′ so that for

12
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each k, k′ it holds that vk[d] = 0, vk′ [d] = 1, vk[m] = vk′ [m] for m 6= d:

f(x) =
∑
k,k′

θkφk(x) + θk′φk′(x), then expand φk(x) and φk′(x) using (2) :

=
∑
k,k′

αk

(
θkx[d]vk[d](1− x[d])(1−vk[d]) + θk′x[d]vk′ [d](1− x[d])(1−vk′ [d])

)
,

where αk is the product of the m 6= d terms in (2) that are the same for k and k′,

=
∑
k,k′

αk (θk(1− x[d]) + θk′x[d]) by the definition of vk and vk′ . (7)

The partial derivative of (7) is ∂f(x)
∂x[d] =

∑
k,k′ αk(θk′ − θk). Because each αk ∈ [0, 1], it is

sufficient that θk′ > θk for each k, k′ pair to guarantee this partial is positive for all x.

4.2 Monotonic Lattice Regression Objective

We relax strict monotonicity to monotonicity by allowing equality in the adjacent parameter
constraints (for an example, see the second function from the left in Figure 1). Then the set
of pairwise constraints can be expressed as Aθ ≤ 0 for the appropriate sparse matrix A with
one 1 and −1 per row of A, and one row per constraint. Each feature can independently
be left unconstrained, or constrained to be either monotonically increasing or decreasing by
the specification of A.

Thus the proposed monotonic lattice regression objective is convex with linear inequality
constraints:

arg min
θ

n∑
i=1

`(yi, θ
Tφ(xi)) +R(θ), s.t. Aθ ≤ b. (8)

Additional linear constraints can be included in Aθ ≤ b to also constrain the fitted function
in other practical ways, such as f(x) ∈ [0, 1] or f(x) ≥ 0.

The approach extends to the standard learning to rank from pairs problem (Liu, 2011),
where the training data is pairs of samples x+i and x−i and the goal is to learn a function
such that f(x+i ) ≥ f(x−i ) for as many pairs as possible. For this case, the monotonic lattice
regression objective is:

arg min
θ

n∑
i=1

`(1, θTφ(x+i )− θTφ(x−i )) +R(θ), s.t. Aθ ≤ b. (9)

The loss functions in (6), (8) and (9) all have the same form, for example, squared loss
`(y, z) = (y − z)2, hinge loss `(y, z) = max(0, 1 − yz), or logistic loss `(y, z) = log(1 +
exp(y − z)).

5. Faster Linear Interpolation

Interpolating a look-up table has long been considered an efficient way to specify and
evaluate a low-dimensional non-linear function (Sharma and Bala, 2002; Garcia et al., 2012).
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But computing linear interpolation weights with (3) requires O(D) operations for each of
the 2D interpolation weights, for a total cost of O(D2D) to evaluate a sample. In Section 5.1,
we show the multilinear interpolation weights of (3) can be computed in O(2D) operations.
Then, in Section 5.2, we review and analyze a different linear interpolation that we refer to
as simplex interpolation that takes only O(D logD) operations.

5.1 Fast Multilinear Interpolation

Much of the computation in (3) can be shared between the different weights. In Algorithm
1 we give a dynamic programming solution that loops D times, where the dth loop takes
2d time, so in total there are

∑D−1
d=0 2d = O(2D) operations.

Algorithm 1 Computes the multilinear interpolation weights and corresponding vertex
indices for a unit lattice cell [0, 1]D and an x ∈ [0, 1]D. Let the lattice parameters be
indexed such that sd = 2d is the difference in the indices of the parameters corresponding to
any two vertices that are adjacent in the dth dimension, for example, for the 2× 2 lattice,
order the vertices [0 0], [1 0], [0 1], [1 1] and index the corresponding lattice parameters in
that order.

CalculateMultilinearInterpolationWeightsAndParameterIndices(x)
1 Initialize indices[] = [0], weights[] = [1]
2 For d = 0 to D − 1:
3 For k = 0 to 2d − 1:
4 Append sd + indices[k] to indices

5 Append x[d]× weights[k] to weights

6 Update weights[k] = (1− (x[d]))× weights[k]
7 Return indices and weights

The following lemma establishes the correctness of Algorithm 1.

Lemma 2 (Fast Multilinear Interpolation) Under its assumptions, Algorithm 1 re-
turns the indices of the 2D parameters corresponding to the vertices of the lattice cell con-
taining x:

indices[k] =
D−1∑
d=0

(bx[d]c+ biti(k)) sd, for k = 1, 2, . . . , 2D (10)

and the corresponding 2D multilinear interpolation weights given by (3).

Proof At the end of the D′th iteration over the dimension in Algorithm 1:

size (indices) = size (weights) = 2D
′+1

indices[k] =

D′∑
d=0

(bx[d]c+ bitd(k)) sd

weights[k] =

D′∏
d=0

((1− bitd(k)) (1− (x[d]− bxdc)) + bitd(k)(x[d]− bxdc)) .
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Figure 3: Illustration of two different linear interpolations of the same 2 × 2 look-up table
with parameters 0, 0, 0.5 and 1. The simplex interpolation splits the unit square
into two simplices (the upper and lower triangle) and interpolates within each.
The function is continuous because the points along the diagonal are interpolated
from only the two corner vertices, and the interpolated function is linear over each
simplex. Both interpolations produce monotonic functions over both features.

The above holds for the D′ = 1 case by the initialization and inspection of the loop. It is
straightforward to verify that if the above hold for D′, then they also hold for D′+ 1. Then
by induction it holds for D′ = D − 1, as claimed.

5.2 Simplex Linear Interpolation

For speed, we propose using a more efficient linear interpolation for lattice regression that
linearly interpolates each x from only D+ 1 of the 2D surrounding vertices. Many different
linear interpolation strategies have been proposed to interpolate look-up tables using only
a subset of the 2D vertices (for a review, see Kang (1997)). However, most such strategies
suffer from being too computationally expensive to determine the subset of vertices needed
to interpolate a given x. The wonder of simplex interpolation is that it takes only O(D logD)
operations to determine the D+1 vertices needed to interpolate any given x, and then only
O(D) operations to interpolate the identified D + 1 vertices. An illustrative comparison of
simplex and multilinear interpolation is given in Figure 3 for the same lattice parameters.

Simplex interpolation was proposed in the color management literature by Kasson et al.
(1993), and independently later by Rovatti et al. (1998). Simplex interpolation is also known
as the Lovasz extension in submodular optimization, where it is used to extend a function
defined on the vertices of a unit hypercube to be defined on its interior (Bach, 2013).

After reviewing how simplex interpolation works, we show in Section 5.2.3 that it re-
quires the same constraints for monotonicity as multilinear interpolation, and then we
discuss how its rotational dependence impacts its use for machine learning in Section 5.2.4.
We give example runtime comparisons in Section 10.7.
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Figure 4: Simplex interpolation decomposes the D-dimensional unit hypercube into D! sim-
plices. Left: For the unit square, there are two simplices, one is defined by the
three vertices [0 0], [0 1], and [1 1], and the other is defined by the three vertices
[0 0], [1 0], and [1 1]. Right: For the unit cube there are 3! = 6 simplices, each
defined by four vertices. The first has vertices: [0 0 0], [0 0 1], [0 1 1] , [1 1 1]. The
second has vertices: [0 0 0], [0 0 1], [1 0 1], [1 1 1]. And so on. All six simplices
have vertices [0 0 0] and [1 1 1], and thus share the diagonal between those two
vertices.

5.2.1 Partitioning of the Unit Hypercube Into Simplices

Simplex interpolation implicitly partitions the hypercube into the set of D! congruent sim-
plices that satisfy the following: each simplex includes the all 0’s vertex, one vertex is all
zeros but has a single 1, one vertex is all zeros but has two 1’s, and so on, ending with
one vertex that is all 1’s, for a total of D + 1 vertices in each simplex. Figure 4 shows the
partitioning for the D = 2 and D = 3 unit hypercubes.

This decomposition can also be described by the hyperplanes xk = xr for 1 ≤ k ≤ r ≤ D
(Schimdt and Simon, 2007). Knop (1973) discussed this decomposition as a special case
of Eulerian partitioning of the hypercube, and Mead (1979) showed this is the smallest
possible equivolume decomposition of the unit hypercube.

5.2.2 Simplex Interpolation

Given x ∈ [0, 1]D, the D + 1 vertices that specify the simplex that contains x can be
computed in O(D logD) operations by sorting the D values of the feature vector x, and
then the dth simplex vertex has ones in the first d sorted components of x. For example, if
x =[.8 .2 .3], the D + 1 vertices of its simplex are [0 0 0], [1 0 0], [1 0 1], [1 1 1].

Let V be the D+1 by D matrix whose dth row is the dth vertex of the simplex containing
x. Then the simplex interpolation weights ψ(x) must satisfy the linear interpolation equa-

tions given in (5) such that

[
V T

1T

]
ψ(x) =

[
x
1

]
. Thus ψ(x) =

[
V T

1T

]−1 [
x
1

]
, where because

of the highly structured nature of the simplex decomposition the required inverse always
exists, and has a simple form such that ψ(x) is the vector of differences of sequential sorted
components of x. For example, for a 2×2×2 lattice, and an x such that x[0] > x[1] > x[2],
the simplex interpolation weights ψ(x) = [1−x[0], x[0]−x[1], x[1]−x[2], x[2]] on the vertices

16



Monotonic Look-Up Tables

[0, 0, 0], [1, 0, 0], [1, 1, 0], [1, 1, 1], respectively. The general formula is detailed in Algorithm
2; for more mathematical details see Rovatti et al. (1998).

Algorithm 2 Computes the simplex interpolation weights and corresponding vertex indices
for a unit lattice cell [0, 1]D and an x ∈ [0, 1]D. Let the lattice parameters be indexed such
that sd = 2d is the difference in the indices of the parameters corresponding to any two
vertices that are adjacent in the dth dimension, for example, for the 2× 2 lattice, order the
vertices [0 0], [1 0], [0 1], [1 1] and index the corresponding lattice parameters in that order.

CalculateSimplexInterpolationWeightsAndParameterIndices(x)
1 Compute the sorted order π of the components of x such that x[π[k]] is the kth largest value of x,
2 that is, x[π[1]] is the largest value of x, etc.
3 Initialize index = 0, z = 1, indices[] = [], weights[] = []
4 For d = 0 to D − 1:
5 Append index to indices

6 Append z − x[π[d]] to weights

7 Update index = index + sπ[d]
8 Update z = x[π[d]]
9 Append index to indices

10 Append z to weights

11 Return indices and weights

5.2.3 Simplex Interpolation and Monotonicity

We show that the same linear inequality constraints that guarantee monotonicity for mul-
tilinear interpolation also guarantee monotonicity with simplex interpolation:

Lemma 3 (Monotonic Constraints with Simplex Interpolation) Let f(x) = θTφ(x)
for φ(x) given in Algorithm 2. The partial derivative ∂f(x)/∂x[d] > 0 iff θk′ > θk for all
k, k′ such that vk[d] = 0, vk′ [d] = 1, and vk[m] = vk′ [m] for all m 6= d.

Proof Simplex interpolation linearly interpolates from D + 1 vertices at a time, and thus
the resulting function is linear over each simplex. Thus to prove that the function is mono-
tonic everywhere, we need only to show that each locally linear function is monotonically
increasing in dimension d, and that the function is continuous everywhere. Each simplex
only has one pair of vertices vk and vk′ that differ in dimension d such that vk[d] = 0,
vk′ [d] = 1, and vk[m] = vk′ [m] for all m 6= d. In addition, we can verify that for the linear
function over this simplex, ∂f(x)/∂x[d] = θk′ − θk, where θk and θk′ are the parameters
corresponding to these vertices. Therefore if θk′ > θk, then the linear function over that
simplex must be increasing with respect to d. Conversely, if it does not hold that θk′ > θk,
then the linear function over that simplex must have non-positive slope with respect to d.
Further, f(x) is continuous for all x, because any x on a boundary between simplices only
has nonzero interpolation weight on the vertices defining that boundary. In conclusion, the
function is piecewise monotonic and continuous, and thus monotonic everywhere.
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Figure 5: Illustrates rotational dependence of simplex interpolation for a 2 × 2 lattice and
its impact on a binary classification problem. Green thick line denotes the true
decision boundary of a binary classification problem. Red thin lines denote the
piecewise linear decision boundary fit by lattice regression using simplex interpo-
lation. Dotted gray line separates the two simplices; the function is locally linear
over each simplex. Left: The true decision boundary (green) crosses the two sim-
plices. The simplex decision boundary (red) has two linear pieces and can fit the
green boundary well. Right: The same green boundary has been rotated ninety
degrees, and now lies entirely in one simplex. The simplex decision boundary (in
red) is linear within each simplex, and hence has less flexibility to fit the true
green decision boundary.

5.2.4 Using Simplex Interpolation for Machine Learning

Simplex interpolation produces a locally linear continuous function made-up of D! hyper-
planes oriented around the main diagonal axis of the unit hypercube. Compared to multi-
linear interpolation, simplex interpolation is not as smooth (though continuous), and it is
rotationally-dependent.

For low-dimensional regression problems using a look-up table with many cells, perfor-
mance of the two interpolation methods has been found to be similar, particularly if one is
using a fine-grained lattice with many cells. For example, in a comparison by Sun and Zhou
(2012) for the three-dimensional regression problem of color managing an LCD monitor,
multilinear interpolation of a 9 × 9 × 9 look-up table (also called trilinear interpolation in
the special case of three-dimensions) produced around 1% worse average error than simplex
interpolation, but the maximum error with multilinear interpolation was only 60% of the
maximum simplex interpolation error. Another study by Kang (1995) using simulations
concluded that the interpolation errors of these methods was “about the same.”

However, when using a coarser lattice like 2D, as we have found useful in practice for
machine learning, the rotational dependence of simplex interpolation can cause problems
because the flexibility of the interpolated function f(x) differs in different parts of the
feature space. Figure 5 illustrates this for a binary classifier on two features.

To address the rotational dependence, we recommend using prior knowledge to define
the features positively or negatively in a way that aligns the simplices’ shared diagonal axis
along the assumed slope of f(x). If there are monotonicity constraints, this is done by
specifying each feature so that it is monotonically increasing, rather than monotonically
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decreasing. For binary classification, features should be specified so that the feature vector
for the most prototypical example of the negative class is the all-zeros feature vector, and
the feature vector for the most prototypical example of a positive class is the all-ones feature
vector. This should put the decision boundary as orthogonal to the shared diagonal axis
as possible, providing the interpolated function the most flexibility to model that decision
boundary. In addition, for low-dimensional problems, using a finer-grained lattice will
produce more flexibility overall, so that the flexibility within each lattice cell is less of an
issue.

Following these guidelines, we surprisingly and consistently find that simplex interpola-
tion of 2D lattices is roughly as accurate as multilinear interpolation, and much faster for
D ≥ 8. This is demonstrated in the case studies of Section 10 (runtime comparisons given
in Section 10.7).

6. Regularizing the Lattice Regression To Be More Linear

We propose a new regularizer that takes advantage of the lattice structure and encourages
the fitted function to be more linear by penalizing differences in parallel edges:

Rtorsion(θ) =

D∑
d=1

D∑
d̃=1
d̃ 6=d

∑
r,s,t,u such that

vr and vs adjacent in dimension d,
vt and vu adjacent in dimension d,

vr and vt adjacent in dimension d̃

((θr − θs)− (θt − θu))2. (11)

This regularizer penalizes how much the lattice function twists from side-to-side, and
hence we refer to this as the torsion regularizer. The larger the weight on the torsion
regularizer in the objective function, the more linear the lattice function will be over each
2D lattice cell.

Figure 6 illustrates the torsion regularizer and compares it to previously proposed lattice
regularizers, the standard graph Laplacian (Garcia and Gupta, 2009) and graph Hessian
(Garcia et al., 2012). As shown in the figure, for multi-cell lattices, the torsion and graph
Hessian regularizers make the function more linear in different ways, and may both be
needed to closely approximate a linear function. Like the graph Laplacian and graph Hessian
regularizers, the proposed torsion regularizer is convex but not strictly convex, and can be
expressed in quadratic form as θTKθ, where K is a positive semidefinite matrix.

7. Jointly Learning Feature Calibrations

One can learn arbitrary bounded functions with a sufficiently fine-grained lattice, but in-
creasing the number of lattice vertices Md for the dth feature multiplicatively grows the
total number of parameters M =

∏
dMd. However, we find in practice that if the features

are first each transformed appropriately, then many problems require only a 2D lattice to
capture the feature interactions. For example, a feature that measures distance might be
better specified as log of the distance. Instead of relying on a user to determine how to
best transform each feature, we automate this feature pre-processing by augmenting our
function class with D one-dimensional transformations cd(x[d]) that we learn jointly with
the lattice, as shown in Figure 7.
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Figure 6: Comparison of lattice regularizers. The lattice parameters are denoted by
A,B,C,D,E, and F . The deltas indicate the differences between adjacent pa-
rameters along each edge, and thus each delta is the slope of the function along
its edge. Each color corresponds to a different additive term in a regularizer. The
graph Laplacian regularizer (left) minimizes the sum of the squared slopes, pro-
ducing a flatter function. The graph Hessian regularizer (middle) minimizes the
change in slope in each direction of a multi-cell lattice, keeping the function from
bending too much between lattice cells. The proposed torsion regularizer (right)
minimizes the change in slope between sides of the lattice, for each direction,
minimizing the twisting of the function.

7.1 Calibrating Continuous Features

We calibrate each continuous feature with a one-dimensional monotonic piecewise linear
function, as illustrated in Figure 8. Our approach is similar to the work of Howard and
Jebara (2007), which jointly learns monotonic piecewise linear one-dimensional transforma-
tions and a linear function.

This joint estimation makes the objective non-convex, discussed further in Section 9.3.
To simplify estimating the parameters, we treat the number of changepoints Cd for the dth
feature as a hyperparameter, and fix the Cd changepoint locations (also called knots) at
equally-spaced quantiles of the feature values. The changepoint values are then optimized
jointly with the lattice parameters, detailed in Section 9.3.
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Figure 7: Block diagram showing one-dimensional calibration functions {cd(·)} to pre-
process each feature before the lattice f(·) fuses the features together nonlinearly.

Distance Calibration Address Similarity Calibration

Figure 8: Learned one-dimensional piecewise linear calibration functions for a distance and
address-similarity feature for the business-matching case study in Section 10.2.
Left: The raw distance is measured in meters, and its calibration has a log-
like effect. Right: The raw address feature is calibrated with a sigmoid-like
transformation.

7.2 Calibrating Categorical Features

If the dth feature is categorical, we propose using a calibration function cd(·) to map each
category to a real value in [0,Md − 1]. That is, let the set of possible categories for the
dth feature be denoted Gd, then cd : Gd → [0,Md − 1], adding |Gd| additional parameters
to the model. Figure 9 shows an example lattice with a categorical country feature that
has been calibrated to lie on [0, 2]. If prior knowledge is given about the ordering of the
original discrete values or categories, then partial or full pairwise constraints can be added
on the mapped values to respect the known ordering information. These can be expressed
as additional sparse linear constraints on pairs of parameters.

8. Calibrating Missing Data and Using Missing Data Vertices

We propose two supervised approaches to handle missing values in the training or test set.

First, one can do a supervised imputation of missing data values by calibrating a missing
data value for each feature. This is the same approach proposed for calibrating categorical
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Figure 9: A 2× 2× 3 lattice illustrating calibrating a categorical feature. In this example,
each sample is a pair of business listings, and the problem is to classify whether
the two listings are about the same business, based on the similarity of their street
names, titles, and the country. A score f(x) is interpolated from the parameters
corresponding to the vertices of the 2 × 2 × 2 lattice cell in which x lies, then
thresholded at 0.5. The red parameter values are below the matching threshold
of 0.50, and the green parameters are above the matching threshold. The blue
arrows denote that the lattice was constrained to be monotonically increasing in
the street name similarity and the title similarity. In this toy example, we only
show the calibrated values for a few countries: US maps to 0, Great Britain maps
to .3, Brazil to .4, Netherlands to .9, Germany to 1, Argentina to 1.5, and Canada
to 2. One can interpret this lattice as modeling three classifiers, sliced along the
country vertices: a classifier for country = 0, one for country = 1, and one for
country = 2. Samples from Argentina (AR) are interpolated equally from the
parameters where country = 1 and country = 2. Samples from Great Britain,
and Netherlands are interpolated from the two classifiers specified at country = 0
and 1, with Netherlands putting the most weight on the classifier where country
= 1. The lattice parameters can be interpreted as showing that both the street
name and title features are stronger positive evidence in the US than in Canada.

values in Section 7.2: learn the numeric value in [0,Md − 1] to impute if the dth feature is
missing that minimizes the structural risk minimization obejctive. In this approach, missing
data is handled by a calibration function cd(·), and like the other calibration function pa-
rameters. Other researchers have also considered joint training of classifiers and imputations
for missing data, for example van Esbroeck et al. (2014) and Liao et al. (2007).

Second, a more flexible option is to give missing data its own missing data vertices in
the lattice, as shown in Figure 10. This is similar to a decision tree handling a missing
data value by splitting a node on whether that feature is missing. For example, the non-
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Figure 10: Illustration of handling missing data by assigning missing data to its own slice
of vertices in the lattice. In this example, one feature is a title similarity and
is always given, and the other feature is a street name similarity that can be
missing. The lattice has 3 × 2 = 6 parameters, with the parameter values
shown. For example, given a feature vector x with title similarity 0.5 and missing
street name similarity, the two parameters corresponding to the missing street
name slice of the lattice would be interpolated with equal weights, producing
the output f(x) = 0.25.

missing feature values can be scaled to [0,Md − 2], and if the data is missing is it mapped
to Md − 1. This increases the number of parameters but gives the model the flexibility
to handle missing data differently than non-missing data. For example, missing the street
number in a business description may correlate with lower quality information for all the
features.

To regularize the lattice parameters corresponding to missing data vertices, we apply the
graph regularizers detailed in Section 6. These could be use to tie any of the parameters to
the missing data parameters. In our experiments, for the purposes of graph regularization,
we treat the missing data vertices as though they were adjacent to the minimum and
maximum vertices of that feature in the lattice.

With either of these two proposed strategies, linear inequalities can be added on the
appropriate parameters (the calibrator parameters in the first proposal, or the missing data
vertex parameters in the second proposal) to ensure that the function value for missing data
is bounded by the minimum and maximum function values, that is, that missing x[d] never
produces a smaller f(x) than x[d] = 0, nor a larger f(x) than x[d] = Md.

9. Large-Scale Training

For convex loss functions `(θ) and convex regularizers R(θ), any solver for convex problems
with linear inequality constraints can be used to optimize the lattice parameters θ in (8).
However, for large n and for even relatively small D, training the proposed calibrated mono-
tonic lattices is challenging due to the number of linear inequality constraints, the number
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of terms in the graph-regularizers, and the non-convexity created by using calibration func-
tions.

In this section we discuss various standard and new strategies we found useful in prac-
tice: our use of stochastic gradient descent (SGD), stochastic handling of the regularizers,
parallelizing-and-averaging for distributed training, handling the large number of constraints
in the context of SGD, and finally some details on how we optimize the non-convex problem
of training the calibrator functions and the lattice parameters. Throughout this section, we
assume the standard setting of (8); the generalization to the pairwise ranking problem of
(9) is straightforward.

9.1 SGD and Reducing Variance of the Subgradients

To scale to a large number of samples n, we used SGD for all our experiments. For each SGD
iteration t, a labeled training sample (xi, yi) is sampled uniformly from the set of training
sample pairs. One finds the corresponding subgradient of (8), and takes a tiny step in its
negative gradient direction. (The resulting parameters may then violate the constraints,
which we discuss in Section 9.4.)

A straightforward SGD implementation for (8) would use the subgradient:

∆ = ∇θ`
(
θTφ (xi) , yi

)
+∇θR (θ) , (12)

where the ∇θ operator finds an arbitrary subgradient of its argument w.r.t. θ. Ideally, these
subgradients should be cheap-to-compute, so each iteration is fast. The computational cost
is dominated by computing the regularizer, if using any of the graph regularizers discussed
in Section 6.

Because the training example (xi, yi) in (12) is randomly sampled, the above subgradient
is a realization of a stochastic subgradient whose expectation is equal to the true gradient.
The number of iterations needed for the SGD to converge depends on the squared Euclidean
norms of the stochastic subgradients (Nemirovski et al., 2009), with larger norms resulting
in slower convergence. The expected squared norm of the stochastic subgradient can be
decomposed into the sum of two terms: the squared expected subgradient magnitude, and
the variance. We can do little about the expected magnitude, but we can improve the trade-
off between the computational cost of each subgradient and the variance of the stochastic
subgradients. In the next two sub-sections, we describe two such strategies.

9.1.1 Mini-Batching

We reduce the variance of the stochastic subgradient’s loss term by mini-batching over
multiple random samples (Dekel et al., 2012). Let S` denote a set of k` training indices
sampled uniformly with replacement from 1, . . . , n, then the mini-batched subgradient is:

∆ =
1

k`

∑
i∈S`

∇θ`
(
θTφ (xi) , yi

)
+∇θR (θ) . (13)

This simultaneously reduces the variance and increases the computational cost of the loss
term by a factor of k`. For sufficiently small k`, this is a net win because differentiating the
regularizer is the dominant computational term.
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9.1.2 Stochastic Subgradients for Regularizers

We propose to reduce the computational cost of each SGD iteration by randomly sampling
the additive terms of the regularizer, for regularizers that can be expressed as a sum of
terms: R(θ) =

∑m
j=1 rj(θ). For example, for a 2D lattice, each calculation of the graph

Laplacian regularizer subgradient sums over m = D2D−1 terms, and the graph torsion
regularizer subgradient sums over m = D(D − 1)2D−3 terms.

Let SR denote a set of kR indices sampled uniformly with replacement from 1, l . . . ,m,
then define the subgradient:

∆ =
1

k`

∑
i∈S`

∇θ`
(
θTφ (Xi) , Yi

)
+
m

kR

∑
j∈SR

∇θrj (θ) . (14)

While this makes the subgradient’s regularizer term stochastic, and hence increases the
subgradient variance, we find that good choices of k` and kR in (14) can produce a useful
tradeoff between the computational cost of computing each subgradient and the number of
SGD iterations needed for acceptable converge. For example, in one real-world application
using torsion regularization, the choice of kR = 1024 and k` = 1 led to a 150× speed-up in
training and produced statistically indistinguishable accuracy on a held-out test set.

9.2 Parallelizing and Averaging

For a large number of training samples n, one can split the n training samples into K sets,
then independently and in-parallel train a lattice on each of the K sets. Once trained, the
vector lattice parameters for the K lattices can simply be averaged. This parallelize-and-
average approach was investigated for large-scale training of linear models by Mann et al.
(2009). Their results showed similar accuracies to distributed gradient descent, but 1000×
less network traffic and reduced wall-clock time for large datasets. In our implementation
of the parallelize-and-average approach we do multiple syncs: averaging the lattices, then
sending out the averaged lattice to parallelized workers to keep improving with further
training. We illustrate the performance and speed-up of this simple parallelize-and-average
for learning monotonic lattices in Section 10.6 and Section 10.7. A more complicated imple-
mentation of this strategy would use the alternating direction method of multipliers with
a consensus constraint (Boyd et al., 2010), but that requires an additional regularization
towards a local copy of the most recent consensus parameters.

Note that if calibration functions are used, they must be held fixed during the paralleliza-
tion of the lattice training, as it does not make mathematical sense to average differently
calibrated lattices.

9.3 Jointly Optimizing Lattice and Calibration Functions

To learn a calibrated monotonic lattice, we jointly optimize the calibration functions and the
lattice parameters. Let x denote a feature vector with D components, each of which is either
a continuous or categorical value (discrete features can be modeled either as continuous
features or categorical as the user sees fit). Let cd(x[d];α(d)) be a calibration function that
acts on the dth component of x and has parameters α(d).

If the dth feature is continuous, we assume it has a bounded domain such that x[d] ∈
[ld, ud] for finite ld, ud ∈ R. Then the dth calibration function cd(x[d];α(d)) is a monotonic
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piecewise linear transform with fixed knots at ld, ud, and the Cd−2 equally-spaced quantiles
of dth feature over the training set. Let the first and last knots of the piecewise linear
function map to the lattice bounds 0 and Md − 1 respectively (as shown in Figure 8),
that is, if Cd = 2 then cd(x[d];α(d)) simply linearly scales the raw range [ld, ud] to the
lattice domain [0,Md − 1] and there are no parameters α(d). For Cd > 2, the parameters
α(d) ∈ [0,Md − 1]Cd−2 are the Cd − 2 output values of the piecewise linear function for the
middle Cd − 2 knots.

If the dth feature is categorical with finite category set Gd such that x[d] ∈ Gd, then
the dth calibration function maps the categories to the lattice span such that cd(x[d];α(d)) :
Gd → [0,Md−1] and the parameters are the |Gd| categorical mappings such that cd(x[d];α(d)) =
α(d)[k] if x[d] belongs to category k and α(d) ∈ [0,Md − 1]|Gd|.

Let c(x;α) denote the vector function with dth component function cd(x[d];α(d)), and
note c(x;α) maps a feature vector x to the domain M of the lattice function. Use ed to
denote the standard unit basis vector that is one for the dth component and zero elsewhere
with length D, then one can write:

c(x;α) =
D∑
d=1

edcd(e
T
d x;α(d)), (15)

Then the proposed calibrated monotonic lattice regression objective expands the mono-
tonic lattice regression objective (8) to:

arg min
θ,α

n∑
i=1

`(yi, θ
Tφ(c(xi, α)) +R(θ) s.t. Aθ ≤ b and Ãα ≤ b̃,

where each row of A specifies a monotonicity constraint for a pair of adjacent lattice pa-
rameters (as before), and each row of Ã similarly specifies a monotonicity constraint for a
pair of adjacent calibration parameters for one of the piecewise linear calibration functions.

This turns the convex optimization problem (8) into a non-convex problem that is
marginally convex in the lattice parameters θ for fixed α, but not necessarily convex with
respect to α even if θ is fixed. Despite the non-convexity of the objective, in our experiments
we found sensible and effective solutions by using projected SGD, updating θ and α with the
appropriate stochastic subgradient for each xi. Calculate the subgradient w.r.t. θ holding
α constant, essentially the same as before. Calculate the subgradient w.r.t α by holding θ
constant and using the chain rule:

∂θTφ(c(xi, α))

∂α(d)
=
∂θTφ(c(xi, α))

∂c(xi, α)

∂c(xi, α)

∂α(d)
. (16)

If the dth feature is categorical, the partial derivative is 1 for the calibration mapping
parameter corresponding to the category of xi[d] and zero otherwise:

∂c(xi, α)

∂α(d)[k]
= 1 if xi[d] is the kth category and 0 otherwise. (17)

If the dth feature is continuous, then the parameters α(j)[d] are the values of the cali-
bration function at the knots of the piecewise linear function. If xi[d] lies between the kth
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and (k + 1)th knots at (fixed) positions βk and βk+1, then

∂c(xi, α)

∂α(d)[k]
=

(βk+1 − xi[d])

(βk+1 − βk)
∂c(xi, α)

∂α(d)[k + 1]
=

(xi[d]− βk)
(βk+1 − βk)

,

and the partial derviative is zero for all other components of α(d). After taking an SGD
step that updates α(d)[k] and α(d)[k+ 1], the α(d) may violate the monotonicity constraints
that ensure a monotonic calibration function, which can be fixed with a projection onto the
constraints (see Section 9.4 for details).

A standard strategy with nonconvex gradient descent is to try multiple random ini-
tializations of the parameters. We did not explore this avenue; instead we simply try to
initialize sensibly. Each lattice parameter is initialized to be the sum of its monotonically
increasing components (multiply by -1 for any monotonically decreasing components) so
that the lattice initialization respects the monotonicity constraints and is a linear function.
The piecewise linear calibration functions are initialized to scale linearly to [0,Md−1]. The
categorical calibration parameters are ordered by their mean label, then spaced uniformly
on [0,Md − 1] in that order.

9.4 Large-Scale Projection Handling

Standard projected stochastic gradient descent projects the parameters onto the constraints
after each stochastic gradient update. Given the extremely large number of linear inequality
constraints needed to enforce monotonicity for even small D, we found a full projection each
iteration impractical and un-necessary. We avoid the full projection at each iterate by using
one of two strategies.

9.4.1 Suboptimal Projections

We found that modifying the SGD update to approximate the projection worked well.
Specifically, for each new stochastic subgradient η∆, we create a set of active constraints
initialized to ∅, and, starting from the last parameter values, move along the portion of
η∆ that is orthogonal to the current active set until we encounter a constraint, add this
constraint to the active set, and then continue until the update η∆ is exhausted or it is not
possible to move orthogonal to the current active set. At all times, the parameters satisfy
the constraints. It can be particularly fast because it is possible to exploit the sparsity
of the monotonicity constraints (each of which depends on only two parameters) and the
sparsity of ∆ (when using simplex interpolation) to optimize the implementation.

But, this strategy is sub-optimal because we do not remove any constraints from the
active set during each iteration, and thus parameters can “get stuck” at a corner of the
feasible set, as illustrated in Figure 11. In practice, we found such problems resolve them-
selves because the stochasticity of the subsequent stochastic gradients eventually jiggles the
parameters free. Experimentally, we found this suboptimal strategy to be very effective and
to produce statistically similar objective function values and test accuracies more optimal
approaches. All of the experimental results reported in this paper used this strategy. See
Section 10.7 for example runtimes.
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(c) (d)

Figure 11: Four examples of the suboptimal projection stochastic gradient descent step de-
scribed in Section 9.4. In each case, the constraints are marked by thin solid
lines, the black dot represents the parameters at the end of the last SGD itera-
tion, and the new full stochastic gradient descent update is marked by the dashed
line, ending in a star. The optimal projection of the star onto the constraints
is marked by the dotted line. The stochastic gradient is followed until it hits
a constraint, and then the component of the remaining gradient orthogonal to
the active constraint is applied. The update ends at the light gray dot. In cases
(a) and (b), the resulting light dot is the optimal projection of the star onto the
constraints. But in case (c), first one constraint is hit, and then another con-
straint is hit, and the update gets stuck at the corner of the feasible set without
being able to apply all of the stochastic gradient. The resulting light gray dot is
not the projection of the star onto the constraints, hence the projection for this
iteration is suboptimal. However, it is likely that a future stochastic gradient
will jiggle the optimization loose, as pictured in (d), producing an update that
is again an optimal projection of the latest stochastic gradient.

9.4.2 Stochastic Constraints with LightTouch

An optimal approach we compared with for handling large-scale constraints is called Light-
Touch (Cotter et al., 2015). At each iteration, LightTouch does not project onto any
constraints, but rather moves the constraints into the objective, and applies a random sub-
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set of constraints each iteration as stochastic gradient updates to the parameters, where the
distribution over the constraints is learned as the optimization proceeds to focus on con-
straints that are more likely to be active. This replaces the per-iteration projections with
cheap gradient updates. Intermediate solutions may not satisfy all the constraints, but one
full projection is performed at the very end to ensure final satisfaction of the constraints.
Experimentally, we found LightTouch generally converged faster (see Cotter et al. (2015) for
its theoretical convergence rate), while producing similar experimental results to the above
approximate projected SGD. LightTouch does require a more complicated implementation
to effectively learn the distribution over the constraints.

9.4.3 Adapting Stepsizes with Adagrad

One can generally improve the speed of SGD with adagrad (Duchi et al., 2011), even for
nonconvex problems (Gupta et al., 2014). Adagrad decays the step-size adaptively for each
parameter, so that parameters updated more often or with larger magnitude gradients have
a smaller step size. We found adagrad did speed up convergence slightly, but required
a complicated implementation to correctly handle the constraints because the projections
must be with respect to the adagrad norm rather than the Euclidean norm. We experi-
mented with approximating the adagrad norm projection with the Euclidean projection,
but found this approximation resulted in poor convergence. The experimental results did
not make use of adagrad.

10. Case Studies

We present a series of experimental case studies on real world problems to demonstrate
different aspects of the proposed methods, followed by some example runtimes for inter-
polation and training in Section 10.7, and some observations about the practical value of
imposing monotonicity in Section 10.8.

Previous datasets used to evaluate monotonic algorithms have been small, both in the
number of samples and the number of dimensions, as detailed in Table 1. In order to produce
statistically significant experimental results, and to better demonstrate the practical need
for monotonicity constraints, we use real-world case studies with relatively large datasets,
and for which the application engineers have confirmed that they expect or want the learned
function to be monotonic with respect to some subset of features. The datasets used are
detailed in Table 3, and include datasets with eight thousand to 400 million samples, and
nine to sixteen features, most of which are constrained to be monotonic.

The case studies demonstrate that for problems where the monotonicity assumption is
warranted, the proposed calibrated monotonic lattice regression produces similar accuracy
to random forests. Random forests is an unconstrained method that consistently provides
competitive results on benchmark datasets, compared to many other types of machine
learning methods (Fernandez-Delgado et al., 2014)).

Because any bounded function can be expressed using a sufficiently fine-grained interpo-
lation look-up table, we expect that with appropriate use of regularizers, monotonic lattice
regression will perform similarly to other guaranteed monotonic methods that use a flex-
ible function class and are appropriately regularized, such as monotonic neural nets (see
2.2.5). However, of guaranteed monotonic methods, the only monotonic strategy that has
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# Training # Test # Lattice
Dataset Samples Samples # Features Parameters

Business Matching 8,000 4,000 9 1728
Ad–Query Matching 235,996 58,224 5 32
Rendering Classifier 20,000 2,500 16 65,536
Fusing Pipelines 1.6 million 390k 12 24,576
Video Ranking 400 million 25 million 12 531,441

Table 3: Summary of datasets used in the case studies.

been demonstrated to scale to the number of training samples and the number of features
treated in our case studies is linear regression with non-negative coefficients (see Table 1).

10.1 General Experimental Details

We used ten-fold cross-validation on each training set to choose hyperparameters, including:
whether to use graph Laplacian regularization or torsion regularization, how much regular-
ization (in powers of ten), whether to calibrate missing data or use a missing data vertex, the
number of change-points if feature calibration was used from the choices: {2, 3, 5, 10, 20, 50},
and the number of vertices for each feature was started at 2 and increased by 1 as long as
cross-validation accuracy increased. The step size was tuned using ten-fold cross-validation
and choices were powers of 10; it was usually chosen to be one of {.01, .1, 1}. If calibration
functions were used, a hyperparameter was used to scale the step size for the calibration
function gradients compared to the lattice function gradients; this calibration step size scale
was also chosen using ten-fold cross-validation and powers of 10, and was usually chosen to
be one of {.01, .1, 1, 10}. Multilinear interpolation was used unless it is noted that simplex
interpolation was used. The loss function was squared error, unless noted that logistic loss
was used.

Comparisons were made to random forests (Breiman, 2001), and to linear models, with
either the logistic loss (logistic regression) or squared error loss (linear regression), and a
ridge regularizer on the linear coefficients, with any categorical or missing features con-
verted to Boolean features. All comparisons were trained on the same training set, hyper-
parameters were tuned using cross-validation, and tested on the same test set. Statistical
significance was measured using a binomial statistical significance test with a p-value of .05
on the test samples rated differently by two models.

10.2 Case Study: Business Entity Resolution

In this case study, we compare the relative impact of several of our proposed extensions to
lattice regression. The business entity resolution problem is to determine if two business
descriptions refer to the same real-world business. This problem is also treated by Dalvi
et al. (2014), where they focus on defining a good title similarity. Here, we consider only
the problem of fusing different similarities (such as a title similarity and phone similarity)
into one score that predicts whether a pair of businesses are the same business. The learned
function is required to be monotonically increasing in seven attribute similarities, such as
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the similarity between the two business titles and the similarity between the street names.
There are two other features with no monotonicity constraints, such as the geographic
region, which takes on one of 14 categorical values. Each sample is derived from a pair of
business descriptions, and a label provided by an expert human rater indicating whether that
pair of business descriptions describe the same real-world business. We measure accuracy
in terms of whether a predicted label matches the ground truth label, but in actual usage,
the learned function is also used to rank multiple matches that pass the decision threshold,
and thus a strictly monotonic function is preferred to a piecewise constant function. The
training and test sets, detailed in Table 3, were randomly split from the complete labeled
set. Most of the samples were drawn using active sampling, so most of the samples are
difficult to classify correctly.

Table 4 reports results. The linear model performed poorly, because there are many
important high-order interactions between the features. For example, the pair of businesses
might describe two pizza places at the same location, one of which recently closed, and the
other recently opened. In this case, location-based features will be strongly positive, but the
classifier must be sensitive to low title similarity to determine the businesses are different.
On the other hand, high title similarity is not sufficient to classify the pair as the same, for
example, two Starbucks cafes across the street from each other in downtown London.

The lattice regression model was first optimized using cross-validation, and then we
made the series of minor changes (with all else held constant) listed in Table 4 to illustrate
the impact of these changes on accuracy. First, removing the monotonicity constraints re-
sulted in a statistically significant drop in accuracy of half a percent. Thus it appears the
monotonicity constraints are successfully regularizing given the small amount of training
data and the known high Bayes error in some parts of the feature space. Lattice regres-
sion without the monotonicity constraints performed similarly to random forests (and not
statistically significantly better), as expected due to the similar modeling abilities of the
methods.

The cross-validated lattice was 3 × 3 × 3 × 26, where the first three features used a
missing data vertex (so the non-missing data is interpolated from a 29 lattice). Calibrating
the missing values for those three features instead of using missing data vertices statistically
significantly dropped the accuracy from 81.9% to 80.7%. (However, if one subsamples the
training set down to 3000 samples, then the less flexible option of calibrating the missing
values works better than using missing data vertices.)

The cross-validated calibration used five changepoints for two of the four continuous
features, and no calibration for the two other continuous features. Figure 8 shows the
calibrations learned in the optimized lattice regression. Removing the continuous signal
calibration resulted in a statistically significant drop in accuracy.

Another important proposal of this paper is calibrating categorical features to real-
valued features. For this problem, this is applied to a feature specifying which of 14 possible
geographical categories the businesses are in. Removing this geographic feature statistically
significantly reduced the accuracy by half a percent.

The amount of torsion regularization was cross-validated to be 10−4. Changing to graph
Laplacian and re-optimizing the amount of regularization decreased accuracy slightly, but
not statistically significantly so. This is consistent with what we often find: torsion is
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Test Set Accuracy Monotonic Guarantee?

Linear Model 66.6% yes
Random Forest 81.2% no
Lattice Regression, Optimized 81.9% yes
... Remove Monotonicity Constraints 81.4% no
... Calibrate All Missing Data 80.7% yes
... Remove Calibration 81.1% yes
... Remove the Geographic Feature 81.4% yes
... Change to Graph Laplacian 81.7% yes
... Change to Simplex Interpolation 81.6% yes

Table 4: Comparison on a business entity resolution problem.

often slightly better, but often not statistically significantly so, than the graph Laplacian
regularizer.

Changing the multilinear interpolation to simplex interpolation (see Section 5.2) dropped
the accuracy slightly, but not statistically significantly. For some problems we even see
simplex interpolation provide slightly better results, but generally the accuracy difference
between simplex and multilinear interpolation is negligible.

10.3 Case Study: Scoring Ad–Query Pairs

In this case study, we demonstrate the potential of the calibration functions. The goal is to
score how well an ad matches a web search query, based on five different features that each
measure a different notion of a good match. The score is required to be monotonic with
respect to all five features. The labels are binary, so this is trained and tested as a classi-
fication problem. The train and test sets were independently and identically distributed,
and are detailed in Table 3.

Results are shown in Table 5. The cross-validated lattice size was 2× 2× 2× 2× 2, and
the calibration functions each used 5 changepoints. Removing the calibration functions and
re-cross-validating the lattice size resulted in a larger lattice sized 4×4×4×4×4, and slightly
worse (but not statistically significantly worse) accuracy. In total, the uncalibrated lattice
model used 1024 parameters, whereas the calibrated lattice model used only 57 parameters.
We hypothesize that the smaller calibrated lattice will be more robust to feature noise and
drift in the test sample distribution than the larger uncalibrated lattice model. In general,
we find that the one-dimensional calibration functions are a very efficient way to capture
the flexibility needed, and that in conjunction with good one-dimensional calibrations, only
coarse-grained (e.g. 2D) lattices are needed.

Both with and without calibration functions, the lattice regression models were statis-
tically significantly better than the linear model. The random forest performed well, but
was not statistically significantly better than the lattice regression.

A boosted stumps model was also trained for this problem. See Fig. 12 for a comparison
of two-dimensional slices of the boosted stumps and lattice functions. The boosted stumps’
test set accuracy was relatively low at 75.4%. In practice, the goal of this problem is to have
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Test Set Accuracy Monotonic Guarantee?

Linear Model 77.2% yes
Random Forests 78.8% no
Lattice Regression 78.7% yes
... Remove Continuous Signal Calibration 78.4% yes

Table 5: Comparison on an ad-query scoring problem.

Θ[2] = 0.4

Θ[0] = 0.0 Θ[1] = 1.0

Θ[3] = 0.4

1.0
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0.5

Scale Boosted Stumps Lattice Regression

Figure 12: Slices of the learned ad-query matching functions for boosted stumps and a 2×
2×2×2×2 lattice regression, plotted as a function of two of the five features, with
median values chosen for the other three features. The boosted stumps required
hundreds of stumps to approximate the function, and the resulting function is
piecewise constant, creating frequent ties when ranking a large number of ads
for a given query, despite a priori knowledge that the output should be strictly
monotonic in each of the features.

a score useful for ranking candidates as well as determining if they are a sufficiently good
match. Even with many trees, this model produces many ties due its piecewise-constant
surface. In addition, the live experiments with the boosted stumps showed that the output
was problematically sensitive to feature noise, which would cause samples near the boundary
of two piecewise constant surfaces to experience fluctuating scores.

10.4 Case Study: Rendering Classifier

This case study demonstrates training a flexible function (using a lattice) that is monotonic
with respect to fifteen features. The goal is to score whether a particular display element
should be rendered on a webpage. The score is required to be monotonic in fifteen of the
features, and there is a sixteenth Boolean feature that is not constrained. The training and
test sets (detailed in Table 3) consisted almost entirely of samples known to be difficult to
correctly classify (hence the rather low accuracies).

We used a fixed 216 lattice size, a fixed 5 changepoints per feature for the six continuous
signals (the other ten signals were Boolean), and no graph regularization, so no hyperpa-
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Test Set Accuracy Monotonic Guarantee?

Linear Model 54.6% yes
Random Forest 61.3% no
Lattice Regression 63.0% yes

Table 6: Comparison on a rendering classifier.

rameters were optimized for this case study. Simplex interpolation was used for speed. A
single training loop through the 20,000 training samples took around five minutes on a
Xeon-type Intel desktop using a single-threaded C++ implementation with sparse vectors,
with the training time dominated by the constraint handling. Training in total took around
five hours.

Results in Table 6 show substantial gains over the linear model, while still producing a
monotonic, smooth function. The lattice regression was also statistically significantly better
than random forests, we hypothesize due to the regularization provided by the monotonicity
constraints which is important in this case due to the difficulty of the problem on the given
examples and the relatively small number of training samples.

10.5 Case Study: Fusing Pipelines

While this paper focuses on learning monotonic functions, we believe it is also the first
paper to propose applying lattice regression to classification problems, rather than only
regression problems. With that in mind, we include this case study demonstrating that
lattice regression without constraints also performs similarly to random forests on a real-
world large-scale multi-class problem.

The goal in this case study is to fuse the predictions from two pipelines, each of which
makes a prediction about the likelihood of seven user categories based on a different set of
high-dimensional features. Because each pipeline’s probability estimates sum to one, only
the first six probability estimates from each pipeline are needed as features to the fusion,
for a total of twelve features. The training and test set were split by time, with the older
1.6 million samples used for training, and the newest 390,000 samples used as a test set.

The lattice was trained with a multi-class logistic loss, and used simplex interpolation
for speed. The cross-validated model was a 212 lattice for six of the output classes (with the
probability of the seventh class being subtracted from one) and no calibration functions,
resulting in a total of 212 × 6 = 24, 576 parameters.

The results are reported in Table 7. Even though Pipeline 2 alone is 6.5% more accurate
than Pipeline 1 alone, the test set accuracy can be increased by fusing the estimates from
both pipelines, with a small improvement in accuracy by lattice regression over the random
forest classifier, logistic regression, or simply averaging the two pipeline estimates.

10.6 Case Study: Video Ranking and Large-Scale Learning

This case study demonstrates large-scale training of a large monotonic lattice and learning
from ranked pairs. The goal is to learn a function to rank videos a user might like to watch,
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Test Set Accuracy Gain
on top of Pipeline 1 Accuracy

Pipeline 2 Only 6.5%
Average the Two Pipeline Estimates 7.4%
Fuse with Linear Model 8.5%
Fuse with Random Forest 9.3%
Fuse with Lattice Regression 9.7%

Table 7: Comparison on fusing user category prediction pipelines.

based on the video they have just watched. Experiments were performed on anonymized
data from YouTube.

Each feature vector xi is a vector of features about a pair of videos, xi = h(vj , vk), where
vj is the watched video, vk is a candidate video to watch next, and h is a function that
takes a pair of videos and outputs a twelve-dimensional feature vector xi. For example, a
feature might be the number of times that video vj and video vk were watched in the same
session.

Each of the twelve features was specified to be positively correlated with users viewing
preference, and thus we constrained the model to be monotonically increasing with respect
to each. Of course, human preference is complicated and these monotonicity constraints
cannot fully model human judgement. For example, knowing that a video that has been
watched many times is generally a very good indicator that it is good to suggest, and yet
a very popular video at some point will flare out and become less popular.

Monotonicity constraints can also be useful to enforce secondary objectives. For ex-
ample, all other features equal, one might prefer to serve fresher videos. While users in
the long-run want to see fresh videos, they may preferentially click on familiar videos, thus
click data may not capture this desire. This secondary goal can be enforced by constrain-
ing the learned function to be monotonic in a feature that measures video freshness. This
achieves a multi-objective function without overly-complicating or distorting the training
label definition.

There are billions of videos in YouTube, and thus many many pairs of watched-and-
candidate videos to score and re-score as the underlying feature values change over time.
Thus it is important the learned ranking functions to be cheap to evaluate, and so we use
simplex interpolation for its evaluation speed; see Section 10.7 for comparison of evaluation
speeds.

We trained to minimize the ranked pairs objective from (9), such that the learned
function f is trained for the goal of minimizing pairwise ranking errors,

f(h(vj , v
+
k )) > f(h(vj , v

−
k )),

for each training event consisting of a watched video vj , and a pair of candidate videos v+k
and v−k where there is information that a user who has just watched video vj prefers to
watch v+k next over v−k .
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10.6.1 Which Pairs of Candidate Videos?

A key question is which sample pairs of candidate videos v+k and v−k should be used as the
preferred and unpreferred videos for a given watched video vj . We used anonymized click
data from YouTube’s current video-suggestion system. For each watched video vj , if a user
clicked a suggested video in the second position or below, then we took the clicked video
as the preferred video v+k , and the video suggested right above the clicked video as the
unpreferred video v−j . We call this choice of v+k and v−k a bottom-clicked pair. This choice
is consistent with the findings of Joachims et al. (2005), whose eye-tracking experiments on
webpage search results showed that users on average look at least at one result above the
clicked result, and that these pairs of preferred/unpreferred samples correlated strongly with
explicit relevance judgements. Also, using bottom-clicked pairs removes the trust bias that
users know they are being presented with a ranked list and prefer samples that are ranked-
higher (Joachims et al., 2005). In a set of preliminary experiments, we also tried training
using either a randomly sampled video as v−k , or the video just after the clicked video, and
then tested on bottom-clicked pairs. Those results showed test accuracy on bottom-clicked
pairs was up to 1% more accurate if the training set only included the bottom-clicked pairs,
even though that meant fewer training pairs.

An additional goal (and one that is common in commercial large-scale machine learning
systems for various practical reasons) is for the learned ranking function to be as similar
to the current ranking function as possible. That is, we wish to minimize changes to the
current scoring if they do not improve accuracy; such accuracy-neutral changes are referred
to as churn. To reduce churn, we added in additional pairs that reflect the decisions of the
current ranking function. Each of these pairs also takes the clicked video as the preferred
v+k , but sets the unpreferred video v−k to be the video that the current system ranked ten
candidates lower than the clicked video. The dataset is a 50-50 mix of these churn-reducing
pairs and bottom-clicked pairs.

10.6.2 More Experimental Details

The dataset was randomly split into mutually exclusive training, test, and validation sets of
size 400 million, 25 million, and 25 million pairs, respectively. To ensure privacy, the dataset
only contained the feature vector, and no information identifying the video or user. The
disadvantage of that is the train, test and validation sets are likely to have some samples
from the same videos and same users. However, in total the datasets capture millions of
unique users and unique watched videos.

We used a fixed 312 lattice, for a total of 531,441 parameters. The pre-processing
functions were fixed in this case, so no calibration functions were learned. We compared
training on increasingly-larger randomly-sampled subsets of the 400 million training set (see
Figure 13 for training set sizes). We compared training on a single worker to the parallelize-
and-average strategy explained in Section 9.2. Parallel results were parallelized over 100
workers. The stepsize was chosen independently for each training set based on accuracy on
the validation set.

We report results with and without monotonicity constraints. For the unconstrained
results, each training (single or parallel) touched each sample in the training set once.
For the monotonic results (single or parallelized), each sample was touched ten times, and
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minibatching was used with a minibatch size of 32 stochastic gradients. Logistic loss was
used.

10.6.3 Results

Figure 13 compares test set accuracy for single and parallelized training for different amounts
of training data, with and without monotonicity constraints. For each dataset, the single
and parallel training saw the same total number of training samples and were allowed the
same total number of stochastic gradient updates.

Figure 13: Comparison of training with a single worker versus 100 workers in parallel, as a
function of training set size.

On the click data test set, not using monotonicity constraints (the dark lines) is about
.5% better at pairwise accuracy than if we constrain the function to be monotonic. However,
in live experiments that required ranking all videos (not only ones that had been top-ranked
in the past, and hence included in the click data sets), models trained with monotonicity
constraints showed better performance on the actual measures of user-engagement (as op-
posed to the training metric of pairwise accuracy). This discrepancy appears to be due to
the biased sampling of the click data, as the click-data has a biased distribution over the
feature space compared to the distribution of all videos which must get ranked in practice.
The biased distribution of the click data appears to cause parameters in sparser regions of
the feature space to be non-monotonic in an effort to increase the flexibility (and accuracy)
of the function in the denser regions, thus increasing the accuracy on the click data. En-
forcing monotonicity helps address this sampling bias problem by not allowing the training
to ignore the accuracy in sparser regions that are important in practice to accurately rank
all videos.

Even though there are 500k parameters to train, the click-data accuracy is already very
good with only 500k training samples, and test accuracy increases only slightly when trained
on 400 million samples compared to 10 million samples. This is largely because the click-
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data samples are densely clustered in the feature space, and with simplex interpolation,
only a small fraction of the 500k parameters control the function over the dense part of the
feature space.

The darker lines of Figure 13 show the parallelization versus single-machine results
without monotonicity constraints. Unconstrained, the parallelized runs appear to perform
slightly better to the single-machine training given the same number of training samples
(and the same total number of gradient updates). We hypothesize this slight improvement
is due to some noise-averaging across the 100 parallelized trained lattices. The lighter lines
of Figure 13 show the parallelization versus single-machine results with monotonicity con-
straints. Trained on 500k pairs, the parallelized training and single-machine monotonic
training produce the same test accuracy. However, as the training set size increases, the
parallelized training takes more data to achieve the same accuracy as the single-machine
training. We believe this is because averaging the 100 monotonic lattices is a convex combi-
nation of lattices likely on the edge of the monotonicity constraint set, producing an average
lattice in the interior of the constraint set, that is, the averaged lattice is over-constrained.

10.7 Run Times

We give some timing examples for the different interpolations and for training.

Figure 14 shows average evaluation times for multilinear and simplex interpolation of
one sample from a 2D lattice for D = 4 to D = 20 using a single-threaded 3.5GHz Intel Ivy
Bridge processor. Note the multilinear evaluation times are reported on a log-scale, and
on a log scale the evaluation time increases roughly linearly in D, matching the theoretical
O(2D) complexity given in Section 5.1. The simplex evaluation times scale roughly linearly
with D, consistent with the theoretical O(D logD) complexity. For D = 6 features, simplex
interpolation is already three times faster than multilinear. With D = 20 features, the
simplex interpolation is still only 750 nanoseconds, but the multilinear interpolation is
about 15, 000 times slower, at around 12 milliseconds.

Training times are difficult to report in an accurate or meaningful way due to the
high-variance of running on a large, shared, distributed cluster. Here is one example:
with every feature constrained to be monotonic, a single worker training one loop of a 212

lattice on 4 million samples usually takes around 15 minutes, whereas with 100 parallelized
workers one loop through 400 million samples (4 million samples for each worker) usually
takes around 20 minutes. Large step-sizes can take much longer than smaller stepsizes,
because larger updates tend to violate more monotonicity constraints and thus require more
expensive projections. Minibatching is particularly effective at speeding up training because
the averaged batch of stochastic gradients reduces the number of monotonicity violations
and the need for projections. Without monotonicity constraints, training is generally 10×
to 1000× faster, depending on how non-monotonic the data is.

10.8 Interpretability in Practice

It is difficult to quantify interpretability, but we summarize our observations from working
with around 50 different users on around a dozen different real-world machine learning
problems where there are a relatively small number of semantically meaningful features.
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(a) Multilinear Interpolation (b) Simplex Interpolation

Figure 14: Average evaluation time to interpolate a sample from a 2D lattice. Figure (a)
shows the multilinear interpolation time on a log2 scale in nanoseconds. Figure
(b) shows the much faster simplex interpolation time in nanoseconds. Simplex
interpolation is 10× faster than multilinear for D = 9 features, about 100×
faster for D = 13 features, and over 1, 000× faster for D = 17 features.

First, we do find that being able to summarize a model as being a positive or negative
function with respect to each input feature does help users feel that they understand and can
predict the model’s behavior better than a comparable unconstrained model. In particular,
while aggregate measures like accuracy, precision, or recall over a test set provide summary
statistics over that particular test set, we find that users in some cases do worry about
the unknown unknowns of using a machine learning model, and that adding monotonicity
constraints gives these users more confidence that the model can be trusted not to behave
unreasonably for any examples. And this confidence is well-founded: as discussed in the
video ranking case study in Section 10.6, monotonicity constraints do in practice guard
against potentially strange behavior of highly nonlinear functions in rarer parts of the
feature space.

We have also found that monotonicity constraints make debugging highly nonlinear
models easier. We find that one particularly useful debugging tool is sensitivity plots like
the one shown in Figure 15, which show how f(x) relates to each feature value of x, for
a particular sample x. Monotonicity constraints make these sensitivity plots monotonic,
which we find makes it easier to identify problems with signals and training data.

Apart from the issue of monotonicity, we expected that using one-dimensional calibra-
tion functions and interpolated look-up tables would produce parameters that were inter-
pretable. These expectations were half-right. We do find it helpful and common for users to
check and analyze the signals’ calibration functions, and that the calibrations provide use-
ful information to users about what the model has learned, and helps identify unexpected
behavior or problems with features. But, we do not find that users examine the lattice
parameters directly very often, and that the readability of the lattice parameters becomes
generally less useful as D increases. Users are more likely to utilize other analytics, such as
how correlated the output is with each calibrated feature. While this information does not
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control for between-feature correlations (so a feature might be highly correlated with the
output but not needed if it correlates with another feature), users can conclude the model
behaves a lot like highly-correlated features, and this aids model understanding. Low corre-
lation between a calibrated feature and the output either indicates an unimportant feature,
or, if the feature is known to be important (because dropping it hurts accuracy), that it
plays an important role interacting or conditioning other features.

To understand feature interactions, again we find that rather than analyze the lattice
parameters explicitly, users generally prefer to analyze two-dimensional visualizations of
the model over pairs of features (averaged or sliced over the other features), or to examine
examples to check their hypotheses about expected higher-order interactions.

Another common problem is to understand how two similar models are different (for
example, one might have been trained with more training data, or one might use an ad-
ditional feature). For this purpose, we find it is again rare that users want to directly
analyze differences in model parameters except for very tiny models, preferring instead to
look at examples that are scored differently by the two models, and analyzing these example
samples in their raw form (for example, looking at the videos that have been promoted or
demoted by a new model, in conjunction with the features used by the model).

Figure 15: Illustration of a sensitivity plot for a calibrated monotonic lattice with respect
to one of the D features. The blue line shows how the output f(x) (y-axis) of a
calibrated monotonic lattice changes if only this one feature value of x (x-axis) is
changed, but all other components of x are kept fixed. The green dot marks the
current input and output. The yellow line shows the model output if the first
feature is missing. The red dotted line shows the binary classification thresh-
old. This plot is piecewise linear because the calibrator function is piecewise
linear and the simplex interpolation is also piecewise linear, and monotonically
increasing because the function was constrained to be monotonic with respect to
this feature. In this example, one sees that to change the classification decision
without changing any other features, this feature would have to be increased
from its current value of 0.67 to at least 0.84 at which point it would cross the
red line marking the decision threshold.
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11. Discussion and Some Open Questions

We have proposed using constrained interpolated look-up tables to effectively learn flexible,
monotonic functions for low-dimensional machine learning problems of classification, rank-
ing, and regression. We addressed a number of practical issues, including interpretability,
evaluation speed, automated pre-processing of features, missing data, and categorical fea-
tures. Experimental results show state-of-the-art performance on the largest training sets
and largest number of features published for monotonic methods.

Practical experience has shown us that being able to check and ensure monotonicity helps
users trust the model, and leads to models that generalize better. For us, the monotonicity
constraints have come from engineers who believe the output should be monotonic in the
feature. In the absence of clear prior information about monotonicity, it may be tempting to
use the direction of a linear fit to specify a monotonic direction and then use monotonicity
as a regularizer. Magdon-Ismail and Sill (2008) point out that using the linear regression
coefficients for this purpose can be misleading if features are correlated and not jointly
Gaussian.

For classifiers, requiring the entire function to be monotonic is a stronger requirement
than needed to simply guarantee that the decision boundary (and hence classifier) is mono-
tonic. It is an open question how to enforce only the thresholded function to be monotonic,
and whether that would be more useful in practice.

One surprise was that for practical machine learning problems like those of Section 10,
we found a simple 2D lattice is often sufficient to capture the interactions of D features,
especially if we jointly optimized D one-dimensional feature calibration functions. When
we began this work, we expected to have to use much more fine-grained lattices with many
vertices in each feature, or perhaps irregular lattices to achieve state-of-the-art accuracy.
In fact, calibration functions help approximately linearize each feature with respect to the
label, making a 2D lattice sufficiently flexible for most of the real-world problems we have
encountered.

For some cases, a 2D lattice is too flexible. We reduced lattice flexibility with new
regularizers: monotonicity, and the torsion regularizer that encourages a more linear model.
While good for interpretability and accuracy, these regularization strategies do not reduce
the model size.

For a large number of features D, the exponential model size of a 2D lattice is a memory
issue. On a single machine, training and evaluating with a few million parameters is viable,
but this still limits this approach to not much more than D = 20 features. An open question
is how such large models could be sparsified, and if useful sparsification approaches could
also provide additional useful regularization.

A second surprise was that simplex interpolation provides similar accuracy to multi-
linear interpolation. The rotational dependence of simplex interpolation seemed at first
troubling, but the proposed approach of aligning the shared axis of the simplices with the
main increasing axis of the function appears to solve this problem in practice. The geom-
etry of the simplices at first seemed odd in that it produces a locally linear surface over
elongated simplices. However, this partitioning turns out to work well because it provides
a very flexible piecewise linear decision boundary. Lastly, we found that the theoretical
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O(D logD) computational complexity does result in practice in orders of magnitude faster
interpolation than multilinear interpolation as D increases.

A common practical issue in machine learning is handling categorical data. We proposed
to learn a mapping from mutually exclusive categories to feature values, jointly with the
other model parameters. We found categorical-mapping to be interpretable, flexible, and
accurate. The proposed categorical mapping can be viewed as learning a one-dimensional
embedding of the categories. Though we generally only needed two vertices in the lattice
for continuous features, for categorical features we often find it helpful to use more vertices
(a finer-grained lattice) for more flexibility. Some preliminary experiments learning two-
dimensional embeddings of categories (that is, mapping one category to [0, 1]2) showed
promise, but we found this required more careful initialization and handling of the increased
non-convexity.

Learning the monotonic lattice is a convex problem, but composing the lattice and the
one-dimensional calibration functions creates a non-convex objective. We used only one
initialization of the lattice and calibrators for all our experiments, but tuned the stepsize
of the stochastic gradient descent separately for the set of lattice parameters and the set
of calibration parameters. In some cases we saw a substantial sensitivity of the accuracy
to the initial SGD stepsizes. We hypothesize that this is caused by some interplay of the
relative stepsizes and the relative size of the local optima.

We employed a number of strategies to speed up training. One of the biggest speed-ups
comes from randomly sampling the additive terms of the graph regularizers, analogous to the
random sampling of the additive terms of the empirical loss that SGD uses. We showed that
a parallelize-and-average strategy works for training the lattices. The largest computational
bottleneck remains the projections onto the monotonicity constraints. Mini-batching the
samples reduces the number of projections and provides speed-ups, but a faster approach
to optimization given possibly hundreds of thousands of constraints would be valuable.

Lastly, this work leaves open a number of theoretical questions for the function class of
interpolated look-up tables, for example how monotonicity constraints theoretically affect
convergence speed.

12. Acknowledgments

We thank Sugato Basu, David Cardoze, James Chen, Emmanuel Christophe, Brendan
Collins, Mahdi Milani Fard, James Muller, Biswanath Panda, and Alex Vodomerov for help
with experiments and helpful discussions.

References

Y. S. Abu-Mostafa. A method for learning from hints. In Advances in Neural Information
Processing Systems, pages 73–80, 1993.

N. P. Archer and S. Wang. Application of the back propagation neural network algorithm
with monotonicity constraints for two-group classification problems. Decision Sciences,
24(1):60–75, 1993.

42



Monotonic Look-Up Tables

F. Bach. Learning with submodular functions: A convex optimization perspective. Foun-
dations and Trends in Machine Learning, 6(2), 2013.

R. E. Barlow, D. J. Bartholomew, J. M. Bremner, and H. D. Brunk. Statistical inference
under order restrictions; the theory and application of isotonic regression. Wiley, New
York, USA, 1972.

A. Ben-David. Automatic generation of symbolic multiattribute ordinal knowledge based
DSS: methodology and applications. Decision Sciences, pages 1357–1372, 1992.

A. Ben-David. Monotonicity maintenance in information-theoretic machine learning algo-
rithms. Machine Learning, 21:35–50, 1995.

A. Ben-David, L. Sterling, and Y. H. Pao. Learning and classification of monotonic ordinal
concepts. Computational Intelligence, 5(1):45–49, 1989.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and
statistical learning via the alternating direction method of multipliers. Foundations and
Trends in Machine Learning, 3(1), 2010.

L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

J. Casillas, O. Cordon, F. Herrera, and L. Magdalena (Eds.). Trade-off between accuracy
and interpretability in fuzzy rule-based modelling. Physica-Verlag, 2002.

R. Chandrasekaran, Y. U. Ryu, V. S. Jacob, and S. Hong. Isotonic separation. INFORMS
Journal on Computing, 17(4):462–474, 2005.

A. Cotter, M. R. Gupta, and J. Pfeifer. A Light Touch for Heavily Constrained SGD. arXiv
preprint, 2015. URL http://arxiv.org/abs/1512.04960.

N. Dalvi, M. Olteanu, M. Raghavan, and P. Bohannon. Deduplicating a places database.
Proc. ACM WWW Conf., 2014.

H. Daniels and M. Velikova. Monotone and partially monotone neural networks. IEEE
Trans. Neural Networks, 21(6):906–917, 2010.

O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao. Optimal distributed online prediction
using mini-batches. Journal Machine Learning Research, 13(1):165–202, January 2012.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal Machine Learning Research, 12:2121–2159, 2011.

C. Dugas, Y. Bengio, F. Bélisle, C. Nadeau, and R. Garcia. Incorporating second-order func-
tional knowledge for better option pricing. In Advances in Neural Information Processing
Systems (NIPS), 2000.

C. Dugas, Y. Bengio, F. Bélisle, C. Nadeau, and R. Garcia. Incorporating functional
knowledge in neural networks. Journal Machine Learning Research, 2009.

43



Gupta, Cotter, Pfeifer, Voevodski, Canini, Mangylov, Moczydlowski, et al.

W. Duivesteijn and A. Feelders. Nearest neighbour classification with monotonicity con-
straints. Proc. European Conf. Machine Learning, pages 301–316, 2008.

A. Feelders. Monotone relabeling in ordinal classification. Proc. IEEE Conf. Data Mining,
pages 803–808, 2010.

M. Fernandez-Delgado, E. Cernadas, S. Barro, and D. Amorim. Do we need hundreds of
classifiers to solve real world classification problems? Journal Machine Learning Research,
2014.

E. K. Garcia and M. R. Gupta. Lattice regression. In Advances in Neural Information
Processing Systems (NIPS), 2009.

E. K. Garcia, S. Feldman, M. R. Gupta, and S. Srivastava. Completely lazy learning. IEEE
Trans. Knowledge and Data Engineering, 22(9):1274–1285, Sept. 2010.

E. K. Garcia, R. Arora, and M. R. Gupta. Optimized regression for efficient function
evaluation. IEEE Trans. Image Processing, 21(9):4128–4140, Sept. 2012.

S. Garcia, A. Fernandez, J. Luengo, and F. Herrera. A study of statistical techniques and
performance measures for genetics-based machine learning: accuracy and interpretability.
Soft Computing, 13:959–977, 2009.

I. J. Good. The Estimation of Probabilities: An Essay on Modern Bayesian Methods. MIT
Press, 1965.

H. Gruber, M. Holzer, and O. Ruepp. Sorting the slow way: an analysis of perversely awful
randomized sorting algorithms. In Fun with Algorithms, pages 183–197. Springer, 2007.

M. Gupta, S. Bengio, and J. Weston. Training highly multiclass classifiers. Journal Machine
Learning Research, 2014.

M. R. Gupta, R. M. Gray, and R. A. Olshen. Nonparametric supervised learning by lin-
ear interpolation with maximum entropy. IEEE Trans. Pattern Analysis and Machine
Intelligence, 28(5):766–781, 2006.

T. Hastie and R. Tibshirani. Generalized Additive Models. Chapman Hall, New York, 1990.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer-
Verlag, New York, 2001.

C. C. Holmes and N. A. Heard. Generalized monotonic regression using random change
points. Statistics in Medicine, 22:623–638, 2003.

A. Howard and T. Jebara. Learning monotonic transformations for classification. In Ad-
vances in Neural Information Processing Systems, 2007.

H. Ishibuchi and Y. Nojima. Analysis of interpretability-accuracy tradeoff of fuzzy sys-
tems by multiobjective fuzzy genetics-based machine learning. International Journal of
Approximate Reasoning, 44:4–31, 2007.

44



Monotonic Look-Up Tables

T. Joachims, L. Granka, B. Pan, H. Hembrooke, and G. Gay. Accurately interpreting
clickthrough data as implicit feedback. Proc. SIGIR, 2005.

H. R. Kang. Comparison of three-dimensional interpolation techniques by simulations. SPIE
Vol. 2414, 1995.

H. R. Kang. Color Technology for Electronic Imaging Devices. SPIE Press, USA, 1997.

J. Kasson, W. Plouffe, and S. Nin. A tetrahedral interpolation technique for color space
conversion. SPIE Vol. 1909, 1993.

H. Kay and L. H. Ungar. Estimating monotonic functions and their bounds. AIChE Journal,
46(12):2426–2434, 2000.

R. E. Knop. A note on hypercube partitions. Journal of Combinatorial Theory, Ser. A, 15
(3):338–342, 1973.

W. Kotlowski and R. Slowinski. Rule learning with monotonicity constraints. In Proceedings
International Conference on Machine Learning, 2009.

F. Lauer and G. Bloch. Incorporating prior knowledge in support vector regression. Machine
Learning, 70(1):89–118, 2008.

X. Liao, H. Li, and L. Carin. Quadratically gated mixture of experts for incomplete data
classification. Proc. ICML, 2007.

T.-Y. Liu. Learning to Rank for Information Retrieval. Springer, 2011.

Malik Magdon-Ismail and J. Sill. A linear fit gets the correct monotonicity directions.
Machine Learning, pages 21–43, 2008.

G. Mann, R. McDonald, M. Mohri, N. Silberman, and D. D. Walker. Efficient large-
scale distributed training of conditional maximum entropy models. Advances in Neural
Information Processing Systems (NIPS), 2009.

D. G. Mead. Dissection of the hypercube into simplexes. Proc. Amer. Math. Soc., 76:
302–304, 1979.

A. Minin, M. Velikova, B. Lang, and H. Daniels. Comparison of universal approximators
incorporating partial monotonicity by structure. Neural Networks, 23(4):471–475, 2010.

H. Mukarjee and S. Stern. Feasible nonparametric estimation of multiargument monotone
functions. Journal of the American Statistical Association, 89(425):77–80, 1994.

B. Neelon and D. B. Dunson. Bayesian isotonic regression and trend analysis. Biometrics,
60:398–406, 2004.

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation
approach to stochastic programming. SIAM Journal on Optimization, 19(4):1574–1609,
January 2009.

45



Gupta, Cotter, Pfeifer, Voevodski, Canini, Mangylov, Moczydlowski, et al.

K. Neumann, M. Rolf, and J. J. Steil. Reliable integration of continuous constraints into ex-
treme learning machines. International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems, 21(supp02):35–50, 2013.

R. Nock. Inducing interpretable voting classifiers without trading accuracy for simplic-
ity: Theoretical results, approximation algorithms, and experiments. Journal Artificial
Intelligence Research, 17:137–170, 2002.

K.-M. Osei-Bryson. Post-pruning in decision tree induction using multiple performance
measures. Computers and Operations Research, 34:3331–3345, 2007.

R. Potharst and A. J. Feelders. Classification trees for problems with monotonicity con-
straints. ACM SIGKDD Explorations, pages 1–10, 2002a.

R. Potharst and A. J. Feelders. Pruning for monotone classification trees. Springer Lecture
Notes on Computer Science, 2810:1–12, 2002b.

Y.-J. Qu and B.-G. Hu. Generalized constraint neural network regression model subject to
linear priors. IEEE Trans. on Neural Networks, 22(11):2447–2459, 2011.

J. O. Ramsay. Estimating smooth monotone functions. Journal of the Royal Statistical
Society, Series B, 60:365–375, 1998.
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