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Département d’Informatique de l’Ecole Normale Supérieure (UMR CNRS/ENS/INRIA)

2, rue Simone Iff

75012 Paris, France

Editor: Arthur Gretton

Abstract

We show that kernel-based quadrature rules for computing integrals can be seen as a special
case of random feature expansions for positive definite kernels, for a particular decomposi-
tion that always exists for such kernels. We provide a theoretical analysis of the number of
required samples for a given approximation error, leading to both upper and lower bounds
that are based solely on the eigenvalues of the associated integral operator and match up
to logarithmic terms. In particular, we show that the upper bound may be obtained from
independent and identically distributed samples from a specific non-uniform distribution,
while the lower bound if valid for any set of points. Applying our results to kernel-based
quadrature, while our results are fairly general, we recover known upper and lower bounds
for the special cases of Sobolev spaces. Moreover, our results extend to the more general
problem of full function approximations (beyond simply computing an integral), with re-
sults in L2- and L∞-norm that match known results for special cases. Applying our results
to random features, we show an improvement of the number of random features needed to
preserve the generalization guarantees for learning with Lipshitz-continuous losses.
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1. Introduction

The numerical computation of high-dimensional integrals is one of the core computational
tasks in many areas of machine learning, signal processing and more generally applied
mathematics, in particular in the context of Bayesian inference (Gelman, 2004), or the study
of complex systems (Robert and Casella, 2005). In this paper, we focus on quadrature rules,
that aim at approximating the integral of a certain function from only the (potentially noisy)
knowledge of the function values at as few as possible well-chosen points. Key situations that
remain active areas of research are problems where the measurable space where the function
is defined on is either high-dimensional or structured (e.g., presence of discrete structures,
or graphs). For these problems, techniques based on positive definite kernels have emerged
as having the potential to efficiently deal with these situations, and to improve over plain
Monte-Carlo integration (O’Hagan, 1991; Rasmussen and Ghahramani, 2003; Huszár and
Duvenaud, 2012; Oates and Girolami, 2015). In particular, the quadrature problem may be
cast as the one of approximating a fixed element, the mean element (Smola et al., 2007), of
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a Hilbert space as a linear combination of well chosen elements, the goal being to minimize
the number of these factors as it corresponds to the required number of function evaluations.

A seemingly unrelated problem on positive definite kernels have recently emerged,
namely the representation of the corresponding infinite-dimensional feature space from
random sets of features. If a certain positive definite kernel between two points may be
represented as the expectation of the product of two random one-dimensional (typically
non-linear) features computed on these two points, the full kernel (and hence its feature
space) may be approximated by sufficiently many random samples, replacing the expecta-
tion by a sample average (Neal, 1995; Rahimi and Recht, 2007; Huang et al., 2006). When
using these random features, the complexity of a regular kernel method such as the support
vector machine or ridge regression goes from quadratic in the number of observations to
linear in the number of observations, with a constant proportional to the number of random
features, which thus drives the running time complexity of these methods.

In this paper, we make the following contributions:

– After describing the functional analysis framework our analysis is based on and pre-
senting many examples in Section 2, we show in Section 3 that these two problems are
strongly related; more precisely, optimizing weights in kernel-based quadrature rules
can be seen as decomposing a certain function in a special class of random features
for a particular decomposition that always exists for all positive definite kernels on a
measurable space.

– We provide in Section 4 a theoretical analysis of the number of required samples for
a given approximation error, leading to both upper and lower bounds that are based
solely on the eigenvalues of the associated integral operator and match up to logarithmic
terms. In particular, we show that the upper bound may be obtained as independent
and identically distributed samples from a specific non-uniform distribution, while the
lower bound if valid for any set of points.

– Applying our results to kernel quadrature, while our results are fairly general, we recover
known upper and lower bounds for the special cases of Sobolev spaces (Section 4.4).
Moreover, our results extend to the more general problem of full function approximations
(beyond simply computing an integral), with results in L2- and L∞-norm that match
known results for special cases (Section 5).

– Applying our results to random feature expansions, we show in Section 4.5 an im-
provement of the number of random features needed for preserving the generalization
guarantees for learning with Lipshitz-continuous losses.

2. Random Feature Expansions of Positive Definite Kernels

Throughout this paper, we consider a topological space X equipped with a Borel probability
measure dρ, which we assume to have full support. This naturally defines the space of
square-integrable functions1.

1. For simplicity and following most of the literature on kernel methods, we identify functions and their
equivalence classes for the equivalence relationship of being equal except for a zero-measure (for dρ)
subset of X.
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2.1 Reproducing Kernel Hilbert Spaces and Integral Operators

We consider a continuous positive definite kernel k : X×X→ R, that is a symmetric function
such that for all finite families of points in X, the matrix of pairwise kernel evaluations is
positive semi-definite. This thus defines a reproducing kernel Hilbert space (RKHS) F of
functions from X to R, which we also assume separable. This RKHS has two important
characteristic properties (see, e.g., Berlinet and Thomas-Agnan, 2004):

(a) Membership of kernel evaluations: for any x ∈ X, the function k(·, x) : y 7→ k(y, x) is
an element of F.

(b) Reproducing property : for all f ∈ F and x ∈ X, f(x) = 〈f, k(·, x)〉F. In other words,
function evaluations are equal to dot-products with a specific element of F.

Moreover, throughout the paper, we assume that the function x 7→ k(x, x) is integrable with
respect to dρ (which is weaker than supx∈X k(x, x) < ∞). This implies that F is a subset
of L2(dρ); that is, functions in the RKHS F are all square-integrable for dρ. In general,
F is strictly included in L2(dρ), but, in this paper, we will always assume that it is dense
in L2(dρ), that is, any function in L2(dρ) may be approximated arbitrarily closely by a
function in F. Finally, for simplicity of our notation (to make sure that the sequence of
eigenvalues of integral operators is infinite) we will always assume that L2(dρ) is infinite-
dimensional, which excludes finite sets for X. Note that the last two assumptions (denseness
and infinite dimensionality) can easily be relaxed.

Integral operator. Reproducing kernel Hilbert spaces are often studied through a spe-
cific integral operator which leads to an isometry with L2(dρ) (Smale and Cucker, 2001).
Let Σ : L2(dρ)→ L2(dρ) be defined as

(Σf)(x) =

∫
X

f(y)k(x, y)dρ(y).

Since
∫
X
k(x, x)dρ(x) is finite, Σ is self-adjoint, positive semi-definite and trace-class (Simon,

1979). Given that Σf is a linear combination of kernel functions k(·, y), it belongs to F. More
precisely, since we have assumed that F is dense in L2(dρ), Σ1/2, which is the unique positive
self-adjoint square root of Σ, is a bijection from L2(dρ) to our RKHS F; that is, for any
f ∈ F, there exists a unique g ∈ L2(dρ) such that f = Σ1/2g and ‖f‖H = ‖g‖L2(dρ) (Smale

and Cucker, 2001). This justifies the notation Σ−1/2f for f ∈ F and means that Σ1/2 is an
isometry from L2(dρ) to F; in other words, for any functions f and g in F, we have:

〈f, g〉F = 〈Σ−1/2f,Σ−1/2g〉L2(dρ).

This justifies the view of F as the subspace of functions f ∈ L2(dρ) such that ‖Σ−1/2f‖2L2(dρ).
This relationship is even more transparent when considering a spectral decomposition of Σ.

Mercer decomposition. From extensions of Mercer’s theorem (König, 1986), there ex-
ists an orthonormal basis (em)m>1 of L2(dρ) and a summable non-increasing sequence of
strictly positive eigenvalues (µm)m>1 such that Σem = µmem. Note that since we have
assumed that F is dense in L2(dρ), there are no zero eigenvalues.
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Since Σ1/2 is an isometry from L2(dρ) to F, (µ
1/2
m em)m>1 is an orthonormal basis of F.

Moreover, we can use the eigendecomposition to characterize elements of F as the functions
in L2(dρ) such that

‖Σ−1/2f‖2L2(dρ) =
∑
m>1

µ−1
m 〈f, em〉2L2(dρ)

is finite. In other words, once projected in the orthonormal basis (em)m>1, elements f of F
correspond to a certain decay of its decomposition coefficients (〈f, em〉L2(dρ))m>1.

Finally, by decomposing the function k(·, y) : x 7→ k(x, y), we obtain the Mercer decom-
position:

k(x, y) =
∑
m>1

µmem(x)em(y).

Properties of the spectrum. The sequence of eigenvalues (µm)m>1 is an important
quantity that appears in most of the analyses of kernel methods (Hastie and Tibshirani,
1990; Caponnetto and De Vito, 2007; Harchaoui et al., 2008; Bach, 2013). It depends both
on the kernel k and the chosen distribution dρ.

Some modifications of the kernel k or the distribution dρ lead to simple behaviors for
the spectrum. For example, if we have a second distribution so that dρ′

dρ is upper-bounded
by a constant c, then, as a consequence of the Courant-Fischer minimax theorem (Horn
and Johnson, 2012), the eigenvalues for dρ′ are less than than c times that the ones for dρ.
Similarly, if the kernel k′ is such that ck − k′ is a positive definite kernel, then we have a
similar bound between eigenvalues.

In this paper, for any strictly positive λ, we will also consider the quantity m∗(λ) equal
to the number of eigenvalues µm that are greater than or equal to λ. Since we have assume
that the sequence m is non-increasing, we have m∗(λ) = max{m > 1, µm > λ}. This is a
left-continuous non-increasing function, that tends to +∞ when λ tends to zero (since we
have assumed that there are infinitely many strictly positive eigenvalues), and characterizes
the sequence (µm)m>1, as we can recover µm as µm = sup{λ > 0, m∗(λ) > m}.

Potential confusion with covariance operator. Note that the operator Σ is a self-
adjoint operator on L2(dρ). It should not be confused with the (non-centered) covariance
operator C (Baker, 1973), which is a self-adjoint operator on a different space, namely the
RKHS F, defined by 〈g, Cf〉F =

∫
X
f(x)g(x)dρ(x). Given that Σ1/2 is an isometry from

L2(dρ) to F, the operator C may also be used to define an operator on L2(dρ), which
happens to be exactly Σ. Thus, the two operators have the same eigenvalues. Moreover,
we have, for any y ∈ X:

(Cf)(y) = 〈k(·, y), Cf〉F =

∫
X

k(x, y)f(x)dρ(x) = (Σf)(y),

that is, C is equal to the restriction of Σ on F.

2.2 Kernels as Expectations

On top of the generic assumptions made above, we assume that there is another measurable
set V equipped with a probability measure dτ . We consider a function ϕ : V×X→ R which
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is square-integrable (for the measure dτ ⊗dρ), and assume that the kernel k may be written
as, for all x, y ∈ X:

k(x, y) =

∫
V

ϕ(v, x)ϕ(v, y)dτ(v) = 〈ϕ(·, x), ϕ(·, y)〉L2(dτ). (1)

In other words, the kernel between x and y is simply the expectation of ϕ(v, x)ϕ(v, y) for
v following the probability distribution dτ . In this paper, we see x 7→ ϕ(v, x) ∈ R as a
one-dimensional random feature and ϕ(v, x)ϕ(v, y) is the dot-product associated with this
random feature. We could consider extensions where ϕ(v, x) has values in a Hilbert space
(and not simply R), but this is outside the scope of this paper.

Square-root of integral operator. Such additional structure allows to give an explicit
characterization of the RKHS F in terms of the features ϕ. In terms of operators, the
function ϕ leads to a specific square-root of the integral operator Σ defined in Section 2.1
(which is not the positive self-adjoint square-root Σ1/2).

We consider the bounded linear operator T : L2(dτ)→ L2(dρ) defined as

(Tg)(x) =

∫
V

g(v)ϕ(v, x)dτ(v) = 〈g, ϕ(·, x)〉L2(dτ). (2)

Given T : L2(dτ) → L2(dρ), the adjoint operator T ∗ : L2(dρ) → L2(dτ) is the unique
operator such that 〈g, T ∗f〉L2(dτ) = 〈Tg, f〉L2(dρ) for all f, g. Given the definition of T in
Eq. (2), we simply inverse the role of V and X and have:

(T ∗f)(v) =

∫
X

f(x)ϕ(v, x)dρ(x).

This implies by Fubini’s theorem that

(TT ∗f)(y) =

∫
V

(∫
X

f(x)ϕ(v, y)dρ(x)

)
ϕ(v, x)dτ(v)

=

∫
X

f(x)

(∫
V

ϕ(v, y)ϕ(v, x)dτ(v)

)
dρ(x) =

∫
X

f(x)k(x, y)dρ(x) = (Σf)(y),

that is we have an expression of the integral operator Σ as Σ = TT ∗. Thus, the decom-
position of the kernel k as an expectation corresponds to a particular square root T of the
integral operator—there are many possible choices for such square roots, and thus many
possible expansions like Eq. (1). It turns out that the positive self-adjoint square root Σ1/2

will correspond to the equivalence with quadrature rules (see Section 3.2).

Decomposition of functions in F. Since Σ = TT ∗ and Σ1/2 is an isometry between
L2(dρ) and F, we can naturally expressed any elements of F through the operator T and
thus the features ϕ.

As a linear operator, T defines a bijection from the orthogonal of its null space (Ker T )⊥ ⊂
L2(dτ) to its image Im(T ) ⊂ L2(dρ), and this allows to define uniquely T−1f ∈ (Ker T )⊥

for any f ∈ Im(T ), and a dot-product on Im(T ) as

〈f, h〉Im(T ) = 〈T−1f, T−1g〉L2(dτ).
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As shown by Bach (2017, App. A), Im(T ) turns out to be equal to our RKHS2. Thus, the
norm ‖f‖2F for f ∈ F is equal to the squared L2-norm of T−1f ∈ (Ker T )⊥, which is itself
equal to the minimum of ‖g‖2L2(dτ) over all g such that Tg = f . The resulting g may also
be defined through pseudo-inverses.

In other words, a function f ∈ L2(dρ) is in F if and only if it may be written as

∀x ∈ X, f(x) =

∫
V

g(v)ϕ(v, x)dτ(v) = 〈g, ϕ(·, x)〉L2(dτ),

for a certain function g : V→ R such that ‖g‖2L2(dτ) is finite, with a norm ‖f‖2F equal to the

minimum (which is always attained) of ‖g‖2L2(dτ), over all possible decompositions of f .

Singular value decomposition. The operator T is an Hilbert-Schmidt operator, to
which the singular value decopomposition can be applied (Kato, 1995). That is, there
exists an orthonormal basis (fm)m>1 of (Ker T )⊥ ⊂ L2(dτ), together with the orthonormal
basis (em)m>1 of L2(dρ) which we have from the eigenvalue decomposition of Σ = TT ∗,

such that Tfm = µ
1/2
m em. Moreover, we have:

ϕ(v, x) =
∑
m>1

µ1/2
m em(x)fm(v), (3)

with a convergence in L2(dτ ⊗ dρ). This extends the Mercer decomposition of the kernel
k(x, y).

Integral operator as an expectation. Given the expansion of the kernel k in Eq. (1),
we may express the integral operator Σ as follows, explicitly as an expectation:

Σf =

∫
X

f(y)k(·, y)dρ(y) =

∫
X

∫
V

f(y)ϕ(v, ·)ϕ(v, y)dρ(y)dτ(v)

=

∫
V

ϕ(v, ·)〈ϕ(v, ·), f〉L2(dρ)dτ(v) =

(∫
V

ϕ(v, ·)⊗L2(dρ) ϕ(v, ·)dτ(v)

)
f, (4)

where a ⊗L2(dρ) b is the operator L2(dρ) → L2(dρ) so that (a ⊗L2(dρ) b)f = 〈b, f〉L2(dρ)a.
This will be useful to define empirical versions, where the integral over dτ will be replaced
by a finite average.

2.3 Examples

In this section, we provide examples of kernels and usual decompositions. We first start by
decompositions that always exist, then focus on specific kernels based on Fourier compo-
nents.

2. The proof goes as follows: (a) for any y ∈ X, k(·, y) can be expressed as
∫
V
ϕ(v, y)ϕ(v, ·)dτ(v) =

Tϕ(·, y) and thus belongs to Im(T ); (b) for any f ∈ Im(T ), and y ∈ X, we have 〈f, k(·, y)〉Im(T ) =
〈T−1f, ϕ(·, y)〉L2(dτ) = (TT−1f)(y) = f(y), that is, the reproducing property is satisfied. These two
properties are characteristic of F.
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Mercer decompositions. The Mercer decomposition provides an expansion for all ker-
nels, as follows:

k(x, y) =
∑
m>1

µm
tr Σ

[(
tr Σ)1/2em(x)

]
·
[(

tr Σ)1/2em(x)
]
,

which can be transformed in to an expectation with V = N∗. In Section 3.2, we provide
another generic decomposition with V = X. Note that this decomposition is typically
impossible to compute (except for special cases below, i.e., special pairs of kernels k and
distributions dρ).

Periodic kernels on [0, 1]. We consider X = [0, 1] and translation-invariant kernels
k(x, y) of the form k(x, y) = t(x − y), where t is a square-integrable 1-periodic func-
tion. These kernels are positive definite if and only if the Fourier series of t is non-
negative (Wahba, 1990). An orthonormal basis of L2([0, 1]) is composed of the constant
function c0 : x 7→ 1 and the functions cm : x 7→

√
2 cos 2πmx and sm : x 7→

√
2 sin 2πmx. A

kernel may thus be expressed as

k(x, y) = ν0c0(x) +
∑
m>0

νm
[
cm(x)cm(y) + sm(x)sm(y)

]
= ν0 + 2

∑
m>0

νm cos 2πm(x− y).

This can be put trivially as an expectation with V = Z and leads to the usual Fourier
features (Rahimi and Recht, 2007). This is also exactly a Mercer decomposition for k and
the uniform distribution on [0, 1], with eigenvalues ν0 and νm, m > 0 (each of these with
multiplicity 2). The associated RKHS norm for a function f is then equal to

‖f‖2F = ν−1
0

(∫ 1

0
f(x)dx

)2
+2
∑
m>0

ν−1
m

[(∫ 1

0
f(x) cos 2πmxdx

)2
+
(∫ 1

0
f(x) sin 2πmxdx

)2
]
.

A particularly interesting example is obtained through derivatives of f . If f is differentiable
and has a derivative f ′ ∈ L2([0, 1]), then, on the Fourier series coefficients of f , taking
the derivative corresponds to multiplying the two m-th coefficients by 2πm and swapping
them. Sobolev spaces for periodic functions on [0, 1] (i.e., such that f(0)=f(1)) are defined
through integrability of derivatives (Adams and Fournier, 2003). In the Hilbert space set-up,
a function f belongs to the Sobolev space of order s if one can define a s-th order square-
integrable derivative in L2 (for the Lebesgue measure, which happens to be equal to dρ),
that is, f (s) ∈ L2([0, 1]). The Sobolev squared norm is then defined as any positive linear
combination of the quadratic forms

∫ 1
0 f

(t)(x)2dx, t ∈ {0, . . . , s}, with non-zero coefficients
for t = 0 and t = s (all of these norms are then equivalent). If only using t = 0 and t = s
with non-zero coefficients, we need ν−1

0 = 1 and ν−1
m = 1 + m2s. An equivalent (i.e, with

upper and lower bounded ratios) sequence is obtained by replacing νm = (1 + m2s)−1 by
νm = m−2s, leading to a closed-form formula:

k(x, y) = 1 +
(−1)s−1(2π)2s

(2s)!
B2s({x− y}),

where {x− y} denotes the fractional part of x− y, and B2s is the 2s-th Bernoulli polyno-
mial (Wahba, 1990). The RKHS F is then the Sobolev space of order s on [0, 1], with a
norm equivalent to any of the family of Sobolev norms; it will be used as a running example
throughout this paper.
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Extensions to [0, 1]d. In order to extend to d > 1, we may consider several extensions
as described by Oates and Girolami (2015), and compute the resulting eigenvalues of the
integral operators. For simplicity, we consider the Sobolev space on [0, 1], with ν0 = 1 and
ν−1
m = m2s for m > 0. The first possibility to extend to [0, 1]d is to take a kernel which

is simply the pointwise product of individual kernels on [0, 1]. That is, if k(x, y) is the
kernel on [0, 1], define K(X,Y ) =

∏d
j=1 k(xj , yj) between X and Y in [0, 1]d. As shown in

Appendix A, this leads to eigenvalue decays bounded by (logm)2s(d−1)m−2s, and thus up to
logarithmic terms at the same speed m−2s as d = 1. While this sounds attractive in terms
of generalization performance, it corresponds to a space a function which is not a Sobolev
space in d dimensions. That is the associated squared norm on f would be equivalent to a
linear combination of squared L2-norm of partial derivatives∫

[0,1]d

( ∂t1+···+tdf

∂xt11 · · · ∂x
td
d

)2
dx

for all t1, . . . , td in {0, . . . , s}. This corresponds to functions which have square-integrable
partial derivatives with all individual orders less than s. All values of s > 1 are allowed and
lead to an RKHS.

This is thus to be contrasted with the usual multi-dimensional Sobolev space which
is composed of functions which have square-integrable partial derivatives with all orders
(t1, . . . , td) with sum t1 + · · · + td less than s. Only s > d/2 is then allowed to get an
RKHS (see, e.g., Berlinet and Thomas-Agnan, 2004, Theorem 132, p. 348). The Sobolev
norm is then of the form ∑

t1+···+td6s

∫
[0,1]d

( ∂t1+···+tdf

∂xt11 · · · ∂x
td
d

)2
dx.

In the expansion on the d-th order tensor product of the Fourier basis, the norm above
is equivalent to putting a weight on the element (m1, . . . ,md) asymptotically equivalent to(∑d

j=1mj

)2s
, which thus represent the inverse of the eigenvalues of the corresponding kernel

for the uniform distribution dρ (this is simply an explicit Mercer decomposition). Thus, the
number of eigenvalues which are greater than λ grows as the number of (m1, . . . ,md) such
that their sum is less than λ−1/(2s), which itself is less than a constant times λ−d/(2s) (see
a proof in Appendix A). This leads to an eigenvalue decay of m−2s/d, which is much worse
because of the term in 1/d in the exponent.

Translation invariant kernels on Rd. We consider X = Rd and translation-invariant
kernels k(x, y) of the form k(x, y) = t(x− y), where t is an integrable function from Rd to
R. It is known that these kernels are positive definite if and only if the Fourier transform
of t is always a non-negative real number. More precisely, if t̂(ω) =

∫
Rd t(x)e−iω

>xdx ∈ R+,
then

k(x, y) =
1

(2π)d

∫
Rd
t̂(ω)eiω

>(x−y)dω =
1

(2π)d

∫
Rd
t̂(ω)

[
cosω>x cosω>y+sinω>x sinω>y

]
dω.

Following Rahimi and Recht (2007), by sampling ω from a density proportional to t̂(ω) ∈ R+

and b uniformly in [0, 1] (and independently of ω), then by defining V = Rd × [0, 1] and
ϕ(ω, b, x) =

√
2 cos(ω>x+ 2πb), we obtain the kernel k.
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For these kernels, the decay of eigenvalues has been well-studied by Widom (1963), who
relates the decay of eigenvalues to the tails of the distribution dρ and the decay of the Fourier
transform of t. For example, for the Gaussian kernel where k(x, y) = exp(−α‖x− y‖22), on
sub-Gaussian distributions, the decay of eigenvalues is geometric, and for kernels leading to
Sobolev spaces of order s, such as the Matern kernel (Furrer and Nychka, 2007), the decay
is of the form m−2s/d. See also examples by Birman and Solomyak (1977); Harchaoui et al.
(2008).

Finally, note that in terms of computation, there are extensions to avoid linear com-
plexity in d (Le et al., 2013).

Kernels on hyperspheres. If X ⊂ Rd+1 is the d-dimensional hypersphere defined as {x ∈
Rd+1, ‖x‖22 = 1}, then specific kernels may be used, of the form k(x, y) = t(x>y), where t has
to have a positive Legendre expansion (Smola et al., 2001). Alternatively, kernels based on
neural networks with random weights are directly in the form of random features (Cho and
Saul, 2009; Bach, 2017): for example, the kernel k(x, y) = E(v>x)s+(v>x)s+ for v uniformly
distributed in the hypersphere corresponds to sampling weights in a one-hidden layer neural
network with rectified linear units (Cho and Saul, 2009). It turns out that these kernels
have a known decay for their spectrum.

As shown by Smola et al. (2001); Bach (2017), the equivalent of Fourier series (which
corresponds to d = 1) is then the basis of spherical harmonics, which is organized by integer
frequencies k > 1; instead of having 2 basis vectors (sine and cosine) per frequency, there
are O(kd−1) of them. As shown by Bach (2017, page 44), we have an explicit expansion
of k(x, y) in terms of spherical harmonics, leading to a sequence of eigenvalues equal to
k−d−2s−1 on the entire subspace associated with frequency k. Thus, by taking multiplicity
into account, after

∑k
j=1 j

d−1 ≈ kd (up to constants) eigenvalues, we have an eigenvalue of

k−d−2s−1; this leads to an eigenvalue decay (where all eigenvalues are ordered in decreasing
order and we consider the m-th one) as (m1/d)−d−2s−1 = m−1−1/d−2s/d.

2.4 Approximation from Randomly Sampled Features

Given the formulation of k as an expectation in Eq. (1), it is natural to consider sampling
n elements v1, . . . , vn ∈ V from the distribution dτ and define the kernel approximation

k̂(x, y) =
1

n

n∑
i=1

ϕ(vi, x)ϕ(vi, y), (5)

which defines a finite-dimensional RKHS F̂.

From the strong law of large numbers—which can be applied because we have the

finite expectation E|ϕ(v, x)ϕ(v, y)| 6
(
E|ϕ(v, x)|2E|ϕ(v, y)|2

)1/2
, when n tends to infinity,

k̂(x, y) tends to k(x, y) almost surely, and thus we get as tight as desired approximations
of the kernel k, for a given pair (x, y) ∈ X × X. Rahimi and Recht (2007) show that for
translation-invariant kernels on a Euclidean space, then the convergence is uniform over a

compact subset of X, with the traditional rate of convergence of
√

logn
n .

In this paper, we rather consider approximations of functions in F by functions in F̂,
the RKHS associated with k̂. A key difficulty is that in general F̂ is not even included in F,

9
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and therefore, we cannot use the norm in F to characterize approximations. In this paper,
we choose the L2-norm associated with the probability measure dρ on X to characterize the
approximation. Given f ∈ F with norm ‖f‖F less than one, we look for a function f̂ ∈ F̂ of
the smallest possible norm and so that ‖f − f̂‖L2(dρ) is as small as possible.

Note that the measure dτ is associated to the kernel k and the random features ϕ, while
the measure dρ is associated to the way we want to measure errors (and leads to a specific
defintion of the integral operator Σ).

Computation of error. Given the definition of the Hilbert space F in terms of ϕ in
Section 2.2, given g ∈ L2(dτ) with ‖g‖L2(dτ) 6 1 and f(x) =

∫
V
g(v)ϕ(v, x)dτ(v), we aim at

finding an element of F̂ close to f . We can also represent F̂ through a similar decomposition,
now with a finite number of features, i.e., through α ∈ Rn such that f̂ =

∑n
i=1 αiϕ(vi, ·)

with norm3 ‖f̂‖2
F̂
6 n‖α‖22 as small as possible and so that the following approximation

error is also small:

‖f̂ − f‖L2(dρ) =

∥∥∥∥ n∑
i=1

αiϕ(vi, ·)−
∫
V

g(v)ϕ(v, ·)dτ(v)

∥∥∥∥
L2(dρ)

. (6)

Note that with αi = 1
ng(vi) and vi sampled from dτ (independently), then, we have

E(‖α‖22) =
∑n

i=1 Eα2
i = 1

nEg(v)2 6 1
n and an expected error equal to E(‖f − f̂‖2L2(dρ)) =

1
nE‖g(v)ϕ(v, ·)‖2L2(dρ) 6 1

n supv∈V ‖ϕ(v, ·)‖2L2(dρ); our goal is to obtain an error rate with a

better scaling in n, by (a) choosing a better distribution than dτ for the points v1, . . . , vn
and (b) by finding the best possible weights α ∈ Rn (that should of course depend on the
function g).

Goals. We thus aim at sampling n points v1, . . . , vn ∈ V from a distribution with density
q with respect to dτ . Then the kernel approximation using importance weights is equal to

k̂(x, y) =
1

n

n∑
i=1

1

q(vi)
ϕ(vi, x)ϕ(vi, y)

(so that the law of large numbers leads to an approximation converging to k), and we thus

aim at minimizing
∥∥∥∑n

i=1
βi

q(vi)1/2ϕ(vi, ·) −
∫
V
g(v)ϕ(v, ·)dτ(v)

∥∥∥
L2(dρ)

, with n‖β‖22 (which

represents the norm of the approximation in F̂ because of our importance weights are taken
into account) as small as possible.

3. Quadrature in RKHSs

Given a square-integrable (with respect to dρ) function g : X→ R, the quadrature problem
aims at approximating, for all h ∈ F, integrals∫

X

h(x)g(x)dρ(x)

3. Note the factor n because our finite-dimensional kernel in Eq. (5) is an average of kernels and not a sum.
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by linear combinations
n∑
i=1

αih(xi)

of evaluations h(x1), . . . , h(xn) of the function h at well-chosen points x1, . . . , xn ∈ X. Of
course, coefficients α ∈ Rn are allowed to depend on g (they will in linear fashion in the next
section), but not on h, as the so-called quadrature rule has to be applied to all functions
in F.

3.1 Approximation of the Mean Element

Following Smola et al. (2007), the error may be expressed using the reproducing property
as:

n∑
i=1

αih(xi)−
∫
X

h(x)g(x)dρ(x) =

〈
h,

n∑
i=1

αik(·, xi)−
∫
X

k(·, x)g(x)dρ(x)

〉
F

,

and by Cauchy-Schwarz inequality its supremum over ‖h‖F 6 1 is equal to∥∥∥∥ n∑
i=1

αik(·, xi)−
∫
X

k(·, x)g(x)dρ(x)

∥∥∥∥
F

. (7)

The goal of quadrature rules formulated in a RKHS is thus to find points x1, . . . , xn ∈ X

and weights α ∈ Rn so that the quantity in Eq. (7) is as small as possible (Smola et al.,
2007). For g = 1, the function

∫
X
k(·, x)dρ(x) is usually referred to as the mean element of

the distribution dρ.

The standard Monte-Carlo solution is to consider x1, . . . , xn sampled i.i.d. from dρ and
the weights αi = g(xi)/n, which leads to a decrease of the error in 1/

√
n, with E‖α‖22 6 1

n
and an expected squared error which is equal to 1

nE‖g(v)k(:, x)‖2F 6 1
n‖g‖

2
L2(dρ) supx∈X k(x, x)

(Smola et al., 2007). Note that when g = 1, Eq. (7) corresponds to a particular metric
between the distribution dρ and its corresponding empirical distribution (Sriperumbudur
et al., 2010).

In this paper, we explore sampling points xi from a probability distribution on X with
density q with respect to dρ. Note that when g is a constant function, it is sometimes
required that the coefficients α are non-negative and sum to a fixed constant (so that
constant functions are exactly integrated). We will not pursue this here as our theoretical
results do not accommodate such constraints (see, e.g., Chen et al., 2010; Bach et al., 2012,
and references therein).

Tolerance to noisy function values. In practice, independent (but not necessarily
identically distributed) noise εi may be present with variance σ2(xi). Then, the worst (with
respect to ‖h‖F 6 1) expected (with respect to the noise) squared error is

inf
‖h‖F61

E
∣∣∣∣ n∑
i=1

αi(h(xi) + εi)−
∫
X

h(x)g(x)dρ(x)

∣∣∣∣2
=

∥∥∥∥ n∑
i=1

αik(·, xi)−
∫
X

k(·, x)g(x)dρ(x)

∥∥∥∥2

F

+

n∑
i=1

α2
i σ

2(xi),
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and thus in order to be robust to noise, having a small weighted `2-norm for the coefficients
α ∈ Rn is important.

3.2 Reformulation as Random Features

For any x ∈ X, the function k(·, x) is in F, and since we have assumed that Σ1/2 is an isome-
try from L2(dρ) to F, there exists a unique element, which we denote ψ(·, x), of L2(dρ) such
that Σ1/2ψ(·, x) = k(·, x). Given the Mercer decomposition k(·, x) =

∑
m>1 µmem(x)em, we

have the expansion ψ(·, x) =
∑

m>1 µ
1/2
m em(x)em (with convergence in the L2-norm for the

measure dρ ⊗ dρ; note that we do not assume that µ
1/2
m is summable), and thus we may

consider ψ as a symmetric function. Note that ψ may not be easy to compute in many
practical cases (except for some periodic kernels on [0, 1]).

We thus have for (x, y) ∈ X× X:

k(x, y) = 〈k(·, x), k(·, y)〉F = 〈Σ1/2ψ(·, x),Σ1/2ψ(·, y)〉F = 〈ψ(·, x), ψ(·, y)〉L2(dρ)

because of the isometry property of Σ1/2,

=

∫
X

ψ(v, x)ψ(v, y)dρ(v). (8)

That is, the kernel k may always be written as an expectation. Moreover, we have the
quadrature error in Eq. (7) equal to (again using the isometry Σ1/2 from L2(dρ) to F):∥∥∥∥ n∑

i=1

αik(·, xi)−
∫
X

k(·, x)g(x)dρ(x)

∥∥∥∥
F

=

∥∥∥∥ n∑
i=1

αiΣ
1/2ψ(xi, ·)−

∫
X

Σ1/2ψ(x, ·)g(x)dρ(x)

∥∥∥∥
F

=

∥∥∥∥ n∑
i=1

αiψ(xi, ·)−
∫
X

ψ(x, ·)g(x)dρ(x)

∥∥∥∥
L2(dρ)

,

which is exactly an instance of the approximation result in Eq. (6) with V = X and
ϕ = ψ, that is the random feature is indexed by the same set X as the kernel. Thus, the
quadrature problem, that is finding points xi and weights (αi) to get the best possible error
over all functions of the unit ball of F, is a subcase of the random feature problem for a
specific expansion. Note that this random decomposition in terms of ψ is always possible
(although not in closed form in general).

Interpretation through square-roots of intergral operators. As shown in Sec-
tion 2.2, random feature expansions correspond to square-roots of the integral operator
Σ : L2(dρ)→ L2(dρ) as Σ = TT ∗. Among the many possible square roots, the quadrature
case corresponds exactly to the positive self-adjoint square root T = Σ1/2. In this situation,
the basis (fm)m>1 of the singular value decomposition of T = Σ1/2 is equal to (em)m>1,

recovering the expansion ψ(x, y) =
∑

m>1 µ
1/2
m em(x)em(y) which we have seen above.

Translation-invariant kernels on [0, 1]d or X = Rd. In this important situation, we
have two different expansions: the one based on Fourier features, where the random variable
indexing the one-dimensional feature is a frequency, while for the one based on the square
root ψ, the random variable is a spatial variable in X. As we show in Section 4, our results
are independent of the chosen expansions and thus apply to both. However, (a) when the
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goal is to do quadrature, we need to use ψ, and (b) in general, the decomposition based on
Fourier features can be easily computed once samples are obtained, while for most kernels,
ψ(x, y) does not have any closed-form simple expression. In Section 6, we provide a simple
example with X = [0, 1] where the two decompositions are considered.

Goals. In order to be able to make the parallel with random feature approximations, we
consider importance-weighted coefficients βi = αiq(xi)

1/2, and we thus aim at minimizing
the approximation error∥∥∥ n∑

i=1

βiq(xi)
−1/2k(·, xi)−

∫
X

k(·, x)g(x)dρ(x)
∥∥∥
F
.

We consider potential independent noise with variance σ2(xi) 6 τ2q(xi) for all xi, so that
the tolerance to noise is characterized by the `2-norm ‖β‖2.

3.3 Relationship with Column Sampling

The problem of quadrature is related to the problem of column sampling. Given n ob-
servations x1, . . . , xn ∈ X, the goal of column-sampling methods is to approximate the
n × n matrix of pairwise kernel evalulations, the so-called kernel matrix, from a subset of
its columns. It has appeared under many names: Nyström method (Williams and Seeger,
2001), sparse greedy approximations (Smola and Schölkopf, 2000), incomplete Cholesky
decomposition (Fine and Scheinberg, 2001), Gram-Schmidt orthonormalization (see, e.g.,
Shawe-Taylor and Cristianini, 2004) or CUR matrix decompositions (Mahoney and Drineas,
2009).

While column sampling has typically been analyzed for a fixed kernel matrix, it has a
natural extension which is related to quadrature problems: selecting n points x1, . . . , xn
from X such that the projection of any element of the RKHS F onto the subspace spanned
by k(·, xi), i = 1, . . . , n is as small as possible. Natural functions from F are k(·, x), x ∈ X,
and thus the goal is to minimize, for such x ∈ X,

inf
α∈Rn

∥∥∥ n∑
i=1

αik(·, xi)− k(·, x)
∥∥∥2

F
.

In the usual sampling approach, several points are considered for testing the projection
error, and it is thus natural to consider the criterion averaged through the measure dρ, that
is: ∫

X

inf
α∈Rn

∥∥∥ n∑
i=1

αik(·, xi)− k(·, x)
∥∥∥2

F
dρ(x).

In fact, when dρ is supported on a finite set, this formulation is equivalent to minimizing the
nuclear norm between the kernel matrix and its low-rank approximation. There are thus
several differences and similarities between recent work on column sampling (Bach, 2013;
El Alaoui and Mahoney, 2015) and the present paper on quadrature rules and random
features:

– Different error measures: The column sampling approach corresponds to a function
g in Eq. (7) which is a Dirac function at the point x, and is thus not in L2(dρ). Thus
the two frameworks are not equivalent.
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– Approximation vs. prediction: The works by Bach (2013); El Alaoui and Mahoney
(2015) aim at understanding when column sampling leads to no loss in predictive per-
formance within a supervised learning framework, while the present paper looks at
approximation properties, mostly regardless of any supervised learning problem, except
in Section 4.5 for random features (but not for quadrature).

– Lower bounds: In Section 4.3, we provide explicit lower bounds of approximations,
which are not available for column sampling.

– Similar sampling issues: In the two frameworks, points x1, . . . , xn ∈ X are sampled
i.i.d. with a certain distribution q, and the best choice depends on the appropriate
notion of leverage scores (Mahoney, 2011), while the standard uniform distribution
leads to an inferior approximation result. Moreover, the proof techniques are similar
and based on concentration inequalities for operators, here in Hilbert spaces rather in
finite dimensions.

3.4 Related Work on Quadrature

Many methods have been designed for the computation of integrals of a function given
evaluations at certain well-chosen points, in most cases when g is constant equal to one.
We review some of these below.

Uni-dimensional integrals. When the underlying set X is a compact interval of the real
line, several methods exists, such as the trapezoidal or Simpson’s rules, which are based on
interpolation between the sample points, and for which the error decays as O(1/n2) and
O(1/n4) for functions with uniformly bounded second or fourth derivatives (Cruz-Uribe and
Neugebauer, 2002).

Gaussian quadrature is another class of methods for one-dimensional integrals: it is
based on a basis of orthogonal polynomials for L2(dρ) where dρ is a probability mea-
sure supported in an interval, and their zeros (Hildebrand, 1987, Chap. 8). This leads
to quadrature rules which are exact for polynomials of degree 2n − 1 but error bounds
for non-polynomials rely on high-order derivatives, although the empirical performance on
functions of a Sobolev space in our experiments is as good as optimal quadrature schemes
(see Section 6); depending on the orthogonal polynomials, we get various quadrature rules,
such as Gauss-Legendre quadrature for the Lebesgue measure on [0, 1].

Quasi Monte-carlo methods employ a sequence of points with low discrepancy with uni-
form weights (Morokoff and Caflisch, 1994), leading to approximation errors of O(1/n) for
univariate functions with bounded variation, but typically with no adaptation to smoother
functions.

Higher-dimensional integrals. All of the methods above may be generalized for prod-
ucts of intervals [0, 1]d, typically with d small. For larger problems, Bayes-Hermite quadra-
ture (O’Hagan, 1991) is essentially equivalent to the quadrature rules we study in this
paper.

Some of the quadrature rules are constrained to have positive weights with unit sum (so
that the positivity properties of integrals are preserved and constants are exactly inegrated).
The quadrature rules we present do not satisfy these constraints. If these constraints are
required, kernel herding (Chen et al., 2010; Bach et al., 2012) provides a novel way to select
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a sequence of points based on the conditional gradient algorithm, but with currently no
convergence guarantees improving over O(1/

√
n) for infinite-dimensional spaces.

Theoretical results. The best possible error for a quadrature rule with n points has been
well-studied in several settings; see Novak (1988) for a comprehensive review. For example,
for X = [0, 1] and the space of Sobolev functions, which are RKHSs with eigenvalues of their
integral operator decreasing as m−2s, Novak (1988, Prop. 2 and 3, page 38) shows that the
best possible quadrature rule for the uniform distribution and g = 1 leads to an error rate
of n−s, as well as for any squared-integrable function g. The proof of these results (both
upper and lower bounds) relies on detailed properties of Sobolev spaces. In this paper, we
recover these results using only the decay of eigenvalues of the associated integral operator
Σ, thus allowing straightforward extensions to many situations, like Sobolev spaces on
manifolds such as hyperspheres (Hesse, 2006), where we also recover existing results (up to
logarithmic terms).

Moreover, Novak (1988, page 17) shows that adaptive quadrature rules where points are
selected sequentially with the knowledge of the function values at previous points cannot
improve the worst-case guarantees. Our results do not recover this lower bound result for
adaptivity.

Finally, Langberg and Schulman (2010) consider multiplicative errors in computing in-
tegrals and mainly focuses on different function spaces, such as ones used in clustering
functionals. Although sampling quadrature points from a well-chosen density is common in
the two approaches, the analysis tools are different. It would be interesting to see if some
of these tools can be transferred to our RKHS setting.

From quadrature to function approximation and optimization. The problem of
quadrature, uniformly over all functions g ∈ L2(dρ) that define the integral, is in fact
equivalent to the full approximation of a function h given values at n points, where the
approximation error is characterized in L2-norm. Indeed, given the observations h(xi), i =
1, . . . , n, we build

∑n
i=1 αih(xi) as an approximation of

∫
X
g(x)h(x)dρ(x). It turns out that

the coefficients αi are linear in g, that is, there exists ai ∈ L2(dρ) such that αi = 〈ai, g〉L2(dρ).
This implies that

∑n
i=1 h(xi)〈ai, g〉L2(dρ) is an approximation of 〈h, g〉L2(dρ). Thus, the worst

case error with respect to g in the unit ball of L2(dρ) is
∥∥∑n

i=1 h(xi)ai − h
∥∥
L2(dρ)

, that is,

we have an approximation result of h through observations of its values at certain points.

Novak (1988) considers the approximation problem in L∞-norm and shows that for
Sobolev spaces, going from L2- to L∞-norms incurs a loss of performance of

√
n. We recover

partially these results in Section 5 from a more general perspective. When optimizing the
points at which the function is evaluated (adaptively or not), the approximation problem is
often referred to as experimental design (Cochran and Cox, 1957; Chaloner and Verdinelli,
1995).

Finally, a third problem is of interest (and outside of the scope of this paper), namely
the problem of finding the minimum of a function given (potentially noisy) function eval-
uations. For noiseless problems, Novak (1988, page 26) shows that the approximation and
optimization problems have the same worst-case guarantees (with no influence of adaptiv-
ity); this optimization problem has also been studied in the bandit setting (Srinivas et al.,
2012) and in the framework of “Bayesian optimization” (see, e.g. Bull, 2011).
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4. Theoretical Analysis

In this section, we provide approximation bounds for the random feature problem outlined
in Section 2.4 (and thus the quadrature problem in Section 3). In Section 4.1, we provide
generic upper bounds, which depend on the eigenvalues of the integral operator Σ and
present matching lower bounds (up to logarithmic terms) in Section 4.3. The upper-bound
depends on specific distributions of samples that we discuss in Section 4.2. We then consider
consequences of these results on quadrature (Section 4.4) and random feature expansions
(Section 4.5).

4.1 Upper Bound

The following proposition (see proof in Appendix B.1) determines the minimal number of
samples required for a given approximation accuracy:

Proposition 1 (Approximation of the unit ball of F) For λ > 0 and a distribution
with positive density q with respect to dτ , we consider

dmax(q, λ) = sup
v∈V

1

q(v)
〈ϕ(v, ·), (Σ + λI)−1ϕ(v, ·)〉L2(dρ). (9)

Let v1, . . . , vn be sampled i.i.d. from the density q, then for any δ ∈ (0, 1), if

n > 5dmax(q, λ) log
16dmax(q, λ)

δ
,

with probability greater than 1− δ, we have 1
n

∑n
i=1 q(vi)

−1‖ϕ(vi, ·)‖2L2(dρ) 6
2 tr Σ
δ and

sup
‖f‖F61

inf
‖β‖226

4
n

∥∥∥∥f − n∑
i=1

βiq(vi)
−1/2ϕ(vi, ·)

∥∥∥∥2

L2(dρ)

6 4λ.

We can interpret the proposition above as follows: given any squared error 4λ > 0 and a
distribution with density q, the number n of samples from q needed so that the unit ball
of F is approximated by the ball of radius 2 of F̂ is, up to logarithmic terms, at most a
constant times dmax(q, λ), defined in Eq. (9). The result above is a statement for a fixed q
and λ and this number of samples n depends on these.

We could also invert the relationship between λ and n, that is, answer the following
question: given a fixed number n of samples, what is the approximation error λ? This
requires inverting the function λ 7→ dmax(q, λ). This will be done in Section 4.2 for a
specific distribution q where the expression simplifies, together with specific examples from
Section 2.3.

Finally, note that we also have a bound on 1
n

∑n
i=1 q(vi)

−1‖ϕ(vi, ·)‖2L2(dρ), which shows

that our random functions are not too large on average (this constraint will be needed in
the lower bound as well in Section 4.3).

Sketch of proof. The proof technique relies on computing an explicit candidate β ∈ Rn
obtained from minimizing a regularized least-squares formulation

inf
β∈Rn

∥∥∥ n∑
i=1

βiq(vi)
−1/2ϕ(vi, ·)− f

∥∥∥2

L2(dρ)
+ nλ‖β‖22.
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It turns out that the final bound on the squared error is exactly proportional to the regu-
larization parameter λ. As shown in Appendix B.1, this leads to an approximation f̂ which
is a linear function of f , as f̂ = (Σ̂ + λI)−1Σ̂f , where Σ̂ is a properly defined empirical
integral operator and λ > 0 is the regularization parameter. Then, Bernstein concentration
inequalities for operators (Minsker, 2011) can be used in a way similar to the work of Bach
(2013); El Alaoui and Mahoney (2015) on column sampling, to provide a bound on all
desired quantities.

Result in expectation. In Section 4.5, we will need a result in expectation. As shown

at the end of Appendix B.1, as soons as, λ 6 (tr Σ)/4 and n > 5dmax(λ) log
2(tr Σ)dmax(λ)

λ
,

then

E
(

sup
‖f‖F61

inf
‖β‖226

4
n

∥∥∥∥f − n∑
i=1

βiq(vi)
−1/2ϕ(vi, ·)

∥∥∥∥2

L2(dρ)

)
6 8λ.

4.2 Optimized Distribution

We may now consider a specific distribution that depends on the kernel and on λ, namely

q∗λ(v) =
〈ϕ(v, ·), (Σ + λI)−1ϕ(v, ·)〉L2(dρ)∫

V
〈ϕ(v, ·), (Σ + λI)−1ϕ(v, ·)〉L2(dρ)dτ(v)

=
〈ϕ(v, ·), (Σ + λI)−1ϕ(v, ·)〉L2(dρ)

tr Σ(Σ + λI)−1
, (10)

for which dmax(q∗λ, λ) = d(λ) = tr Σ(Σ + λI)−1. With this distribution, we thus need to

have n > 5d(λ) log 16d(λ)
δ with d(λ) = tr Σ(Σ +λI)−1 is the degrees of freedom, a traditional

quantity in the analysis of least-squares regression (Hastie and Tibshirani, 1990; Caponnetto
and De Vito, 2007), which is always smaller than dmax(1, λ) and can be upper-bounded
explicitly for many examples, as we now explain. The computation of dmax(1, λ) in the
operator setting (for which we may use q = 1), a quantity often referred to as the maximal
leverage score (Mahoney, 2011), remains an open problem.

The quantity d(λ) only depends on the integral operator Σ, that is, for all possible
choices of square roots, i.e., all possible choices of feature expansions, the number of samples
that our results guarantee is the same. This being said, some expansions may be more
computationally practical than others, and when using the distribution with q(v) = 1, the
bounds will be different.

Expression in terms of singular value decomposition. Given the singular value

decomposition of ϕ in Eq. (3), we have, for any v ∈ V, ϕ(v, ·) =
∑

m>1 µ
1/2
m fm(v)em and

thus
q∗λ(v) ∝ 〈ϕ(v, ·), (Σ + λI)−1ϕ(v, ·)〉L2(dρ) =

∑
m>1

µm
µm + λ

fm(v)2,

which provides an explicit expression for the density q∗λ.
For a given squared error value λ, the optimized distribution q∗λ, while leading to the

degrees of freedom that will happen to be optimal in terms of approximation, has two main
drawbacks:

– Dependence on λ: this implies that if we want a reduced error (i.e., a smaller λ),
then the samples obtained from a higher λ, may not be reused to provably obtain the

17



Bach

desired bound; in other words, the sampling is not anytime. For specific examples, e.g.,
quadrature with periodic kernels on [0, 1] with the uniform distribution, then q = 1
happens to be optimal for all λ, and thus, we may reuse samples for different values of
the error.

– Hard to compute in practice: the optimal distribution depends on a leverage score
〈ϕ(v, ·), (Σ + λI)−1ϕ(v, ·)〉L2(dρ), which may be hard to use for several reasons; first, it
requires access to the infinite-dimensional operator Σ, which may be difficult; moreover,
even if it possible to invert Σ+λI, the set V might be particularly large and impractical
to sample from. At the end of Section 4.1, we propose a simple algorithm based on
sampling.

Eigenvalues and degrees of freedom. In order to relate more directly to the eigenval-
ues of Σ, we notice that we may lower bound the degrees of freedom by a constant times
the number m∗(λ) of eigenvalues greater than λ:

d(λ) = tr Σ(Σ + λI)−1 =
∑
m>1

µm
µm + λ

>
∑
µm>λ

µm
µm + λ

>
1

2
max({m, µm > λ}) = m∗(λ),

as defined in Section 2.1.
Moreover, we have the upper-bound:

d(λ) =
∑
µm>λ

µm
µm + λ

+
∑
µm<λ

µm
µm + λ

6 max({m, µm > λ}) +
1

λ

∑
µm<λ

µm.

We now make the assumption that there exists a γ > 0 independent of j such that

∀j > 1,

∞∑
m=j

µm 6 γjµj . (11)

This assumption essentially states that the eigenvalues decay sufficiently homogeneously
and is satisfied by µm ∝ m−2α with γ = (2α − 1)−1, µm ∝ rm with γ = (1 − r)−1 and
similar bounds also hold for all examples in Section 2.3. It allows us to relate the degrees
of freedom directly to eigenvalue decays.

Indeed, this implies that 1
λ

∑
µm<λ

µm 6 γmax({m, µm > λ}) = γm∗(λ) for all λ 6 µ1

(the largest eigenvalue) and thus

1

2
m∗(λ) 6 d 6

[
1 + γ

]
m∗(λ).

We can now restate the approximation result of Prop. 1 from Section 4.1 with the optimized
distribution (see proof in Appendix B.2):

Proposition 2 (Approximation of the unit ball of F for optimized distribution)
For λ > 0 and the distribution with density q∗λ defined in Eq. (10) with respect to dτ , with
degrees of freedom d(λ). Let v1, . . . , vn be sampled i.i.d. from the density q∗λ, defining the

kernel (and its associated RKHS F̂) k̂(x, y) = 1
n

∑n
i=1

1
q(vi)

ϕ(vi, x)ϕ(vi, y). Then, for any

δ ∈ (0, 1), with probability 1− δ, we have:

sup
‖f‖F61

inf
‖f̂‖

F̂
62

∥∥f − f̂∥∥2

L2(dρ)
6 4λ,

under any of the following conditions:
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(a) if n > 5 d(λ) log
[
16d(λ)/δ

]
,

(b) if Eq. (11) is satisfied, and, by choosing m 6 n
5(1+γ) log 16n

5δ

, and λ = µm.

The statement (a) above, is a simple corollary of Prop. 1, and goes from level of error λ to
minimum number n of samples. The statement (b) goes in the other direction, that is, from
the number of samples n to the achieved approximation error. It depends on the eigenvalues
µm of the integral operator taken at m = O(n/ log(n)). For example, for polynomial decays
of eigenvalues of the form µm = O(m−2s), we get (non squared) errors proportional to
(log n)sn−s for n samples, while for geometric decays, we get geometric errors as a function
of the number n of samples.

Note however that for the statement (b) to hold, we need to sample the points v1, . . . , vn
from the distribution q∗µm , that is, for different numbers of samples n, the distribution is
unfortunately different (except in special cases). It would be interesting to study the prop-
erties of independent but not identically distributed samples v1, . . . , vn and the possibility
of achieving the same rate adaptively.

Corollary for Sobolev spaces. For the sake of concreteness, we consider the special
case of X = Rd and translation-invariant kernels. We assume that the distribution dρ is
sub-Gaussian. Then for Sobolev spaces of order s, the eigenvalue decay is proportional to
m−2s/d. Thus, if we can sample from the optimized distribution, after n random features,
we obtain an approximation of the unit ball of F with error n−s/d, independently of the
chosen expansion, the spatial one used for quadrature or the spectral one used in random
Fourier features. For kernels in Rd, these distributions are not readily computed in closed
form and need to computed through a dedicated algorithm such as the one we present
below.

The same approximation results holds for translation-invariant kernels on [0, 1]d; but
when dρ is the uniform distribution, as shown in Section 4.4, the optimized distribution for
the quadrature case is still the uniform distribution, for all values of λ, and can thus be
computed.

Algorithm to estimate the optimized distribution. We now consider a simple algo-
rithm for estimating the optimized distribution q∗λ. It is based on using a large number N of
points v1, . . . , vN from dτ , and replacing dτ by a potentially weighted empirical distribution
dτ̂ associated with these N points. Therefore, we may use any set of points and weights,
which leads to a distribution close to dτ . In full generality, only random samples from dτ
are readily available (with weights 1/N), but for special cases, such as V = [0, 1] or V = N∗,
we may use deterministic representations. See examples in Section 6.

We thus assume that we have N pairs (vi, ηi) ∈ V × R+, i = 1, . . . , N , such that∑n
i=1 ηi = 1. Since dτ̂ has a finite support with at most N elements, we may identify

L2(dτ̂) and RN (with its canonical dot-product), and the operator T goes now from RN to

L2(dρ), with Tg =
∑N

i=1 η
1/2
i giϕ(vi, ·) ∈ L2(dρ), with Tδi = η

1/2
i ϕ(vi, ·) ∈ L2(dρ), for δi the

i-th element of the canonical basis of RN . Then, we have:

〈ϕ(vi, ·), (Σ + λI)−1ϕ(vi, ·)〉L2(dρ) = η−1
i 〈Tδi, (TT

∗ + λI)−1Tδi〉L2(dρ)

= η−1
i 〈Tδi, T (T ∗T + λI)−1δi〉L2(dρ)

= η−1
i

(
T ∗T (T ∗T + λI)−1

)
ii
.
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This implies that the density of the optimized distribution with respect to the uniform
measure on {v1, . . . , vN} is proportional to

(
T ∗T (T ∗T + λI)−1

)
ii

. We can then sample
any number n of points from resampling from {v1, . . . , vN} from the density above. The
computational complexity is O(N3). A detailed analysis of the approximation properties of
this algorithm is outside the scope of this paper.

We have (T ∗T )ij = η
1/2
i η

1/2
j

∫
X
ϕ(vi, x)ϕ(vj , x)dρ(x). In some cases, it can be com-

puted in closed form—such as for quadrature where this is equal to η
1/2
i η

1/2
j k(vi, vj). In

some others, it requires i.i.d. samples x1, . . . , xM from dρ, and the following estimate:

η
1/2
i η

1/2
j M−1

∑M
k=1 ϕ(vi, xk)ϕ(vj , xk).

4.3 Lower Bound

In this section, we aim at providing lower-bounds on the number of samples required for a
given accuracy. We have the following result (see proof in Appendix B.3):

Proposition 3 (Lower approximation bound) For δ ∈ (0, 1), if we have a family of
functions ψ1, . . . , ψn ∈ L2(dρ) such that

1

n

n∑
i=1

‖ψi‖2L2(dρ) 6 2 tr Σ/δ, and sup
‖f‖F61

inf
‖β‖226

4
n

∥∥∥∥f − n∑
i=1

βiψi

∥∥∥∥2

L2(dρ)

6 4λ,

then n >
max{m, µm > 144λ}

4 log 10 tr Σ
λδ

.

We can make the following observations:

– The proof technique not surprisingly borrows tools from minimax estimation over ellip-
soids, namely the Varshamov-Gilbert’s lemma.

– We obtain matching upper and lower bounds up to logarithmic terms, using only the
decay of eigenvalues (µm)m>1 of the integral operator Σ (of course, if sampling from the
optimized distribution q∗λ is possible). Indeed in that case, as shown in Prop. 2, we have
shown that we need at most 10 d(λ) log

[
2d(λ)

]
, where d(λ) is the degrees of freedom,

which is upper and lower bounded by a constant times m∗(λ) = max{m, µm > λ}.

– In order to obtain such a bound, we need to constrain both ‖β‖2 and the norms of the
vectors ψi, which correspond to bounded features for the random feature interpretation
and tolerance to noise for the quadrature interpretation. We choose our scaling to match
the constraints we have in Prop. 1, for which the parameter δ ends up entering the lower
bound logarithmically.

4.4 Quadrature

We may specialize the results above to the quadrature case, namely give a formulation
where the features ϕ do not appear (or equivalently using ψ defined in Section 3.2). This
is a special case where V = X and ϕ = ψ. In terms of operators T in Section 2.2, this
corresponds to T = Σ1/2.
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Optimized distribution. Following Section 4.1, we have an expression for the optimized
distribution, both in terms of operators, as follows,

q∗λ(x) ∝ 〈ψ(x, ·), (Σ + λI)−1ψ(x, ·)〉L2(dρ) = 〈Σ−1/2k(x, ·), (Σ + λI)−1Σ−1/2k(x, ·)〉L2(dρ),

and in terms of eigenvalues and eigenvectors of k, that is,

q(x) ∝ 〈k(·, x),Σ−1/2(Σ + λI)−1Σ−1/2k(·, x)〉L2(dρ) =
∑
m>1

µm
µm + λ

em(x)2. (12)

While this is uniform in some special cases (uniform distribution on [0, 1] and Sobolev
kernels, as shown below), this is typically hard to compute and sample from. An algorithm
for approximating it was presented at the end of Section 4.1.

A weakness of our result is that in general our optimized distribution q∗λ(x) depends
on λ and thus on the number of samples. In some cases with symmetries (i.e., uniform
distribution on [0, 1] or the hypersphere), q∗λ happens to be constant for all λ. Note also
that we have observed empirically that in some cases, q∗λ converges to a certain distribution
when λ tends to zero (see an example in Section 6).

Sobolev spaces. For Sobolev spaces with order s in [0, 1]d or Rd (for which we assume
d < 2s), the decay of eigenvalues is of the form m−2s/d and thus the error after n samples
is n−s/d (up to logarithmic terms), which recovers the upper and lower bounds of Novak
(1988, pages 37 and 38) (also up to logarithmic terms).

For the special case of Sobolev spaces on [0, 1]d with dρ the uniform distribution, the
optimized distribution in Eq. (12) is also the uniform distribution. Indeed, the eigen-
functions of the integral operator Σ are d-th order tensor products of the uni-dimensional
Fourier basis (the constant and all pairs of sine/cosine at a given frequency), with the same
eigenvalue for the 2d possibilities of sines/cosines for a given multi-dimensional frequency
(m1, . . . ,md). Therefore, when summing all squared values of the eigenfunctions corre-
sponding to (m1, . . . ,md), we get the sum

∑
a∈{0,1}d

∏d
i=1 cos2ai(2πmixi) sin2(1−ai)(2πmixi),

which ends up being constant equal to one (and thus independent of x) because of the iden-
tity cos2(2πmixi) + sin2(2πmixi) = 1.

Finally, we may consider Sobolev spaces on the hypersphere, with the kernels pre-
sented in Section 2.3. As shown by Bach (2017, Appendix D.3), the kernel k(x, y) =
E(v>y)s+(v>y)s+ for v uniform on the hypersphere, leads to a Sobolev space of order t =
s+ d+1

2 , while the decay of eigenvalue of the integral operator was shown to be m−1−1/d−2s/d

in Section 2.3. It is thus equal to m−2t/d, and we recover the result from Hesse (2006).

Quadrature rule. We assume that points x1, . . . , xn are sampled from the distribution
with density q with respect to dρ. The quadrature rule for a function h ∈ F is

∑n
i=1

βih(xi)

q(xi)1/2 .

To compute β, we need to minimize with respect to β the error:∥∥∥∥ n∑
i=1

βi

q(xi)1/2
k(·, xi)−

∫
X

k(·, x)g(x)dρ(x)

∥∥∥∥2

F

+ nλ‖β‖22,

which is the regularized worst case squared error in the estimation of the integral of h over
h ∈ F. The best error is obtained for λ = 0, but our guarantees are valid for λ > 0, with
an explicit control over the norm ‖β‖22, which is important for robustness to noise.
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Given the values of
∫
X
k(xi, x)g(x)dρ(x) = zi, for i = 1, . . . , n, which can be computed

in closed form for several triplet (k, g, dρ) (see, e.g., Smola et al., 2007; Oates and Girolami,
2015), then the problem above is equivalent to minimizing with respect to β:

n∑
i=1

n∑
j=1

βiβj

q(xi)1/2q(xj)1/2
k(xi, xj)−

n∑
i=1

βi

q(xi)1/2
zi + nλ‖β‖22,

which leads to a n × n linear system with running time complexity O(n3). Note that
when adding points sequentially (in particular for kernels for which the distribution q∗λ is
independent of λ, such as Sobolev spaces on [0, 1]), one may update the solution so that
after n steps, the overall complexity is O(n3).

Approximation of functions in F. With the quadrature weights β estimated above
and the quadrature rule

∑n
i=1

βih(xi)

q(xi)1/2 for the estimation of
∫
X
g(x)f(x)dρ(x), we may derive

an expression which is explicitly linear in g. Following the proof of Prop. 1 in Appendix B.1,
we have, when specialized to the quadrature case:

Σ̂ =
1

n

n∑
i=1

1

q(vi)
ψ(xi, ·)⊗L2(dρ) ψ(xi, ·) = Σ−1/2

(
1

n

n∑
i=1

1

q(vi)
k(xi, ·)⊗L2(dρ) k(xi, ·)

)
Σ−1/2,

Moreover, we have βi = 1
nq(xi)1/2 〈k(·, xi),Σ−1/2(Σ̂ + λI)−1Σ1/2g〉L2(dρ) from Eq. (15) in

Appendix B.1, and the quadrature rule becomes:

n∑
i=1

βih(xi)

q(xi)1/2
=

n∑
i=1

βi

q(xi)1/2
〈h,Σ−1k(·, xi)〉L2(dρ)

=

〈
h,

1

n

n∑
i=1

Σ−1 1

q(xi)

[
k(xi, ·)⊗L2(dρ) k(xi, ·)

]
Σ−1/2(Σ̂ + λI)−1Σ1/2g

〉
L2(dρ)

=
〈
h,Σ−1/2Σ̂(Σ̂ + λI)−1Σ1/2g

〉
L2(dρ)

=
〈
g,Σ1/2Σ̂(Σ̂ + λI)−1Σ−1/2h

〉
L2(dρ)

,

which can be put in the form 〈ĥ, g〉L2(dρ) with the approximation ĥ = Σ1/2Σ̂(Σ̂+λI)−1Σ−1/2h
of the function h ∈ F. Having a bound for all functions g such that ‖g‖L2(dρ) 6 1 is equiv-

alent to having a bound on ‖h − ĥ‖L2(dρ). In Section 5, we consider extensions, where we

consider other norms than the L2-norm for characterizing the approximation error ĥ − h.
Moreover, we consider cases where h belongs to a strict subspace of F (with improved
results).

4.5 Learning with Random Features

We consider supervised learning with m i.i.d. samples from a distribution on inputs/outputs
(x, y), and a uniformly G-Lipschitz-continuous loss function `(y, ·), which includes logis-
tic regression and the support vector machine. We consider the empirical risk L̂(f) =
1
m

∑m
i=1 `(yi, f(xi)) and the expected risk L(f) = E`(y, f(x)), with x having the marginal

distribution dρ that we consider in earlier sections. We assume that Ek(x, x) = tr Σ = R2.
We have the usual generalization bound for the minimizer f̂ of L̂(f) with respect to
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‖f‖F 6 F , based on Rademacher complexity (see, e.g., Shalev-Shwartz and Ben-David,
2014):

E
[
L(f̂)

]
6 inf
‖f‖F6F

L(f) + 2E
[

sup
‖f‖F6F

|L(f)− L̂(f)|
]
6 inf
‖f‖F6F

L(f) +
4FGR√

m
. (13)

We now consider learning by sampling n features from the optimized distribution from
Section 4.2, leading to a function parameterized by β ∈ Rn, i.e., ĝβ =

∑n
i=1 βiq(vi)

−1/2ϕ(vi, ·),
an element of L2(dρ). Applying results from Section 4.1, we assume that λ 6 R2/4 and

n > 5d(λ) log 2(tr Σ)d(λ)
λ , where d(λ) is equal to the degrees of freedom associated with the

kernel k and distribution dρ. Thus, the expected squared error for approximating the unit-
ball of F by the ball of radius 2 of the approximation F̂ obtained from the approximated
kernel is less than 8λ.

If we consider the estimator β̂ obtained by minimizing the empirical risk of ĝβ subject
to ‖β‖2 6 2F/

√
n. We have the following decomposition of the error for any γ ∈ Rn such

that ‖γ‖2 6 2F/
√
n and f ∈ F such that ‖f‖F 6 F :

L(ĝβ̂)

= L(ĝβ̂)− L̂(ĝβ̂) + L̂(ĝβ̂)− L̂(ĝγ) + L̂(ĝγ)− L(ĝγ) + L(ĝγ)− L(f) + L(f)

6 2
[

sup
‖β′‖F62F/

√
n

|L(ĝβ′)− L(ĝβ′)|
]

+
[
L(ĝγ)− L(f)

]
+ L(f)

6 2
[

sup
‖β′‖F62F/

√
n

|L(ĝβ′)− L(ĝβ′)|
]

+ sup
‖f ′‖F6F

inf
‖γ‖262F/

√
n

[
L(ĝγ)− L(f ′)

]
+ inf
‖f‖F6F

L(f).

We now take expectation with respect to the data and the random features. Following
standard results for Rademacher complexities of `2-balls (Bartlett and Mendelson, 2003,
Lemma 22), the first term is less than

4FG

m
√
n
E
( m∑
i=1

n∑
j=1

ϕ(vi, xj)
2

q(vi)

)1/2
6

4FG

m
√
n

(nm tr Σ)1/2 =
4FGR√

m
.

Because of the G-Lipschitz-continuity of the loss, we have L(ĝγ)−L(f ′) 6 G‖ĝγ)−f ′‖L2(dρ),

and thus the second term is less than
√

8λGF 6 3GF
√
λ. Overall, we obtain

E
[
L(ĝβ̂)

]
6 inf
‖f‖F6F

L(f) + 3GF
√
λ+

4FGR√
m

.

If we consider λ = R2/m in order to lose only a constant factor compared to Eq. (13), we
have the constraint n > 5d(R2/m) log

[
2md(R2/m)

]
.

We may now look at several situations. In the worst case, where the decay of eigenvalue
is not fast, i.e., very close to 1/i, then we may only use the bound d(λ) = tr Σ(Σ +λI)−1 6
λ−1 tr Σ = R2/λ, and thus a sufficient condition n > 10m log 2m, and we obtain the same
result as Rahimi and Recht (2009).

However, when we have eigenvalue decays as R2i−2s, we get (up to constants), following
the same computation as Section 4.2, d(λ) 6 (R2/λ)1/(2s), and thus n > m1/(2s) logm,
which is a significant improvement (regardless of the value of F ). Moreover, if the decay is
geometric as ri, then we get d(λ) 6 log(R2/λ), and thus n > (logm)2, which is even more
significant.
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5. Quadrature-related Extensions

In Section 4.4, we have built an approximation ĥ = Σ1/2Σ̂(Σ̂ + λI)−1Σ−1/2h of a function
h ∈ F, which is based on n function evaluations h(x1), . . . , h(xn). We have presented in
Section 4.4 a convergence rate for the L2-norm ‖ĥ − h‖L2(dρ) for functions h with less
than unit F-norm ‖h‖F 6 1. Up to logarithmic terms, if using the optimal distribution
for sampling x1, . . . , xn, then we get a squared error of µn where µn is the n-th largest
eigenvalue of the integral operator Σ.

Robustness to noise. We have seen that if the noise in the function evaluations h(xi) has
a variance less than q(xi)τ

2, then the error ‖h− ĥ‖2L2(dρ) has an additional term τ2‖β‖22 6
4τ2

n . Hence, the amount of noise has to be less than nµn in order to incur no loss in
performance (a bound which decreases with n).

Adaptivity to smoother functions. We assume that the function h happens to be
smoother than what is sufficient to be an element of the RKHS F, that is, if ‖Σ−sh‖L2(dρ) 6
1, where s > 1/2. The case s = 1/2 corresponds to being in the RKHS. In the proof of
Prop. 1 in Appendix B.1, we have seen that with high-probability we have:

(Σ̂ + λI)−1 4 4(Σ + λI)−1. (14)

We now see that we can bound the error ‖ĥ− h‖L2(dρ) as follows:

‖ĥ− h‖L2(dρ) = ‖Σ1/2Σ̂(Σ̂ + λI)−1Σ−1/2h− h‖L2(dρ)

= λ
∥∥Σ1/2(Σ̂ + λI)−1Σ−1/2+sΣ−sh

∥∥
L2(dρ)

6 λ
∥∥Σ1/2(Σ̂ + λI)−1/2

∥∥
op

∥∥(Σ̂ + λI)−1/2Σ−1/2+s
∥∥

op
‖Σ−sh‖L2(dρ).

We may now bound each term. The first one
∥∥Σ1/2(Σ̂ + λI)−1/2

∥∥
op

is less than 2, be-

cause of Eq. (14). The second one
∥∥(Σ̂ + λI)−1/2Σ−1/2+s

∥∥
op

is equal to
∥∥(Σ̂ + λI)s−1(Σ̂ +

λI)1/2−sΣ−1/2+s
∥∥

op
, and thus less than

∥∥(Σ̂+λI)s−1‖op ·
∥∥(Σ̂+λI)1/2−sΣ−1/2+s

∥∥
op

6 2λs−1.
Overall we obtain

‖ĥ− h‖L2(dρ) 6 4λs.

The norm h 7→ ‖Σ−sh‖L2(dρ) is an RKHS norm with kernel
∑

m>0 µ
2s
mem(x)em(y), with

corresponding eigenvalues equal to (µm)2s. From Prop. 2 and 3, the optimal number
of quadrature points to reach a squared error less than ε is proportional to the number
max({m, µ2s

m > ε}), while using the quadrature points from s = 1/2, leads to a number
max({m, µm > ε1/(2s)}), which is equal. Thus if the RKHS used to compute the quadrature
weights is a bit too large (but not too large, see experiments in Section 6), then we still
get the optimal rate. Note that this robustness is only shown for the regularized estimation
of the quadrature coefficients (in our simulations, the non-regularized ones also exhibit the
same behavior).

Approximation with stronger norms. We may consider characterizing the difference
ĥ − h with different norms than ‖ · ‖L2(dρ), in particular norms ‖Σ−r(ĥ − h)‖L2(dρ), with
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r ∈ [0, 1/2]. For r = 0, this is our results in L2-norm, while for r = 1/2, this is the RKHS
norms. We have, using the same manipulations than above:

‖Σ−r(ĥ− h)‖L2(dρ) = λ
∥∥Σ1/2−r(Σ̂ + λI)−1Σ−1/2h

∥∥
L2(dρ)

6 λ1/2−r∥∥Σ1/2−r(Σ̂ + λI)r−1/2
∥∥

op
‖Σ−1/2h‖L2(dρ) 6 2λ1/2−r.

When r = 1/2, we get a result in the RKHS norm, but with no decay to zero; the RKHS
norm ‖ · ‖F would allow a control in L∞-norm, but as noticed by Steinwart et al. (2009);
Mendelson and Neeman (2010), such a control may be obtained in practice with r much
smaller. For example, when the eigenfunctions em are uniformly bounded in L∞-norm by a
constant C (as is the case for periodic kernels in [0, 1] with the uniform distribution), then,
for any x ∈ X, we have for t > 1,

f(x)2 =
∞∑
m=1

(m+ 1)t〈f, em〉2L2(dρ)em(x)2(m+ 1)−t 6
∞∑
m=0

(m+ 1)t〈f, em〉2L2(dρ)

C2

t− 1
.

If for simplicity, we assume that µm = (m + 1)−2s (like for Sobolev spaces), we have
‖Σ−rf‖2L2(dρ) =

∑∞
m=1 µ

−2r
m 〈f, em〉2L2(dρ) =

∑∞
m=1(m + 1)t〈f, em〉2L2(dρ) with r = t/4s. If

λ 6 O(n−2s) (as suggested by Prop. 1), then we obtain a squared L∞-error less than
1
t−1λ

1−2r = O
(

1
t−1n

−2s(1−t/2s)) = O
(
nt

t−1n
−2s
)
. With t = 1 + 1

logn , we get O
(n logn
n−2s

)
, and

thus a degradation compared to the squared L2-loss of n (plus additional logarithmic terms),
which corresponds to the (non-improvable) result of Novak (1988, page 36).

6. Simulations

In this section, we consider simple illustrative quadrature experiments4 with X = [0, 1] and
kernels k(x, y) = 1+

∑∞
m=1

1
m2s cos 2πm(x−y), with various values of s and distributions dρ

which are Beta random variable with the two parameters equal to a = b, hence symmetric
around 1/2.

Uniform distribution. For b = 1, we have the uniform distribution on [0, 1] for which the
cosine/sine basis is orthonormal, and the optimized distribution q∗λ is also uniform. More-

over, we have
∫ 1

0 k(x, y)dρ(x) = 1. We report results comparing different Sobolev spaces
for testing functions to integrate (parameterized by s) and learning quadrature weights
(parameterized by t) in Figure 1, where we compute errors averaged over 1000 draws. We
did not use regularization to compute quadrature weights α. We can make the following
observations:

– The exponents in the convergence rates for s = t (matching RKHSs for learning
quadrature weights and testing functions) are close to 2s as expected.

– When the functions to integrate are less smooth than the ones used for learning
quadrature weights (that is t > s), then the quadrature performance does not neces-
sarily decay with the number of samples.

4. Matlab code for all 5 figures may be downloaded from http://www.di.ens.fr/~fbach/quadrature.html.
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Figure 1: Quadrature for functions in a Sobolev space with parameter s (four possible val-
ues) for the uniform distribution on [0, 1], with quadrature rules obtained from
different Sobolev spaces with parameters t (same four possible values). We com-
pute affine fits in log-log-space (in dotted) to estimate convergence rates of the
form C/nu and report the value of u. Best seen in color.

– On the contrary, when s > t, then we have convergence and the rate is potentially
worse than the optimal one (attained for s = t), and equal when t > s/2, as shown in
Section 5.

In Figure 2, we compare several quadrature rules on [0, 1], namely Simpson’s rule with
uniformly spread points, Gauss-Legendre quadrature and the Sobol sequence with uniform
weights. For s = 1, as expected, all squared errors decay as n−2 with a worse constant for
our kernel-based rule, while for s = 2 (smoother test functions), the Sobol sequence is not
adaptive, while all others are adaptive and get convergence rates around n−4.

Non-uniform distribution. We consider the case a = b = 1/2, which is the distribution
dρ with density π−1x−1/2(1 − x)−1/2 with respect to the Lebesgue measure, and with cu-
mulative distribution function F (x) = π−1 arccos(1 − 2x). We may use an approximation
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Figure 2: Quadrature for functions in a Sobolev space with parameters s = 1 (left) and
s = 2 (right), for the uniform distribution on [0, 1], with various quadrature
rules. We compute affine fits in log-log-space (in dotted) to estimate convergence
rates of the form C/nu and report the value of u. Best seen in color.

of dτ with N unweighted points F−1(k/N) =
(
1 − cos kπN

)
/2, for k ∈ {1, . . . , N} and the

algorithms from the end of Section 4.2. We consider the Sobolev kernel with s = 1.

In Figure 3, we plot all densities q∗λ as a function of λ. When λ is large, we unsuprisingly
obtain the uniform density, while, more surprisingly, when λ tends to zero, the density tends
to a density, which happens here to be proportional to x1/4(1 − x)1/4 (leading to a Beta
distribution with parameters a = b = .25).

We may also consider the same kernel but with the Fourier expansion on N. This is
done by representing dτ ∝ δ0 +

∑
k∈Z∗

1
k2 δk by truncating to all |k| 6 K, with K = 50,

which is a weighted representation. We plot in Figure 4 the optimal density over the set of
integers, both with respect to the input density (which decays as 1/n2) and the counting
measure. When λ is large, we recover the input density, while when λ tends to zero, q∗λ
tends to be uniform (and thus, does not converge to a finite measure).

7. Conclusion

In this paper, we have shown that kernel-based quadrature rules are a special case of random
feature expansions for positive definite kernels, and derived upper and lower bounds on
approximations, that match up to logarithmic terms. For quadrature, this leads to widely
applicable results while for random features this allows a significantly improved guarantee
within a supervised learning framework.

The present work could be extended in a variety of ways, for example towards bandit
optimization rather than quadrature (Srinivas et al., 2012), the use of quasi-random sam-
pling within our framework in the spirit of Yang et al. (2014); Oates and Girolami (2015), a
similar analysis for kernel herding (Chen et al., 2010; Bach et al., 2012), an extension to fast
rates for non-parametric least-squares regression (Hsu et al., 2014) but with an improved
computational complexity, and a study of the consequences of our improved approximation
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result for online learning and stochastic approximation, in the spirit of Dai et al. (2014);
Dieuleveut and Bach (2015).
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Appendix A. Kernels on Product Spaces

In this appendix, we consider sets X which are products of several simple sets X1, . . . ,Xd,
with known kernels k1, . . . , kd, each with RKHS F1, . . . ,Fd. We also assume that we have
d measures dρ1, . . . , dρd, leading to sequences of eigenvalues (µjmj )mj>1 and eigenfunctions
(ejmj )mj>1.

Our aim is to define a kernel k on X = X1 × · · · × Xd with the product measure dρ =
dρ1 · · · dρd. For illustration purposes, we consider decays of the form µm ∝ m−2s for the
d kernels, that will be useful for Sobolev spaces. We also consider the case where µm ∝
exp(−ρm). For some combinations, eigenvalue decay is the most natural, in others, the
number of eigenvalues m∗(λ) greater than a given λ > 0 is more natural.

A.1 Sum of Kernels: k(x, y) =
∑d

j=1 kj(xj , yj)

In this situation, the RKHS for k is isomorphic to F1 × · · · × Fd, composed of functions
g such that there exists f1, . . . , fd in F1, . . . ,Fd such that g(x) =

∑d
j=1 fj(xj), that is we

obtain separable functions, which are sometimes used in the context of generalized additive
models (Hastie and Tibshirani, 1990). The corresponding integral operator is then block-
diagonal with j-th block equal to the integral operator for kj and dρj . This implies that
that its eigenvalues are the concatenation of all sequences (µjmj )mj>0. Thus the function
m∗(λ) is the sum of functions m∗1(λ) + · · ·+m∗d(λ).

In terms of norms of functions, we have a norm equal to ‖g‖2F =
∑d

j=1 ‖fj‖2Fj .

In the particular case where µjmj ∝ m−2s
j for all j, or equivalently, a number of eigen-

values of kj greater than λ proportional to λ−1/(2s), we have a number of eigenvalues of
k greater than λ equivalent to dλ−1/(2s), that is a decay for the eigenvalues proportional
to (m/d)−2s. Similarly, when the decay is exponential as exp(−ρm), we get a decay of
exp(−ρm/d).

A.2 Product of Kernels: k(x, y) =
∏d
j=1 kj(xj , yj)

In this situation, the RKHS for K is exactly the tensor product of F1, . . . ,Fd, i.e., the
span of all functions

∏d
j=1 fj(xj), for f1, . . . , fd in F1, . . . ,Fd (Berlinet and Thomas-Agnan,

2004). Moreover, the integral operator for k is a tensor product of the d integral operator
for k1, . . . , kd. This implies that its eigenvalues are µ1m1 × · · · × µdmd , m1, . . . ,md > 0. In
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terms of norms of functions defined on X1 × · · · × Xd, this thus corresponds to

∑
m1,...,md>0

( d∏
j=1

µjmj

)−1〈
f,

d∏
j=1

ejmj (xj)

〉2

L2(dρ⊗d)

.

Special cases. In the particular case where µjmj ∝ m−2s
j for all j, we have a number

of eigenvalues of k greater than λ equivalent to the number of multi-indices such that
m1 × · · · × md is less than λ−1/(2s). By counting first the index m1, this can be upper-

bounded by the sum of λ−1/(2s)

m2···md over all indices m2, . . . ,md less than λ−1/(2s), which is

less than λ−1/(2s)
(∑λ−1/(2s)

m=1
1
m

)d−1
= O

(
λ−1/(2s)

(
s log 1

λ

)d−1
)

. This results in a decay of

eigenvalues bounded by (logm)2s(d−1)m−2s (this can be obtained by inverting approximately
the function of λ).

When the decay is exponential as exp(−ρλ), then we get that m∗(λ) is the number

of multi-indices (m1, . . . ,md) such that their sum is less than c =
log 1

λ
ρ ; when c is large,

this is equivalent to cd times the volume of the d-dimensional simplex, and thus less than
cd

d! =
( log 1

λ
ρ

)d 1
d! . This leads to a decay of eigenvalues as exp(−ρd!1/dm1/d) or, by using

Stirling formula, less than exp(−ρdm1/d).

Appendix B. Proofs

B.1 Proof of Prop. 1

As shown in Section 2.2, any f ∈ F with F-norm less than one may be represented as
f =

∫
V
g(v)ϕ(v, ·)dτ(v), for a certain g ∈ L2(dτ) with L2(dτ)-norm less than one. We do

not solve the problem in β exactly, but use a properly chosen Lagrange multiplier λ and
consider the following minimization problem:∥∥∥∥ n∑

i=1

βiq(vi)
−1/2ϕ(vi, ·)−

∫
X

ϕ(v, ·)g(v)dτ(v)

∥∥∥∥2

L2(dρ)

+ nλ‖β‖22.

We consider the operator Φ : Rn → L2(dρ) such that

Φβ =

n∑
i=1

βiq(vi)
−1/2ϕ(vi, ·).

We then need to minimize the familiar least-squares problem:∥∥f − Φβ
∥∥2

L2(dρ)
+ nλ‖β‖22,

with solution from the usual normal equations and the matrix inversion lemma for opera-
tors (Ogawa, 1988):

β = (Φ∗Φ + nλI)−1Φ∗f =
1

n
Φ∗(

1

n
ΦΦ∗ + λI)−1f. (15)
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We consider the empirical integral operator Σ̂ : L2(dρ)→ L2(dρ), defined as

Σ̂ =
1

n
ΦΦ∗ =

1

n

n∑
i=1

1

q(vi)
ϕ(vi, ·)⊗L2(dρ) ϕ(vi, ·),

that is, for a, b ∈ L2(dρ), 〈a, Σ̂b〉L2(dρ) =
n∑
i=1

〈a, ϕ(vi, ·)〉L2(dρ)〈b, ϕ(vi, ·)〉L2(dρ)

q(vi)
. By construc-

tion, and following the end of Section 2.2, we have EΣ̂ = Σ.
The value of ‖f − Φβ‖2L2(dρ) is equal to

‖f − Φβ‖2L2(dρ) = ‖f − Σ̂(Σ̂ + λI)−1f‖2L2(dρ) = ‖λ(Σ̂ + λI)−1f‖2L2(dρ)

= λ2
〈
f, (Σ̂ + λI)−2f

〉
L2(dρ)

6 λ
〈
f, (Σ̂ + λI)−1f

〉
L2(dρ)

, (16)

because (Σ̂ + λI)−2 4 λ−1(Σ̂ + λI)−1 (with the classical partial order between self-adjoint
operators).

Finally, we have, with β = 1
nΦ∗(Σ̂ + λI)−1f :

n‖β‖22 =
〈
(Σ̂ + λI)−1f, Σ̂(Σ̂ + λI)−1f

〉
L2(dρ)

6
〈
f, (Σ̂ + λI)−1f

〉
L2(dρ)

, (17)

using (Σ̂ + λI)−2Σ̂ 4 (Σ̂ + λI)−1.
By construction, we have E(Σ̂) = Σ. Moreover, we have, by Cauchy-Schwarz inequality:

〈a, (f ⊗L2(dρ) f)a〉L2(dρ) =

(∫
X

a(x)f(x)dρ(x)

)2

=

(∫
X

∫
V

a(x)g(v)ϕ(v, x)dτ(v)dρ(x)

)2

6

(∫
V

g(v)2dτ(v)

)∫
V

(∫
X

a(x)ϕ(v, x)dρ(x)

)2

dτ(v)

= ‖g‖2L2(dρ)〈a,Σa〉L2(dρ) 6 〈a,Σa〉L2(dρ).

Thus f ⊗L2(dρ) f 4 Σ, and we may thus define 〈f,Σ−1f〉L2(dρ), which is less than one.

Overall we aim to study 〈f, (Σ̂ + λI)−1f〉L2(dρ), for 〈f,Σ−1f〉L2(dρ) 6 1, to control both
the norm ‖β‖22 in Eq. (17) and the approximation error ‖f − Φβ‖2L2(dρ) in Eq. (16). We

have, following a similar argument than the one of Bach (2013); El Alaoui and Mahoney
(2015) for column sampling, i.e., by a formulation using Σ− Σ̂ in terms of operators in an
appropriate way:

〈f, (Σ̂ + λI)−1f〉L2(dρ)

= 〈f, (Σ + λI + Σ̂− Σ)−1f〉L2(dρ)

=
〈
(Σ + λI)−1/2f,

[
I + (Σ + λI)−1/2(Σ̂− Σ)(Σ + λI)−1/2

]−1
(Σ + λI)−1/2f

〉
L2(dρ)

.

Thus, if (Σ + λI)−1/2(Σ̂− Σ)(Σ + λI)−1/2 < −tI, with t ∈ (0, 1), we have

〈f, (Σ̂ + λI)−1f〉L2(dρ) 6 〈(Σ + λI)−1/2f, (1− t)−1(Σ + λI)−1/2f〉L2(dρ)

= (1− t)−1〈f, (Σ + λI)−1f〉L2(dρ)

6 (1− t)−1〈f,Σ−1f〉L2(dρ) 6 (1− t)−1.

31



Bach

Moreover, we have shown (Σ̂ + λI)−1 4 1
1−t(Σ + λI)−1.

Thus, the performance depends on having (Σ + λI)−1/2(Σ− Σ̂)(Σ + λI)−1/2 4 tI.
We consider the self-adjoint operators Xi, for i = 1, . . . , n, which are independent and

identically distributed:

Xi =
1

n
(Σ + λI)−1Σ− 1

n

1

q(vi)

[
(Σ + λI)−1/2ϕ(vi, ·)

]
⊗L2(dρ)

[
(Σ + λI)−1/2ϕ(vi, ·)

]
,

so that our goal is to provide an upperbound on the probability that ‖
∑n

i=1Xi‖op > t,
where ‖ · ‖op is the operator norm (largest singular values). We use the notation

d = tr Σ(Σ + λI)−1 =

∫
V

〈ϕ(v, ·), (Σ + λI)−1ϕ(v, ·)〉L2(dρ)

q(v)
q(v)dτ(v) 6 dmax.

We have

EXi = 0, by construction of Xi,

Xi 4
1

n
(Σ + λI)−1Σ 4

1

n
tr
[
(Σ + λI)−1Σ

]
I 4

dmax

n
I,

Xi < − 1

n

1

q(vi)

[
(Σ + λI)−1/2ϕ(vi, ·)

]
⊗L2(dρ)

[
(Σ + λI)−1/2ϕ(vi, ·)

]
< − 1

n

1

q(vi)

∥∥(Σ + λI)−1/2ϕ(vi, ·)
∥∥2

L2(dρ)
I < −dmax

n
I,

‖Xi‖op 6
dmax

n
as a consequence of the two previous inequalities.

Moreover,

E(X2
i )

= E
[

1

n

1

q(vi)

[
(Σ + λI)−1/2ϕ(vi, ·)

]
⊗L2(dρ)

[
(Σ + λI)−1/2ϕ(vi, ·)

]]2

−
[ 1

n
(Σ + λI)−1Σ

]2
4 E

[
1

n

1

q(vi)

[
(Σ + λI)−1/2ϕ(vi, ·)

]
⊗L2(dρ)

[
(Σ + λI)−1/2ϕ(vi, ·)

]]2

= E
〈ϕ(vi, ·), (Σ + λI)−1ϕ(vi, ·)〉L2(dρ)

n2q(vi)2

[
(Σ + λI)−1/2ϕ(vi, ·)

]
⊗L2(dρ)

[
(Σ + λI)−1/2ϕ(vi, ·)

]
4

dmax

n2
E
([ 1

q(vi)
(Σ + λI)−1/2ϕ(vi, ·)

]
⊗L2(dρ)

[
(Σ + λI)−1/2ϕ(vi, ·)

])
=
dmax

n2
Σ(Σ + λI)−1.

This leads to

n∑
i=1

E(X2
i ) 4

dmax

n
(Σ + λI)−1Σ,

with a maximal eigenvalue less than
dmax

n
and a trace less than

dmax

n
tr Σ(Σ + λI)−1 =

d dmax

n
.
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Following Hsu et al. (2014), we use a matrix Bernstein inequality which is independent
of the underlying dimension (which is here infinite). We consider the bound of Minsker
(2011, Theorem 2.1), which improves on the earlier result of Hsu et al. (2012, Theorem 4),
that is:

P
(∥∥∥∥ n∑

i=1

Xi

∥∥∥∥
op

> t

)
6 2d

(
1 +

6

t2 log2(1 + nt/dmax)

)
exp

(
− t2/2

dmax/n(1 + t/3)

)

We now consider t = 3
4 , δ ∈ (0, 1), and n > Bdmax log

Cdmax

δ
, with appropriate constants

B,C > 0. This implies that

exp

(
− t2/2

dmax/n(1 + t/3)

)
6 exp

(
− (3/4)2/2

5/4
B log

Cdmax

δ

)
6
( δ

Cdmax

) (3/4)2B/2
5/4 ,

which is less then
(
δ
Cd

) (3/4)2B/2
5/4 , and, if dmax > D, using n > Bdmax logCD,

1 +
6

t2 log2(1 + nt/dmax)
6 1 +

6 · 16/9

log2
(
1 + (3B/4) log(CD)

) ,
while if dmax 6 D and n > 1,

1 +
6

t2 log2(1 + nt/dmax)
6 1 +

6 · 16/9

log2
(
1 + (3/4D)

) .
In order to get a bound, we need (3/4)2B/2

5/4 > 1, and we can take B = 5. If we take C = 8,

then in order to have 1 + 6
t2 log2(1+nt/dmax)

6 4, we can take D = 3/8. Thus the probability

is less than δ.
Finally, in order to get the extra bound on 1

n

∑n
i=1 q(vi)

−1‖ϕ(vi, ·)‖2L2(dρ), we consider

E tr Σ̂ = tr Σ =
∫
X
k(x, x)dρ(x), and thus, by Markov’s inequality, with probability 1− δ,

1

n

n∑
i=1

q(vi)
−1‖ϕ(vi, ·)‖2L2(dρ) = tr Σ̂ 6

1

δ
tr Σ. (18)

By taking δ/2 instead of δ in the control of ‖
∑n

i=1Xi‖op > t and in the Markov inequality

above, we have a control over ‖β‖22, tr Σ̂ and the approximation error, which leads to the
desired result in Prop 1. This will be useful for the lower bound of Prop. 3.

We can make the following extra observations regarding the proof:

– It may be possible to derive a similar result with a thresholding of eigenvalues in
the spirit of Zwald et al. (2004), but this would require Bernstein-type concentration
inequalities for the projections on principal subspaces.

– We have seen that with high-probability, we have (Σ̂ + λI)−1 4 4(Σ + λI)−1. Note
that A 4 B does not imply in A2 4 B2 (Bhatia, 2009, page 9) and that in general
we do not have (Σ̂ + λI)−2 4 C(Σ + λI)−2 for any constant C (which would allow
an improvement in the error by replacing λ by λ2, and violate the lower bound of
Prop. 3).
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– We may also obtain a result in expectation, by using δ = 4λ/ tr Σ (which is assumed
to be less than 1), leading to a squared error with expectation less than 8λ as soon as

n > 5dmax(λ) log 2(tr Σ)dmax(λ)
λ . Indeed, we can use the bound 4λ with probability 1− δ

and ‖f‖2L2(dρ) 6 tr Σ with probability δ, leading to a bound of 4λ(1− δ) + δ tr Σ 6 8λ.
We use this result in Section 4.5.

B.2 Proof of Prop. 2

We start from the bound above, with the constraint n > 5d(λ) log 16d(λ)
δ . Statement (a) is

a simple reformulation of Prop. 1. For statement (b), if we assume m 6 n
5(1+γ) log 16n

5δ

, and

λ = µm, then we have d(λ) 6 (1 + γ)m, which implies n > 5d(λ) log 16d(λ)
δ , and (b) is a

consequence of (a).

B.3 Proof of Prop. 3

We first use the Varshamov-Gilbert’s lemma (see, e.g., Massart, 2003, Lemma 4.7). That
is, for any integer s, there exists a family (θj)j∈J of at least |J | > es/8 distinct elements of
{0, 1}s, such that for j 6= j′ ∈ J , ‖θj − θj′‖22 > s

4 .

For each θ ∈ {0, 1}s, we define an element of F with norm less than one, as f(θ) =√
µs√
s

∑s
i=1 θiei ∈ F, where (ei, µi), i = 1, . . . , s are the eigenvector/eigenvalue pairs associ-

ated with the s largest eigenvalues of Σ. We have, since µi > µs for i ∈ {1, . . . , s} and
‖θ‖22 6 1:

‖f(θ)‖2F =
µs
s

s∑
i=1

θ2
i µ
−1
i 6

µs
s

s∑
i=1

θ2
i µ
−1
s 6

1

s

s∑
i=1

θ2
i 6 1.

Moreover, for any j 6= j′ ∈ J , we have ‖f(θj)− f(θj′)‖2L2(dρ) = µs
s ‖θj − θj′‖

2
2 > µs

4 .

We now assume that s is selected so that
√

4λ 6
√

µs
4 /3. By applying the existence

results to all functions fj , j ∈ J , then there exists a family (βj)j∈J of elements of Rn, with
squared `2-norm less than 4

n , and for which, for all j,

∥∥∥fj − n∑
i=1

(βj)iψi

∥∥∥
L2(dρ)

6
√

4λ.

This leads to, for any j 6= j′ ∈ J ,

∥∥∥ n∑
i=1

(βj − βj′)iψi
∥∥∥
L2(dρ)

>
∥∥fj − fj′∥∥L2(dρ)

−
∥∥∥ n∑
i=1

(βj)iψi − fj
∥∥∥
L2(dρ)

−
∥∥∥ n∑
i=1

(βj′)iψi − fj′
∥∥∥
L2(dρ)

>
√
µs/4− 2

√
µs
4
/3 =

√
µs
4
/3.

Moreover, we have the bound∥∥∥∥ n∑
i=1

(βj − βj′)iψi
∥∥∥∥2

L2(dρ)

6

( n∑
i=1

(βj − βj′)2
i

) n∑
i=1

‖ψi‖2L2(dρ) 6 ‖βj − βj′‖
2
2 · n(2δ−1 tr Σ).
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Combining the last two inequalities, we get ‖βj − βj′‖2 >
√

δµs
72n tr Σ = ∆. Thus, es/8 is

less than the ∆-packing number of the ball of radius r = 2/
√
n, which is itself less than

(r/∆)n(2 + ∆/r)n (see, e.g., Massart, 2003, Lemma 4.14). Since ∆/r =
√

δµs
4·72 tr Σ 6 1

12
√

2
,

we have
s

8
6 n

(
1

2
log

4 · 72 tr Σ

δµs
+ log(2 +

1

12
√

2
)

)
.

This implies n > s
4 log tr Σ

δµs
+29

. Given that we have to choose µs > 144λ for the result to hold,

this implies the desired result, since 4 log(1440) > 29.
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