
Journal of Machine Learning Research 18 (2017) 1-34 Submitted 8/15; Revised 5/17; Published 11/17

Classification of Time Sequences
using Graphs of Temporal Constraints

Mathieu Guillame-Bert mathieug@andrew.cmu.edu

Artur Dubrawski awd@cs.cmu.edu

Auton Lab, The Robotics Institute, School of Computer Science

Carnegie Mellon University, Pittsburgh, United States

Editor: Luc De Raedt

Abstract

We introduce two algorithms that learn to classify Symbolic and Scalar Time Sequences
(SSTS); an extension of multivariate time series. An SSTS is a set of events and a set of
scalars. An event is defined by a symbol and a time-stamp. A scalar is defined by a symbol
and a function mapping a number for each possible time stamp of the data. The proposed
algorithms rely on temporal patterns called Graph of Temporal Constraints (GTC). A
GTC is a directed graph in which vertices express occurrences of specific events, and edges
express temporal constraints between occurrences of pairs of events. Additionally, each
vertex of a GTC can be augmented with numeric constraints on scalar values. We allow
GTCs to be cyclic and/or disconnected. The first of the introduced algorithms extracts
sets of co-dependent GTCs to be used in a voting mechanism. The second algorithm builds
decision forest like representations where each node is a GTC. In both algorithms, extrac-
tion of GTCs and model building are interleaved. Both algorithms are closely related to
each other and they exhibit complementary properties including complexity, performance,
and interpretability. The main novelties of this work reside in direct building of the model
and efficient learning of GTC structures. We explain the proposed algorithms and eval-
uate their performance against a diverse collection of 59 benchmark data sets. In these
experiments, our algorithms come across as highly competitive and in most cases closely
match or outperform state-of-the-art alternatives in terms of the computational speed while
dominating in terms of the accuracy of classification of time sequences.

Keywords: classification, temporal data, sequential data, graphical constraint models,
decision forests, symbolic and scalar time sequences, supervised learning

1. Introduction

Learning to classify from labeled training data is one of the flagship capabilities of machine
learning. Classification is commonly used to model flat-table data, and in applications
involving more complex representations such as (time) sequences or graphs, the information
is typically “featurized” or “flattened” to fit the flat-table representation paradigm, so
that standard classification algorithms can be readily applicable. In the case of symbolic
time-stamped sequences, popular featurization techniques include representing time-since-
previous-occurrence of an event, or computing frequency of occurrence (or other statistics or
measures) over moving windows of time. Perhaps, a preferable alternative is to instead use

c©2017 Mathieu Guillame-Bert and Artur Dubrawski.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v18/15-403.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v18/15-403.html

Guillame-Bert and Dubrawski

classification algorithms capable of natively handling the temporal aspects of time-stamped
sequences.

In this paper we introduce two parametric algorithms that belong to that specialized
class. Both algorithms are designed to classify Symbolic and Scalar Time Sequences (SSTS);
an expressive extension of the Time Series (TS) representation that remedies some of its lim-
itations. In particular, SSTS extends the standard TS model by allowing non-uniform and
asynchronous sampling, representing instantaneous sparse events as well as dense numeric
sequences, and scaling well to highly-dimensional (multi-channel) application scenarios.

Both algorithms rely on a simple but expressive graphical pattern model for SSTS data
called Graph of Temporal Constraints (GTC). A GTC is a conjunction of three types of
conditions: (1) Existence of an event, (2) Constraint on the timestamp difference between
two given events, and (3) Inequality constraints on the numerical values of a numerical time
sequence at a time defined by a given event. Each GTC defines a Boolean function on an
SSTS (or a TS).

The first algorithm presented in this paper, called the “GTC-Set”, bootstraps training
SSTSs and extracts fitting GTCs to form an ensemble model. Unlike methods relying on
extracting all possible patterns and then applying a feature selection, our first algorithm
directly build a final set co-dependent discriminant GTCs (all extracted GTC are used and
no feature selection is applied). For this reason, the set of build GTCs is much smaller than
the set of all possible GTCs. At the end of the learning process, each thusly extracted GTC
is used as an individual “voter” in the classification procedure.

The second algorithm, called “GTC-DF”, builds a bootstrapped decision forest where
the condition in each decision node is defined as a GTC. Path of inference through each
decision tree in this forest depends on whether a query STSS fulfills the constraints of the
particular node’s GTC or not. Here again, the GTC attached to each node is directly
constructed on-the-fly instead of being selected from a pool of existing GTCs.

To assess performance of the GTC-Set and the GTC-DF algorithms, we evaluated them
on a diverse collection of 59 temporal sequence classification data sets (all of them are
available publicly), and compared against 13 alternative algorithms found in the literature.
Results show that our algorithms are highly competitive and in most cases outperform
state-of-the-art considered alternatives, both in terms of computing speed and accuracy of
classification. Our algorithms are especially competitive for unaligned temporal sequence
data, i.e. the data for which the value of an observation at a particular time t has no
distinct predictive value, or in other words: classification performance does not depend on
when we start observing the data. We also show how the users can interpret learned models
based on the proposed GTC representation. Interpretability is often an important factor
that determines practical usability of machine learning solutions in the real world, and our
presented framework satisfies this requirement well.

This paper is structured as follows: Section 2 describes the SSTS representation and
formalizes the classification problem for SSTS. Section 3 discusses related work and pro-
poses a three-category taxonomy of time series classification algorithms. Sections 4 and 5
introduce the GTC representation and the GTC-Set/DF models. Section 6 presents and
details our two classification algorithms. Section 7 summarizes results of empirical eval-
uations and comparisons, and Subsection 7.7 shows how a user can interpret a GTC-Set
model. Concluding remarks wrap up the paper in Section 8.

2

Classification of Time Sequences using Graphs of Temporal Constraints

time

sc
al

ar
s

 e
ve

nt
s e1

e2

e3

s1

s2

s3

Figure 1: Example of an SSTS with three event symbols and three scalar variables.

2. Problem Definition

A Symbolic and Scalar Time Sequence (SSTS) is a temporal data set representation with
a high power of expression. It is defined as follows:

Let E = {e1, . . . , en} be a set of n distinct symbols called event symbols. Let S =
{s1, . . . , sm} be a set of m distinct symbols called scalar symbols. An event is a tuple 〈ei, x〉
where x ∈ R is a timestamp. A scalar mapping is a tuple 〈si, fi〉 where fi is a function
R 7→ R; t→ v that maps each time-stamp t to a value v. Finally, a symbolic and scalar time
sequence d = 〈P,Q〉 is a tuple where P is a set of events and Q is a set of scalar mapping.
By convention, an event of type ei is said to “happen” at time t if 〈ei, t〉 ∈ P , and the value
of the scalar sj at time t is fi(t) with 〈si, fi〉 ∈ Q. Figure 1 shows an example of SSTS.
Note that an SSTS can contain several events with the same (event) symbol.

The SSTS classification problem is defined as follows: Given a set of labeled SSTSs and
a set of unlabeled SSTSs drawn from the same underlying distribution, infer the labels of
the unlabeled SSTSs.

3. Related Work

Published research into temporal data classification can be grouped into three categories:
distance based methods, flattening methods and model based methods. This categorization
does not take into account possible data pre-processing steps.

Distance based methods rely on a definition of a distance between pairs of time series, and
the use of a distance-based classification algorithm (such as e.g. k-nearest neighbors). If the
distance metric requires tuning of its parameters to optimize the data fit, the observations
available for training are split into separate training and validation samples. Methods falling
into this category include nearest neighbor and Euclidean distance (NN+ED) (Ding et al.,
2008), NN+L1 (Ding et al., 2008), NN+Linf (Ding et al., 2008), DTW (Berndt and Clifford,
1994), LCSS (Vlachos et al., 2002), ERP (Chen et al., 2005), EDR (Chen and Ng, 2004),
DISSIM (Frentzos et al., 2007), SWALE (Morse and Patel, 2007), TQUEST (Aßfalg et al.,
2006).

Flattening methods work in two steps. Firstly, temporal data is transformed into a flat
table in which each time series is decomposed into a set of features and then it is repre-
sented by a single row of the table. Secondly, a standard classification algorithm is applied
to thusly prepared flat-table data (Random Forest (Breiman, 2001), SVM (Meyer et al.,
2003), Artificial Neural Networks, or AdaBoost (Freund and Schapire, 2009) have all been
used in this context). Types of features that are commonly used for flattening include basic

3

Guillame-Bert and Dubrawski

statistics of the temporal data computed over moving time windows (mean, standard de-
viation, skewness, kurtosis, etc.), parameters prevalent in forecasting applications (trends,
periodicity), and popular temporal signal projections (Fourier Transform, Wavelet Trans-
forms, Singular Value Decomposition, etc.). Methods that rely on extracting a large amount
of patterns from raw data followed by either applying feature selection and/or applying one
of the classification algorithms to identify combinations of patterns that are effective on the
task, fall into this category (Guillame-Bert and Dubrawski, 2014; Batal et al., 2012; Liu
et al., 1998; Li et al., 2001). In this case, large amount of patterns are extracted according to
user defined constraints (e.g. minimum support) and scores (e.g. F1), before being fed into
a classifier. However, these methods are often slow because of the large amount of patterns
to extract. And because discriminant power for classification does not always imply high
score for a pattern, the methods may miss important patterns.

Finally, direct-model-based methods directly extract from data a model that contains
temporal information. Examples of such methods include Rodŕıguez and Alonso (2004)
and Deng et al. (2013) who have modified the decision forest framework (Breiman, 2001)
to handle time series. In these approaches, conditions in the non-leaf nodes of the decision
trees are of the form fi(t1, t2) < α with fi(t1, t2) function computing a predefined statistic
on all time series points between t1 and t2. For Rodŕıguez and Alonso (2004), fi(t1, t2) is
the mean, standard deviation or the dynamic time warping distance to a template time
series. For Deng et al. (2013), f is either the mean, standard deviation, or an estimation
of the slope. Methods presented in Rodriguez et al., Deng et al. and Ye and Keogh (2009)
do not fit the flattening paradigm because the features or conditions are determined at the
time when the model is built instead of at a separate pre-processing stage. Inductive Logic
Programming (Muggleton, 1991) (ILP) is a general framework that is capable to express
many temporal patterns. Rodriguez et al. (2000) has shown an example of how to use
ILP to classify time series. However, from our experience and because of their general
nature, it is unclear how ILP solvers could learn efficiently temporal patterns containing
time constraints which are not predefined by the users. The two algorithms proposed in
this paper fall in this last category of methods.

One of the two proposed algorithms (GTC-Set) extracts large amount of GTC patterns
(see definition in section 4), and use them with a simple voting mechanism (each active
pattern casts a vote—the most represented class is predicted). This algorithm can be
described trough the pattern-based classification framework described by Bringmann et
al. Bringmann et al. (2011). In this framework, a pattern-based classification algorithm
is divided into three parts: (1) The extraction of a pool of patterns, (2) the selection
of a subset of patterns, and (3) the training of a classifier based on the patterns. The
class of an algorithm is define by whether or not the labels are used in the stage (1) and
(2) i.e. supervised or non-supervised pattern extraction and pattern selection: The main
advantages of using labels in early stages is to “direct” the pattern extraction and selection,
and to generate a smaller and more specialized (and hopefully more performant) set of
patterns. On the other hand, not using labels in the first stage allows the use well studied
of frequent pattern mining algorithms (e.g. frequent itemset mining (Agrawal and Srikant,
1994; Han et al., 2004), frequent sequence mining (Srikant and Agrawal, 1996; Zaki, 2001;
Pei et al., 2001), frequent graph mining (Yan et al., 2008; Nowozin et al., 2007)). In this
framework, the GTC-Set algorithm we propose is a “Model-dependent iterative mining”

4

Classification of Time Sequences using Graphs of Temporal Constraints

algorithm (i.e. the labels are used in the pattern extraction stage), and it does not contains
a pattern selection nor training of a classifier stages: All extracted patterns are directly
and independently used. Such simple application of extracted patterns is only possible
because of the specific extraction of the GTC-Set algorithm. For example, directly and
independently applying all patterns extracted from a frequent itemset mining algorithm
would lead to poor results.

Supervised Descriptive Rule Discovery (Novak et al., 2009) (proposed as a unification
of Contrast Set Mining (Bay and Pazzani, 2001), Emerging Pattern Mining (Dong and Li,
1999), and Subgroup Discovery (Klösgen, 1996)) is the supervised extraction of association
rules from labeled transactional data sets for the purpose of user interpretation and data
discovery. Rules are extracted to maximize a user defined interest score often measuring
a lift-life measure or a statistical distance from a null-space model. Unlike pattern-based
classification, these rules are not designed to be used for classification. In section 7.7, we
discuss how to extract a small but representative subset of GTC patterns from set of patterns
extracted by the GTC-Set algorithm. While being less performant for the classification task
than the original set of patterns, the selected set of patterns aims to be easier to interpret
by a user. The GTC-Set algorithm conjugated with pattern selection method can be seen
as a solution to Supervised Descriptive Rule Discovery on SSTS. Interestingly, and contrary
to most of the Supervised Descriptive Rule Discovery literature, the proposed method build
an interpretable model from a classifier.

Unlike itemset mining, sequential mining allows for the definition and use of a relation of
order in between items. This order is often used to represent the temporal sequence of the
items: One item can be anterior, posterior or concurrent to another item. However, time
distance is not taken into account by sequential mining, and in many dynamical systems,
relations such as the time distance or the overlapping between items is discriminant.

In the literature, learning algorithms dealing with temporally discrete data (e.g. time
point events) face the challenge of representing and extracting temporal constraints between
pairs of time points. In most of the literature such constraints are represented with a subset
C of R: Given two data points with timestamps respectively t1 and t2, the constraint is
satisfied if and only if t2 − t1 ∈ C.

This formulation has a high power of expression, but it can be prone to over-fitting given
the potentially infinite number of candidate patterns and many available and applicable
algorithms for pattern extraction are intractable. Solutions found in the literature rely
on two principles: Constraining possible values of C, and/or defining an inexpensive to
optimize score function on C. The simplest and the most popular solution is to require for
the user to specify a small set of candidates for C (Mannila et al., 1997). Rodŕıguez and
Alonso (2004) and Rodriguez et al. (2000) only consider segments of the form [2i, 2j] where
i and j are integers. Deng et al. (2013) consider a small number of randomly generated
segments. Ye and Keogh (2009) show the use of a decision tree where node conditions are
expressed as thresholds on the distance between the signal and a subset of a time series
called “shapelet”. During training, candidate shapelets are extracted from all possible
subsets of training data, and pruning-based optimization is used to ensure tractability.
Dousson and Vu Duong (1999) consider all segments. Recursively, the algorithm selects
the segment [a, b] that minimizes the surface b − a while holding a user-defined minimum
support. Guillame-Bert (2012) considers all possible unions from a large set of segments

5

Guillame-Bert and Dubrawski

defined by the user {[ai + b, a(i + 1) + b]}i∈[m,n]. Recursively, the algorithm selects the
set of segments that maximizes information gain. The maximization problem is solved
approximately using a forward or backward gradient descent optimization. The resulting
constraint is not necessarily a contiguous segment. Guillame-Bert and Dubrawski (2014)
consider all combinations [bi, bj] where {bi} are provided by the user, and i and j are selected
to maximize information gain. All possible combinations of i and j can be evaluated thanks
to an efficient specialized data encoding.

The algorithms proposed in this work rely on learning constraints of the type [a, b] (a and
b are not constrained). a and b are selected to maximize information gain. This is a strict
improvement over Guillame-Bert and Dubrawski (2014). Efficient and exact, according to
the information gain criterion, extraction of a and b is one of the main results of this work.

4. Graphs of Temporal Constraints

A Graph of Temporal Constraints (GTC) is a set of temporal constraints represented as a
graph.

Definition 1 A GTC is defined by a set of tests Q = {q1, . . . , qn} and a set of constraints
C = {c1, . . . , cm}.

A test qi is defined by an event symbol, a positive or negative flag, and a (possibly
empty) set of scalar tests. A qi test with a positive flag is true at time t if an event with
the given event symbol exists at time t, and if all its scalar tests are true at time t. A test
with a negative flag is true if and only if the same test with a positive flag is impossible to
satisfy.

A scalar test is an inequality constraint based on a scalar mapping value at a time t
defined by the node. In this work, scalar tests are restricted to be inequalities between a
single scalar mapping term and a threshold value.

A constraint ck is defined by two tests qi and qj, a positive or negative flag, and R ⊂ R
(a subset of the real numbers). A constraint with a positive flag is true if its both tests are
true respectively at time ti and tj and if tj− ti ∈ R. A constraint with a negative flag is true
if and only if the same constraint with a positive flag is false. In other words, a negative
constraint [a, b] is equivalent to the disjunctive constraint]− inf, a[∪]b,+ inf[. Additionally,
we restrict GTC not to have conditions/edges starting from a negative test/node.

This restriction is similar to the apriori constraint for association rule mining, and it
guaranties that if built iteratively, the GTCs at successive steps have decreasing support.

A GTC can be seen as a directed graph were each vertex expresses the existential
condition for an event (conditioned by a symbol), i.e. a test, and where each edge expresses
a temporal constraint between the vertices it connects, i.e. a constraint. A GTC can contain
undirected cycles and disconnected components. Fig. 2 shows two examples of GTCs.

Let us now introduce some aspects of notation used for describing GTCs. A GTC
instance {ki}i∈1,...,n assigns times ki to each of the tests qi of GTC A so that all tests and
all constraints of A are true. By convention, A(d) denotes the set of instances of A in an
SSTS d. Note that different instances can partially overlap with each other. By convention,
A is true in an SSTS d if d contains at least one instance of A, i.e. |A(d)| > 0. Trace
T (qi, d) of the test qi of A on the SSTS d is defined as the set of timestamps associated

6

Classification of Time Sequences using Graphs of Temporal Constraints

GTC #1

a

b

c

d

a

[2,10]

[-2,5]

[0,5]
[2,5]

GTC #2

f

g

h

s2>5
[-3,3]

[0,2]

Figure 2: Two examples of GTCs. Dashed vertex (or edge) represents a vertex (or edge)
with a negative flag. Diamond shapes represent scalar tests.

with the test qi for any instances of A on d: T (qi, d) = {ki | ∀{k1, . . . , ki, . . . , kn} ∈ A(d)}.
Given a set of SSTS D = {d1, . . . , dn}, A(D) is the subset of SSTS for which A is true:
A(D) = {di | di ∈ D with |A(di)| > 0}. By convention, a GTC without tests is always true.
Finally, given a set of SSTS D, the support of A is the fraction of SSTS where A is true:
supp(A) = |A(D)|/|D|.

Testing the existence of a GTC in an SSTS (i.e. computing the existence of instances)
can be done by (1) Extracting a set of spanning trees of the GTC (one tree for each of
the GTCs disconnected components), (2) Independently matching each tree to the SSTS
records while continuously, and (3) Checking any additional constraints that were not the
part of the spanning trees. The cost of testing a GTC is polynomial with the number of
events and exponential with the number of nodes. The smaller the surfaces of the temporal
constraints between nodes, the less extensive the exploration, and the faster the GTC
matching. However, in practice (cf. Experimental evaluation section below), the cost of
testing GTCs is insignificant in comparison to the cost of learning these GTCs. It appears
that because the constraints on the edges are selected to be discriminant, they tend to be
restrictive and help in pruning large parts of the exploration space.

To the best of our knowledge, GTC is a novel representation, but it can be related to
some existing temporal pattern representation frameworks. The closest are the Temporal
Constraint Network (TCN) of Dechter (1991), the Chronicles of Dousson and Vu Duong
(1999) and the Tita rules of Guillame-Bert (2012). TCN and Chronicles can be seen as
reduced cases of GTCs in which tests and constraints do not have negative flags and in
which there are no scalar tests. Tita rules allow node negation but do not allow undirected
cycles or disjoint components.

5. Classification with GTCs

In this section, we introduce two SSTS classification models that use GTCs as their building
blocks. The first model we call GTC-Set. A GTC-Set is an unstructured set of labeled
(assigned to represent a particular unique class of STSS) GTCs. Given an unlabeled SSTS
d, the predicted label for d is the most common label among all of the GTCs that are true
on d. Note that this model would perform poorly if it were to contain all possible GTCs
(even with a support constraint). Figure 3 shows an example of a GTC-Set.

7

Guillame-Bert and Dubrawski

a b
c
c1

a b
c
c2

a d

a b

cc
c2

a a
a
c3

b b

c1

c1

(a)

a

a b

a d
a b

c

c1 c2

parent
grand-parentgrand-parent

parent
positive node

negative node

c3

c1 c3

(b)

Figure 3: Examples of a GTC-Set (a) and a tree in a GTC-DF (b). Class labels in the leaf
nodes are denoted with ci.

The second model we call GTC Decision Forest (GTC-DF). A GTC-DF is a set of
decision trees where each non-leaf node is associated with a particular GTC and it has
two children. Additionally, the GTC attached to a decision tree node is constrained to
be directly derived from the GTC of the parent node if connected by a positive decision
tree branch, and from the grandparent node otherwise. This constraint is important and
it will be discussed and justified in the next section. When applying a GTC-DF to classify
a query in the form of a STSS, the decision trees are independently traversed in a familiar
way. Upon arrival in a node, its associated GTC is tested for fitness to the data and the
result of this test determines the direction of further traversal. As in the original decision
forest algorithm (Breiman, 2001), class label distributions are agglomerated across the final
active leaf nodes of each component tree, in order to obtain the joint prediction. Figure 3
shows an example of a tree in a GTC-DF.

Independence of components in GTC-Sets makes these models somewhat easier to in-
terpret by the users than GTC Decision Forests because each of them can be considered
individually. Conversely, interpretation of a GTC Decision Forest model, as well as its infer-
ence process in response to a particular query, requires consideration of GTCs corresponding
to the subsequent nodes in each tree.

6. Learning Temporal Patterns

We introduce two algorithms to respectively extract GTC-Sets and GTC-DFs from a set
of labeled SSTS instances. Both algorithms share the same sub-routines but differ in the
structure of their main loops and therefore in the structure of the extracted GTCs. These
algorithms can be seen as complementary. Experimentation shows that extracting GTC-DF
is on average 40% faster, and it yields less complex models which typically perform slightly
better when compared to GTC-Set models obtained from the same data (cf. Section 7.6).
On the other hand, GTC-Sets allow easier interpretation of the results and the models
themselves by the users (Section 7.7).

8

Classification of Time Sequences using Graphs of Temporal Constraints

Both algorithms build GTCs by recursively applying constructive operations. In the
process, selection of the next operation to apply is guided by maximizing the local informa-
tion gain. This section presents GTC building operations, defines the concept of information
gain of an operation, presents how to efficiently identify the operation with the highest in-
formation gain, and details the main loops of the two algorithms. Our proposed solution to
how to efficiently extract optimal temporal constraints for the edges in GTCs is one of the
main novelties of this work.

6.1 Constructive Operations on GTCs

Constructive operations on a GTC include:
O1: Addition of a new test (i.e. addition of a vertex),
O2: Addition of a constraint between two existing tests (i.e. addition of an edge),
O3: Addition of a scalar test to an existing test,
O4: Addition of a new test and addition of a constraint between this test and an already
existing test.

Each operation requires specific parameters. O1 requires an event symbol and a posi-
tive/negative flag. O2 requires two existing tests, a flag and a subset of R. O3 requires an
existing test and a scalar test defined by a scalar symbol, a threshold value and an inequal-
ity direction (< or ≥). O4 requires a combination of arguments of O1 and O2. Note that,
because of the threshold value of the scalar test in O3, and because the need for a subset
of R in O2 and O4, these operations have an infinite number of possible parameter values.
Operation O4 is equivalent to operations 1 and 2 combined. We justify its existence later.

Both proposed algorithms require for the set of positive SSTS according to a GTC to
be monotone decreasing when applying operations: Given a set D of SSTSs, a GTC A,
an operation O and B the result of O on A. Algorithms require for the set of positive
SSTSs according to B to be contained in the set of positive SSTSs according to A i.e.
B(D) ⊂ A(D). This implies that each operation reduces (albeit not strictly) the support of
the GTC it is applied to. For this reason, operations O2-O4 cannot be applied on negative
nodes.

The result of the negation of an operation O on a GTC A is a GTC B′ such that
∀d ∈ D,A(d) ⇒ (B(d) ⇔ ¬B′(d)) and ¬A(d) ⇒ (¬B(d) ∧ ¬B′(d)), where B is the result
of O on A. Note: ⇔ and ¬ are respectively the logical equivalence and logical negation.
Except for trivial cases, the GTC resulting from the negation of an operation is more
complex than the result of the operation. In the case of fully connected GTCs, the size of
the GTC resulting from the negative operation is twice the size of the result from the direct
operation. Instead, we define the approximate result of the negation of an operation. This
approximation is not exact but it provides reasonable results as presented in Section 7.

Whether to use or not the approximate negation is the main difference between the two
proposed algorithms. Figure 4 illustrates these operations and their associated approximate
negations. Adding a constraint to a test with a negative flag would violate the support
reduction property and it is therefore forbidden. The goal of O4 is to allow creating a
connected test with a negative flag without violating the support reduction requirement.

As a simple example, consider the four GTCs shown in figure 5a. B is the result of an
operation of type O4 on A. B′ is the result of the negation of this operation. B′′ is the

9

Guillame-Bert and Dubrawski

a a b

a b a b a b

a a s>5 a s≤5

a a b a b

a b1. Add new test

2. Add a constraint

3. Add a scalar test

4. (1) + (2)

B B'AOperation O

#1 #2 #3

#4 #5

#6

#7

Figure 4: Illustration of the constructive operations on GTCs. Each row of graphs rep-
resents a specific operation. Column A represents the initial GTC. Column B
shows the result of executing the particular operation on the initial GTC. Col-
umn B’ depicts the result of the approximate negation of the operation. Dashed
nodes and edges represent respectively tests and constraints with negative flags.
Diamonds represent scalar tests. Description of the GTCs: #1: An event of type
a is present. #2: An event of type a and an event of type b are present. #3: An
event of type a is present, but no event of type b is present. #4: An event of type
a and an event of type b are present, and they satisfy the constraint of the edge.
#5: An event of type a and an event of type b are present, and they satisfy the
complementary constraint of the edge. #6: An event of type a is present at time
t such that the scalar s value is greater than 5 at time t. #7: An event of type a
is present at time ta such that there is no event b at time tb such that ta and tb
satisfy the constraint.

approximate result of the negation of this operation. A expresses that “There is an event a
followed by an event b between 0 and 2 time units”. B expresses that “There is an event a
followed by an event b between 0 and 2 time units, itself followed by an event c between 1
and 3 time units”. B′ expresses that “There is an event a followed by an event b between 0
and 2 time units, but there is not an event a followed by an event b between 0 and 2 time
units, itself followed by an event c between 1 and 3 time units”. B′′ expresses that “There
is an event a followed by an event b between 0 and 2 time units, itself not followed by an
event c between 1 and 3 time units”. Figure 5b shows an SSTS B′′ is true but where B′ is
not.

6.2 Information Gain Maximization

Both of the proposed GTC extraction algorithms are driven by the information gain maxi-
mization criterion. We define entropy H of a set of labeled SSTS D as the entropy of the

10

Classification of Time Sequences using Graphs of Temporal Constraints

a bA:

a bB:

a bB':

a bB'':

c

a b c

c

[0,2]

[1,3][0,2]

[0,2]

[0,2]

[0,2] [1,3]

[1,3]

(a) Suppose a GTC A. B is the result of an op-
eration of type O4 on A. B′ is the result of the
negation of this operation. B′′ is the approximate
result of the negation of this operation.

a
b
c
0 1 2 3 4 5 6 7 8

(b) Example of SSTS with B′ false but B′′ true.

Figure 5: Illustration of the negation and the approximate negation of an operation.

distribution of their labels

H(D) =
∑
i

−pi(D) log pi(D)

, with pi(D) representing the relative frequency of label i in D. Additionally, we assert
0 log 0 = 0.

Given a set of SSTSs D = d1, . . . , dn, a GTC A such that A is true for all di, and an
operation O, if B is the result of O on A, then information gain IG of the operation O on
A can be defined as

IG = H(D)− |B(D)|
|D|

H(B(D))− |D \B(D)|
|D|

H(D \B(D))

, where H(D) is commonly called the initial (prior) entropy, and the rest of the right hand
side of the formula is the weighed final (posterior) entropy.

During the training stage, given a GTC A, both algorithms rely on finding such con-
structive operation and its parameters that maximize the information gain. Except for
operation O1, testing and evaluating the information gain over the range of possible param-
eter values is in most cases infeasible because of the infinite number of tests it might involve.
We propose a solution based on the following four considerations: (1) Instead of considering
all subsets of R (operations O2 and O3), we only consider contiguous segments of R; (2)
Since each finite data set consists of a finite number of SSTSs, and each SSTS is composed
of a finite number of events, there is only a finite number of parameter values that need to
be considered; (3) The procedure of extracting a plausible threshold for an operation O3,
and the corresponding segments of R, can be optimized for computational speed with an
appropriate algorithm and an appropriate internal data structure; and (4) Random sam-
pling can be used as an option to further speed up the extraction of the optimum threshold
and the optimum segments of R.

The next two subsections show how to build decision forests and sets of GTCs models
using information gain maximization. Subsection 6.5 shows how to compute efficiently the
threshold of operation O3 that maximize their information gain. Subsection 6.6 shows how
to compute efficiently the segment of R that maximize their information gain for operations
O2 and O4.

11

Guillame-Bert and Dubrawski

6.3 Learning Decision Trees and Forests of GTCs

We build decision trees and forests of GTCs similarly to how standard decision trees and
forests are built (Quinlan, 1993; Breiman, 2001). The two differences are that: (1) Each
decision node of a GTC tree is assigned a GTC instead of a single threshold condition on a
single data feature as it is the case of the standard model; and (2) The structure of a GTC
representing a node of a GTC tree is heavily constrained by the structure of the GTCs of
its parent and grand-parent nodes.

The algorithm for training a GTC tree starts with a single empty GTC and it looks for
the operation on it that yields the highest information gain. This operation is then applied,
and the resulting GTC is used to define the root node constraint. The root node constraint
is used to split the training SSTSs into two complementary subsets. The same procedure is
further recursively applied to these subsets and additional nodes are appended to the tree
until a stopping criterion is met. The GTC of a positive node of the decision tree will be
derived by applying a single operation on the GTC attached to its parent. The GTC of
a negative node of the decision tree will be derived by applying a single operation on the
GTC attached to its grand-parent. This restriction has three benefits: (1) Search space for
the new GTC is limited and therefore fast to explore. (2) The new GTC is constrained and
therefore the risk for it to over-fit is mitigated. (3) GTCs of an arbitrary complexity can
still be derived. A GTC Decision Forest (GTC-DF) can be obtained by bootstrapping data
for GTC decision tree learning from the training set of SSTSs. Note that we typically also
bootstrap the GTC-Set models and in fact use ensembles of GTC-Sets, cf. Algorithm 2.
Pseudocode in Algorithm 1 provides details.

Algorithm 1: Extraction of a GTC decision forest from data.

input : D: A set of SSTSs
b: The number of bootstrap iterations (e.g. 20)
l: The minimum number of times a GTC is used (e.g. 5)

output: M : The set of extracted labeled GTCs
Algorithm

for i ← 1 to b do
A← an empty GTC
recursive build(D,A)

Subroutine recursive build(D,reference to A)

M ←M ∪A
if |A(D)| < l then

label(A)← most frequent class in D with A true
return

o← find the operation on A with the highest information gain
B2 ← A
A← result of O on A
B1 ← A
set B1 and B2 to be respectively the positive and negative children of A
recursive build(B1(D), B1)
recursive build(D \B2(D), B2)

12

Classification of Time Sequences using Graphs of Temporal Constraints

6.4 Learning Sets of GTCs

This sub-section introduces the algorithm to extract a GTC set from data. This algorithm
starts with a single empty GTC A and looks for the operation with the maximum infor-
mation gain to extend its structure. This operation and the approximate negation of it are
applied to the GTC A to create two new GTCs, respectively B1 and B2. A is then removed.
The same process is next recursively applied to both B1 and B2 until a stopping criterion
is met. Finally, each remaining (i.e. non removed) GTC is assigned to the most common
class of the SSTS where it is true. Note that because of the approximated negation B1(D)
and B2(D) are not necessary disjoint (the last line of the Algorithm 2).

Algorithm 2: Extraction of a GTC set.

input : D: A set of SSTSs
b: The number of bootstrap iterations to execute (e.g. 20)
l: The minimum number of times a GTC is used (e.g. 5)

output: M : The set of extracted labeled GTCs
Algorithm

A← an empty GTC
for i ← 1 to b do

M ←M ∪ recursive build(D,A)

Subroutine recursive build(D,A)

if |D(A)| < l then
label(A)← most frequent class in D with A true
return A

o1 ← find the operation on A with the highest information gain
o2 ← approximate negation of o1
B1 ← result of o1 on A
B2 ← result of o2 on A
return recursive build(B1(D), B1) ∪ recursive build(B2(D), B2) // Note that it

is not required nor expected that B1(D) ∩B2(D) = ∅

6.5 Finding the Optimal Scalar Tests

A scalar test is defined by an existing test qi, a scalar symbol sj , a threshold value α and
the direction of inequality (< or ≥). The problem of finding the optimal threshold value
is different but related to the problem of finding the optimal threshold in the decision tree
learning algorithm C4.5 (Quinlan, 1993). Unlike C4.5, our algorithms need to consider
several scalar values for each observation/SSTS: one scalar value for each GTC instance on
a given SSTS.

To identify the optimal scalar test, the algorithm considers all possible existing tests
qi with a positive flag, every scalar symbol sj , and both inequality directions < and ≥.
For each of these values, the algorithm computes the optimal threshold value α as follows.
Consider a GTC A, the set of training SSTS D = {di}1..n, the scalar symbol sj , the existing
test qi of A, and the inequality direction < or ≥. We first compute a n×2 matrix L defined

13

Guillame-Bert and Dubrawski

as follows:

L[j, 1] =

{
min({sj(x)|∀i, x ∈ T (qj , di)}) if the inequality is <
max({sj(x)|∀i, x ∈ T (qj , di)}) if the inequality is ≥

}
L[j, 2] =label(dj)

where T (qj , di) is the trace of the test qj on the SSTS di (see the definition in Section 4).
Next, this matrix is sorted according to its first column and all possible threshold values are
evaluated in a sequence. α is defined as the threshold with the highest information gain.
Algorithm 3 shows the details of these operations:

Algorithm 3: Finding the optimal threshold value α for a new scalar test.

input : L: A n× 2 matrix as described in section 6.5.
output: α: the optimal threshold

Sort L according to the first column values
h′ ← +∞ ; i′ ← 0 ; w ← false
X ← {0} × C with C the number of classes
Y ← such that Yi is the number of SSTS of class ci
for i← 1 to n− 1 do

XL[i,2] ← XL[i,2] + 1
YL[i,2] ← YL[i,2] − 1
if L[i+ 1, 1] 6= L[i, 1] ∧ (L[i+ 1, 2] 6= L[i, 2] ∨ w) then

w ← false
h← entropy(X)i+ entropy(Y)(n− i)
if h < h′ then

h′ ← h ; i′ ← i

else
w ← true

α← (L[i′, 1] + L[i′ + 1, 1])/2

6.6 Finding the Optimal Segment of R

Operations O2 and O4 require specification of a time constraint. In this work, we restrict
time constraints to be contiguous segments [a, b] ∈ R, albeit in general this restriction can
be lifted without harm. The data set being finite, the number of meaningful candidate
boundaries for a and b is also finite.

Given a GTC A and an operation O2 or O4 to apply, we define M(dk) ⊂ R as follows.
For operation O2, given two tests qi and qj of A, M is defined as M(dk) = {x1 − x2|∀x1 ∈
T (qi, dk), x2 ∈ T (qj , dk)}. For operation O4, given an existing test qi of A and an event
symbol ej , M is defined as M(dk) = {x1 − x2|∀x ∈ T (qi, dk),∃〈ej , x2〉 ∈ dk}. Note that M
is computed from the trace T that is itself computed during the GTC evaluation.

By design, (1) If A is not valid on an SSTS dk, then M(dk) is empty; and (2) If A is
valid on an SSTS dk, then the GTC resulting from applying the current operation with
constraint [a, b] on A is valid on dk if and only if ∃x ∈M(dk) such that x ∈ [a, b].

We define Y =
⋃

kM(dk), and Yi to be the ith smallest element of Y . Finally, we define
Z as the set of all candidate boundaries (i.e. a, b ∈ Z) as Zi = {(Yi + Yi+1)/2}i∈[1,|Y |] ∪

14

Classification of Time Sequences using Graphs of Temporal Constraints

{Y1} ∪ {Y|Y |}. In case of large data sets, or in case of small data sets with high risk of
over-fitting, the set of candidate Z can be randomly sampled down. Such down sampling
is in essence equivalent to attribute sampling used e.g. in Random Forest. In practice,
this significantly speeds up the search for the optimal time constraint without reducing the
model accuracy because of the redundant nature of the decision tree or decision set models.
We observed experimentally that limiting Z to 40 elements (i.e. 402 interval candidates)
does not impact the models’ empirical accuracy.

Finding the segment [a, b] that maximizes the information gain is an optimization prob-
lem in a finite and countable two dimensional space. The naive and direct solution to this
problem requires evaluating a GTC on each SSTS for each unique point in the search space
(i.e. for each possible (a, b) ∈ Z2 with a < b). This solution leads to the worst case com-
putational cost of O(|Z|2nE) with n being the number of SSTSs and E the computational
cost to compute the instances of a GTC on an SSTS. This cost may easily become pro-
hibitively expensive for any realistically complex application. An alternative, more efficient
solution is to iterate over M to evaluate application of the GTC. This solution only requires
evaluating the initial GTC once, it does not require evaluating the resulting GTC, and it
has a computational cost of O(|Z|2n + En). It allows us to handle much larger problems
than when using the naive approach.

Instead of these two implementations, we propose a third solution with a time complexity
of O(|Z|2 + nE) (instead of O(|Z|2nE) of O(|Z|2n + En), as above). This new approach
relies on the two following properties: (1) If h ∈ M(dk), then the GTC resulting from the
current operation with the time constraint [h, h] is true on the SSTS dk; (2) If the GTC
with the new constraint [a, b] is true on the SSTS dk, then all GTCs with a time constraint
[a′, b′] ⊃ [a, b] will also be true on the SSTS dk.

The last solution relies on building a |Z| × |Z| × (C − 1) matrix P where C is the
number of classes in the classification problem. After being built, each element of P [x, y, z]
represents the number of SSTSs in training data which belong to class z and that match the
GTC A after it was subjected to the new operation with the time constraint [Zx, Zy]. Once
the matrix P is computed, search for the optimal time constraint can be done in one pass
over P by iterating over x and y, then over z in the inner loop. Algorithm 4 shows how to
efficiently construct matrix P . Note that in practice, search for the optimal time constraint
can be merged with the last “for” loop of the algorithm. Figure 6 illustrates the Algorithm 4
step by step using a small example. Also note that while we use P to optimize information
gain, P can be used to optimize any metric that relies on GTC matching counts.

7. Experimental Evaluation

In this section we report and discuss performance of the two proposed algorithms (GTC-DF
and GTC-Set) as compared to a wide variety of alternative approaches found in literature.
The algorithms are evaluated on a collection of 59 unique data sets described below. All
these data sets are publicly available online.

7.1 Synthetic Data (1 set)

The synthetic data set is composed of a relatively simple collection of 200 computer-
generated, purely symbolic SSTSs. Each of them contains one instance of each type of

15

Guillame-Bert and Dubrawski

Algorithm 4: Building matrix P .

input : Z: The set of candidate boundaries.
M : The “meet” sets.

output: P : Matrix P .

// a. Initialization

P ← a |Z| × |Z| × (C − 1) matrix filled with zeros
for k = 1 to |D| do

k ← −1; c← class of dk
if c = C then continue
m←M(dk) // mi is the ith smallest element of m.

for i = 1 to |m| do
j ← such that Zj ≤ mi < Zj+1 // Note: i 7→ j is monotonically increasing

P [j, j, c]← P [j, j, c] + 1
if k 6= −1 then P [j, k, c]← P [i, k, c]− 1
k ← i

// b. Vertical upward spread

for i = 1 to |Z| do
X ← {0} × (C − 1)
for j = i to |Z| do

X ← X + P [j, i,]
P [j, i,]← X

// c. Horizontal left spread

for i = 1 to |Z| do
X ← {0} × (C − 1)
for j = i to 1 do

X ← X + P [i, j,]
// Note: Here X contains the class distribution for the candidate GTC

with time constraints [Zj , Zi].
P [i, j,]← X

events from the set A, B and C, respectively at times ta, tb and tc. For each SSTS, ta is
sampled uniformly from [0, 200], and tb and tc are sampled uniformly from [ta− 15, ta + 15].
If |ta − tb| < 10 and |ta − tc| < 10 and |tb − tc| < 10, then the SSTS is labeled as class 1.
Else, if |ta − tb| < 10, then the SSTS is labeled as class 2. If none of these conditions are
valid, the SSTS is labeled as class 3. This data set aims to evaluate our algorithm capability
of correctly learning temporal constraints from data. The synthetic data set as well as a
Python script used to generate it are available at mathieu.guillame-bert.com/dataset.

7.2 UCR Time Series Classification Repository (41 UCR Data Sets)

The University of California at Riverside (UCR) benchmark data is a collection of 41 diverse
data sets representing time series classification problems of varying complexity. These data
sets have the particularity to be aligned i.e. given a data set, the i-th observations of all time
series reflect the same phenomenon observed at the same moment of time. Because of this
alignment, “visual” measures of distance between instances of such data (e.g. Euclidean or

16

Classification of Time Sequences using Graphs of Temporal Constraints

b ca

+1

-1 +1

+1

a

b

c

a. Initialization of the matrix

c1

c1

a, b

c
c

a b

b ca

a

b

c

b. Vertical upward spread

→

→

→

c. Horizontal left spread

b ca

a

b

c

→

→

→

1

2

M[i,j,_] is the class distribution
for the time constraint [Zj,Zi]

dataset SSTS class M(dk)

d1

d2

A B
?

A B B

A B

Input and M

Figure 6: Step by step illustration of Algorithm 4 to constructM , matrix P , and the optimal
time interval constraint.

Dynamic Time Warping (DTW) restricted to a very small shift coupled with one nearest
neighbor) and algorithms designed for “flat” data sets (such as e.g. SVM) can be very com-
petitive. The UCR data sets are organized into two groups: Group 1 (18 sets) and Group 2
(23 sets). The number of classes, number of time series, and their lengths, vary in these data
sets respectively from-to [2, 50], [56, 7164] and [60, 637] for Group 1, and [2, 25], [322, 9236]
and [28, 1882] for Group 2. It appears that the sets in Group 2 are on average larger than sets
of Group 1. These data are available at http://www.cs.ucr.edu/∼eamonn/time series data.

7.3 16 Rotated UCR Data Sets

The UCR data sets are aligned, and it is likely that some classification models applied to
them may rely on and benefit from this alignment. These data sets also contain rich local
patterns. We propose to modify the UCR data by breaking their alignment in order evaluate
the ability of classification algorithms to learn discriminative local patterns. In this way, the
modified UCR collection can be used to evaluate algorithms on the significant problem of
classifying non-aligned time series and SSTSs. One such scenario involves problems where
the starting point of time series observation is arbitrary, which is the case of many practical
applications in which we may not have the luxury of observing a modeled process from a

17

Guillame-Bert and Dubrawski

The original data

A rotated copy

Class 1 Class 2 Single observations (Class 1)

Figure 7: The original and one rotated copy of the UCR Gun Point data set.

well-defined initial setting. We call this modified collection of benchmark data the “Rotated
UCR data sets”.

The rotation is performed as follows: We break any potentially pre-existing alignment
of a data set by randomly and independently shifting each time series in it versus others.
Given a time series X = [x1, . . . , xn], the rotated copy is defined as X ′ = [xi, . . . , xn, x1, . . .
, xn, x1, . . . , xi−1] with i being a uniformly random integer drawn from the range [1, n] and
unique to each time series. In order to avoid disturbing local patterns (if they exist), the
rotated series are doubled in length with regard to the originals. To enable comprehensive
evaluation, we independently generate 10 rotated copies for each of the originals and use
each of these copies independently in experiments. The reported classification performance
will be computed by averaging the results obtained from the 10 rotated copies. To avoid
excessive computation costs, we chose to rotate all but two UCR Group 1 sets. As an
example, Figure 7 shows the original UCR Gun Point data and one of its rotated copies.

7.4 Internal Bleeding Detection Data Set (1 Set)

Undetected internal bleeding during and after surgical procedures is a major medical con-
cern. Early and reliable detection of internal bleeding is therefore considered a significant
medical research problem. We assembled the Bleeding Detection Data Set from vital signs
measured at high frequency (250Hz) using a bed-side hemodynamic monitoring system.
The collected measurements include arterial blood pressure, central venous pressure, and
airway pressure. The data has been collected from a cohort of 52 healthy pigs subjected to
induced slow bleeding. Each animal has been sedated, instrumented, left to rest for half an
hour, and then bled at the fixed rate of 20mL/min. From the vital sign records of each pig,
we randomly sampled two 30 second long segments of data: One from the resting period
before and one approximately 2 minutes into the bleeding. Pre- and post-bleeding segments
are respectively labeled as negative and positive. Unlike in the UCR data sets, the SSTSs
(vital signs) are not temporally aligned: The starting point of observation is effectively
arbitrary. Moreover, the data is multivariate.

For reference, current clinical practice is usually unable to detect internal bleeding earlier
than 10 to 15 minutes after the onset of a slow internal bleeding episode. We try to push

18

Classification of Time Sequences using Graphs of Temporal Constraints

Air. pressure

Art. pressure

CVP

Time Time

Before bleeding 2 min into induced bleeding

Figure 8: Four second samples of vital sign time series collected from one pig in pre-bleed
phase (left) and 2 minutes into the induced bleeding (right). Note that in practice,
vital signs of different animals tend to look less similar than vital signs of a same
animal before and after bleeding. Air. pressure stands for Airway pressure. Art.
pressure stands for arterial blood pressure, and CVP stands for central venous
pressure.

that limit by considering SSTSs observed at a 2 minute mark into bleeding, when the data
is not yet visually differentiable to expert clinicians. Figure 8 shows small parts of the pre-
bleed and 2-minutes-in snapshots of vital signs data observed for one animal. The internal
bleeding detection data set is available at mathieu.guillame-bert.com [Guillame-Bert].

7.5 Experimental Setup

Purposive featurization of time sequence data can sometimes significantly impact perfor-
mance of the resulting models. In order to avoid obfuscating the relative performance of
various algorithms being compared in this paper, we decided to not invest time and effort
to produce advanced and potentially informative algorithm-specific featurizations of raw
data. Instead, we relied on two basic statistics (moving averages and moving standard
deviations), and we marked easily detectable peaks manifesting in the scalar data using a
simple threshold criterion on the signal’s second order derivative.

All considered algorithms have been implemented (or re-implemented) in C++ to ensure
fairness of comparison. The computation times reported include training and evaluation
over the complete 10-fold cross-validation cycles. This allows fair comparisons of lazy (e.g.
10NN) and non-lazy (e.g. our methods) algorithms. Experiments have been performed on
a 3.4GHz i7 8-core processor with 16GB of main memory. Multiple algorithms were slow
when applied on the UCR data set StarLightCurves (StarLC). Algorithms taking more than
one day of computation for the 10-fold cross-validation were stopped and the expected total
computation cost was estimated from the completed iterations. For this reason, results on
StarLightCurves data are not used in computation of the global rankings.

19

Guillame-Bert and Dubrawski

7.6 Results

We compare our two algorithms against 13 related and relevant alternative classification
algorithms for time series. The reference list includes: ED+NN : Euclidean Distance (i.e. L2

distance) with Single Nearest Neighbor (Ding et al., 2008), ED+kNN : Euclidean Distance
with k Nearest Neighbors (k is specified by the user), ED+CVkNN : Euclidean Distance with
k Nearest Neighbors (k is determined through an internal loop 10-fold cross-validation exe-
cuted on each training fold of the main 10-fold cross-validation loop), DTW+NN : Dynamic
Time Warping (Berndt and Clifford, 1994) with Single Nearest Neighbor, DTWC+NN : Dy-
namic Time Warping with Constrained Warping Window (Berndt and Clifford, 1994) with
Single Nearest Neighbor, EDR+NN : Edit Distance on Real Sequence (Chen and Ng, 2004)
with Single Nearest Neighbor, ERP+NN : Edit Distance with Real Penalty (Chen et al.,
2005) with Single Nearest Neighbor, LCSS+NN : Longest Common Subsequence (Vlachos
et al., 2002) with Single Nearest Neighbor, LCSSC+NN : Longest Common Subsequence
with Constrained Warping Window (Vlachos et al., 2002) with Single Nearest Neighbor,
L-1+NN : L1 distance with Single Nearest Neighbor, L-inf+NN : L∞ distance with Single
Nearest Neighbor, RF : Random Decision Forest (Breiman, 2001), SVM : Support Vector
Machine Meyer et al., 2003, Default : Always return the most frequent class.

Algorithm parameters have not been tuned and were assigned to their meaningful default
settings (except for k in ED+kNNCV), as follows. RF : maxNumTrees(30), minNumOb-
servations(5), maxDepth(10). LCSS+NN : e(0.05 standard deviation). EDR+NN : e(0.25
standard deviation). LCSSC+NN : The maximum window is set to 25% of the data set
length. It is worth noting that one could argue that the maximum window setting (c) of
25% is too high to operate DTWC and LCSSC on the UCR data sets, but we have chosen
that for the three following reasons. Firstly, we have not tuned any algorithm parameters
for specific data sets except for k in ED+kNNCV. Secondly, we have evaluated Euclidean
Distance method being equivalent to DTWC with c=0%, and DTW being equivalent to
DTWC with c=100%. Thirdly, c is a constraint parameter that only and strictly expands
search space of the closest element when increased. We have experimented with alterna-
tive settings of this parameter and we have indeed obtained slight variations of empirical
accuracy of DTWC, but these variations have not materially changed performance rank-
ings reported below. We therefore chose to evaluate DTWC+NN (and other constrained
dynamic programming distances) with c=25% for consistency. It is significant to remark
that we evaluated the original implementation of DTW (Berndt and Clifford, 1994). Sev-
eral pruning criteria have been studied to reduce the computation time without impacting
the classification performances, including the work of Keogh and Ratanamahatana (2005).
DTWC+NN : The maximum window is set to 25% of the data set length. ED+CVkNN : k is
searched between 1 and 10. It is likely that optimizing parameters of each algorithm using
internal cross-validation might improve their results, but it would significantly increase the
computation time.

All reported results have been computed using the same 10-fold partitioning of data.
In the case of the rotated UCR data sets, the 10-fold cross-validation is repeated for each
of the 10 rotations of each rotated data set (e.g. each reported error rate is computed
from 100 train and test experiments). In Bleeding Detection Data Set, we ensure that the

20

Classification of Time Sequences using Graphs of Temporal Constraints

complete record for each animal is either entirely used for training or for testing in each
cross-validation iteration.

Reported evaluation figures for the UCR data sets are not directly comparable with
figures reported by Ding et al. (2008) or the figures available on the UCR Time Series
web page: In Ding et al. (2008), evaluation results are computed with a “reversed cross-
validation” where each of the n folds is successively used for training while the remaining
n−1 folds are used for testing. On the UCR Time Series web page, evaluation is performed
with a train and test protocol.

Tables 1 and 3 respectively compile the observed classification errors of all algorithms
on the UCR data sets and rotated UCR data sets. The average rank and median rank
are also reported for each algorithm. Table 2 shows the cumulative computation times of
training and testing cycles for each algorithm. Table 4 shows the accuracy, classification
error, AUC scores and computation times of each algorithm when applied to the Bleeding
Detection Data Set. Figure 9 shows the ROC of the GTC-DF and Random Forest models
obtained for this data set.

First, both our algorithms show a 100% accuracy on the synthetic data. This simple
experiment validates their ability to identify explicit temporal sequence patterns when they
exist.

The experiments on the UCR data, rotated UCR data, and Bleeding Detection Data Set
(Tables 1, 3 and 4), show consistently high performance of our algorithms in comparison
to state-of-the-art alternatives. On the original UCR data, and when considering 13 other
methods, GTC-DF and GTC-Set have the highest average and median ranks of accuracy
(respectively a median rank of 2 and 2.5 for Group 1, and 2.5 and 2.5 for Group 2). The
next best methods are ERP+NN (med. rank of 4.8) and DTW+NN (med. rank of 6) for
Group 1, and SVM (med.rank of 4.5) and ERP+NN (med. rank of 5) for Group 2. It is
worth noting that since the original UCR data sets are internally aligned, methods that rely
on basic distance metrics (e.g. Euclidean Distance or DTWC with very strong constraints
e.g. c=0.5%) tend to perform relatively well and are also cheap to compute.

The Wilcoxon signed-rank test (Demšar, 2006) was applied to evaluate the significance
of differences of performance between each algorithms. The resulting p-values are reported
in Table 5. GTC-DF performs significantly better than all the other evaluated methods
(including GTC-Set). Additionally, GTC-Set, while performing significantly worse than
GTC-DF, performs significantly better than all the other evaluated methods.

21

Table 1: Empirical classification error rates observed for the algorithms under consideration on the UCR data sets from Groups 1
and 2. The first column contains the acronym names of the algorithms (our methods are labeled GTC-DF and GTC-Set),
and the next two columns show average rank and median rank of each algorithm based on their accuracy performance
measured on the individual data sets. The algorithms are sorted according to their average rank, and the two proposed
methods top the sorted list.

(a) Error rates for the UCR Group 1 data sets.

Algo. avg.rank med.rank 50words Adiac Beef CBF Coffee ECG200 FaceAll Face4 GunPoint Lighting2 Lighting7 OSULeaf Trace 2Patterns Fish Synthetic Wafer Yoga

GTC DF 3.5 2 .225 .237 .300 .005 .036 .115 .045 .018 .015 .223 .196 .242 .000 .001 .066 .007 .000 .045
GTC Set 3.7 2.5 .235 .256 .250 .004 .036 .120 .045 .018 .010 .223 .203 .265 .000 .001 .074 .012 .001 .045
ERP+NN 4.8 5.5 .254 .344 .550 .000 .107 .125 .010 .018 .015 .107 .315 .240 .090 .000 .143 .023 .002 .037
DTW+NN 5.9 6 .261 .359 .550 .000 .107 .175 .012 .027 .060 .132 .294 .269 .005 .000 .177 .018 .003 .055
DTWC+NN 5.9 6 .250 .359 .550 .000 .089 .175 .012 .027 .060 .132 .301 .269 .005 .000 .177 .018 .003 .062
EDR+NN 6.7 5 .171 .830 .567 .009 .036 .105 .008 .009 .055 .182 .308 .143 .030 .000 .226 .112 .002 .073
SVM 7.1 6.5 .277 .344 .667 .002 .071 .115 .023 .062 .015 .248 .350 .301 .130 .013 .094 .018 .001 .042
RF 7.8 8.5 .349 .297 .517 .002 .268 .120 .051 .009 .025 .190 .238 .367 .080 .012 .189 .023 .004 .066
ED+NN 8.1 9 .322 .329 .517 .009 .125 .105 .038 .071 .050 .231 .343 .342 .130 .013 .174 .078 .001 .056
L1+NN 8.3 8 .282 .350 .550 .015 .143 .065 .031 .027 .050 .190 .322 .328 .135 .003 .191 .100 .002 .056
LCSSC+NN 9.5 11 .360 .362 .550 .012 .161 .210 .279 .152 .035 .223 .441 .176 .060 .002 .091 .270 .004 .027
LCSS+NN 9.6 11 .360 .362 .550 .012 .161 .215 .283 .152 .035 .223 .441 .179 .060 .001 .091 .262 .004 .027
ED+5NN 11.3 11 .345 .387 .550 .009 .304 .110 .080 .125 .095 .281 .378 .391 .315 .020 .180 .092 .003 .078
Linf+NN 12.4 14 .429 .306 .483 .181 .071 .135 .148 .268 .095 .372 .580 .389 .150 .693 .171 .137 .007 .083
ED+CVkNN 12.6 14 .402 .435 .567 .008 .286 .095 .111 .152 .120 .355 .427 .457 .445 .032 .211 .113 .004 .097
ED+10NN 12.6 14 .402 .435 .567 .008 .286 .095 .111 .152 .120 .355 .427 .457 .445 .032 .211 .113 .004 .097
default 17.0 17 0.88 0.986 0.983 0.712 0.625 0.335 0.855 0.696 0.62 0.397 0.734 0.781 0.85 0.739 0.937 0.885 0.106 0.464

(b) Error rates for the UCR Group 2 data sets.

Algo. avg.rank med.rank ChlorineC ECGtorso CricketX CricketY CricketZ DiatSRed ECG5D FacesUCR Haptics InlineS ItPwrDmd MALLAT MedImgs MoteStrain SonyRbtS SonyRbtS2 Symbols 2LeadECG WordsSyn uWvGLibX uWvGLibY uWvGLibZ StarLC*

GTC DF 4.3 2.5 .194 .004 .171 .167 .162 .006 .000 .040 .475 .348 .031 .000 .155 .039 .011 .035 .021 .003 .210 .158 .215 .206 .022
GTC Set 4.5 2.5 .236 .001 .169 .171 .173 .006 .001 .044 .473 .335 .033 .000 .162 .039 .016 .036 .020 .003 .224 .156 .221 .209 .025
SVM 4.6 4.5 .045 .000 .291 .279 .272 .003 .000 .021 .467 .423 .034 .017 .191 .057 .006 .006 .031 .002 .267 .184 .255 .243 .029
ERP+NN 5.7 5 .008 .002 .212 .177 .208 .003 .005 .011 .540 .395 .045 .006 .199 .031 .018 .017 .023 .002 .228 .221 .298 .274 2.000
DTW+NN 7.0 8 .008 .001 .321 .309 .328 .000 .003 .032 .605 .469 .037 .006 .215 .031 .021 .012 .034 .006 .256 .228 .283 .296 2.000
DTWC+NN 7.0 8 .008 .001 .321 .309 .328 .000 .003 .032 .605 .469 .037 .006 .215 .031 .021 .012 .034 .006 .256 .228 .283 .296 2.000
L1+NN 7.0 8 .008 .001 .321 .309 .328 .000 .003 .032 .605 .469 .037 .006 .215 .031 .021 .012 .034 .006 .256 .228 .283 .296 .111
LCSS+NN 7.3 5.5 .077 .003 .276 .219 .264 .019 .005 .028 .533 .415 .059 .026 .225 .023 .095 .105 .014 .002 .177 .208 .286 .263 2.000
LCSSC+NN 7.3 6 .077 .003 .277 .219 .263 .019 .005 .029 .533 .415 .059 .026 .225 .023 .095 .105 .014 .002 .177 .208 .286 .262 2.000
RF 7.5 7 .214 .008 .262 .251 .282 .016 .015 .053 .527 .458 .026 .003 .193 .036 .013 .034 .032 .019 .319 .197 .247 .233 .035
ED+NN 8.3 9 .003 .001 .341 .346 .332 .000 .005 .040 .583 .477 .034 .015 .230 .079 .014 .015 .035 .004 .284 .229 .274 .291 .111
ED+5NN 10.5 12 .078 .004 .421 .371 .415 .016 .014 .078 .577 .546 .027 .020 .240 .079 .018 .031 .041 .004 .330 .236 .274 .287 .117
ED+CVkNN 11.6 13 .171 .006 .503 .406 .486 .000 .029 .109 .583 .618 .034 .021 .264 .071 .023 .041 .049 .005 .381 .247 .275 .297 .137
ED+10NN 12.1 13 .171 .006 .503 .406 .486 .019 .029 .109 .583 .618 .034 .021 .264 .071 .023 .041 .049 .005 .381 .247 .275 .297 .137
EDR+NN 12.1 16 .572 .001 .317 .285 .286 .677 .002 .027 .680 .782 .192 .356 .350 .065 .027 .023 .186 .507 .265 .263 .394 .378 2.000
Linf+NN 12.3 15 .019 .014 .563 .529 .578 .000 .002 .148 .613 .514 .036 .035 .274 .153 .024 .034 .047 .002 .391 .259 .317 .318 .120
default 17.0 17 .464 .789 .967 .960 .964 .764 .529 .855 .819 .834 .526 .910 .479 .461 .438 .384 .847 .539 .779 .897 .897 .897 .423

C
l
a
ssif

ic
a
t
io
n
o
f
T
im

e
S
e
q
u
e
n
c
e
s
u
sin

g
G
r
a
p
h
s
o
f
T
e
m
p
o
r
a
l
C
o
n
st

r
a
in
t
s

Table 2: Computing times of training and testing on the UCR data sets from Groups 1 and 2. Sorting of algorithms is the same
as in Table 1b. Note that our algorithms very often remain competitive in terms of computational costs when compared
to the most accurate alternatives. The ordering of the algorithms in this table is the same as in Table 1b. The bottom
part of each table summarizes basic statistics of the data sets. Color is used to indicate value of each cell and it is
normalized separately for each column.

(a) Computing times for the UCR Group 1 data sets

Algo. avg.rank med.rank 50words Adiac Beef CBF Coffee ECG200 FaceAll Face4 GunPoint Lighting2 Lighting7 OSULeaf Trace 2Patterns Fish Synthetic Wafer Yoga

GTC DF 3.5 2 51mn 39s 12mn 1.6s 12s 1mn 35s 3.6s 19s 1h 9mn 52s 24s 14s 30s 2mn 34s 6mn 20s 18s 2h 21mn 2mn 46s 1mn 46s 10mn 57s 27mn 48s
GTC Set 3.7 2.5 1h 24mn 16mn 2.3s 12s 2mn 2.7s 4.3s 26s 38mn 15s 36s 18s 41s 2mn 3s 12mn 41s 23s 30mn 28s 4mn 5.1s 3mn 11s 12mn 0.53s 37mn 3s
ERP+NN 4.8 5.5 24mn 27s 7mn 41s 28s 6mn 56s 9.5s 8.7s 35mn 5.9s 37s 21s 2mn 35s 51s 15mn 12s 1mn 13s 2h 45mn 11mn 19s 30s 8h 35mn 14h 55mn
DTW+NN 5.9 6 21mn 0.86s 6mn 34s 30s 7mn 1.9s 8.2s 11s 29mn 55s 51s 28s 4mn 18s 44s 20mn 0.7s 1mn 9.8s 2h 21mn 16mn 19s 38s 9h 14mn 15h 8mn
DTWC+NN 5.9 6 12mn 1.7s 3mn 47s 15s 3mn 8.4s 3.7s 3.4s 15mn 53s 15s 8.4s 1mn 7.4s 25s 6mn 35s 29s 1h 20mn 4mn 51s 12s 3h 46mn 1h 3mn
EDR+NN 6.7 5 21mn 47s 10mn 3.4s 21s 7mn 7.8s 6s 8s 30mn 37s 34s 20s 2mn 22s 45s 13mn 58s 1mn 11s 2h 25mn 10mn 52s 27s 7h 8mn 14h 49mn
SVM 7.1 6.5 26s 11s 2.2s 13s 3s 3.6s 27s 5.4s 3.4s 11s 3.4s 23s 7.3s 1mn 13s 18s 5.4s 1mn 17s 2mn 3.5s
RF 7.8 8.5 1mn 20s 44s 4s 12s 2s 3.6s 1mn 43s 1.2s 0.9s 13s 8.1s 53s 9.1s 5mn 2.1s 38s 11s 7mn 28s 9mn 55s
ED+NN 8.1 9 13s 5.3s 0.17s 6.6s 0.11s 0.52s 30s 0.62s 0.64s 1.3s 0.5s 6.5s 1.2s 2mn 25s 4.6s 1.2s 7mn 36s 5mn 35s
L1+NN 8.3 8 14s 5.6s 0.17s 6.6s 0.21s 0.53s 31s 0.39s 0.79s 1.1s 0.51s 7.8s 0.82s 2mn 31s 5.8s 1.5s 7mn 53s 5mn 49s
LCSSC+NN 9.5 11 14mn 14s 3mn 20s 12s 2mn 15s 3s 2.6s 15mn 19s 11s 6.1s 52s 23s 5mn 9.1s 21s 1h 4mn 3mn 36s 9.1s 2h 19mn 5h 30s
LCSS+NN 9.6 11 15mn 37s 5mn 17s 24s 5mn 8s 6.4s 8.3s 31mn 38s 42s 19s 3mn 23s 47s 19mn 2.1s 1mn 16s 1h 44mn 11mn 2.1s 21s 6h 4mn 12h 34mn
ED+5NN 11.3 11 3.1s 1.3s 0.11s 1.3s 0.075s 0.13s 6.3s 0.18s 0.15s 0.35s 0.23s 1.4s 0.29s 28s 1.1s 0.32s 1mn 6.5s 55s
Linf+NN 12.4 14 13s 5.5s 0.18s 5.9s 0.19s 0.49s 30s 0.71s 0.43s 0.93s 0.51s 7s 1.4s 2mn 27s 4.9s 1.4s 7mn 45s 5mn 55s
ED+CVkNN 12.6 14 4mn 6.1s 1mn 42s 3s 1mn 34s 2.1s 3.4s 9mn 59s 6.4s 6.2s 14s 9.2s 1mn 39s 14s 47mn 11s 1mn 9.4s 17s 1h 48mn 1h 29mn
ED+10NN 12.6 14 2.6s 1.1s 0.06s 1.1s 0.041s 0.067s 5.6s 0.12s 0.1s 0.22s 0.15s 1.2s 0.21s 28s 0.82s 0.24s 1mn 4.1s 53s
default 17.0 17 1s 0.38s 0.071s 0.44s 0.043s 0.063s 1.1s 0.11s 0.076s 0.18s 0.14s 0.45s 0.14s 2.1s 0.35s 0.14s 3.1s 3.1s

#classes 50 37 5 3 2 2 14 4 2 2 7 6 4 4 7 6 2 2
length 270 176 470 128 286 96 131 350 150 637 319 427 275 128 463 60 152 426
#ssts 905 781 60 930 56 200 2250 112 200 121 143 442 200 5000 350 600 7164 3300
avg.err. .341 .410 .545 .058 .171 .142 .126 .117 .087 .239 .370 .329 .172 .092 .200 .134 .009 .083
std.err. .156 .196 .150 .174 .148 .064 .206 .167 .142 .087 .135 .149 .225 .235 .197 .209 .025 .100

(b) Computing times for the UCR Group 2 data sets

Algo. avg.rank med.rank ChlorineC ECGtorso CricketX CricketY CricketZ DiatSRed ECG5D FacesUCR Haptics InlineS ItPwrDmd MALLAT MedImgs MoteStrain SonyRbtS SonyRbtS2 Symbols 2LeadECG WordsSyn uWvGLibX uWvGLibY uWvGLibZ StarLC*

GTC DF 4.3 2.5 47mn 58s 7mn 58s 22mn 30s 19mn 41s 22mn 29s 21s 1mn 23s 30mn 15s 10mn 50s 20mn 3.1s 49s 8mn 16s 11mn 38s 3mn 59s 1mn 4.3s 2mn 42s 4mn 23s 1mn 0.84s 38mn 59s 1h 25mn 1h 34mn 1h 29mn 2h 28mn
GTC Set 4.5 2.5 56mn 6.7s 8mn 20s 34mn 46s 28mn 58s 34mn 49s 23s 1mn 35s 37mn 21s 14mn 36s 24mn 22s 56s 9mn 35s 13mn 15s 4mn 36s 1mn 15s 3mn 48s 7mn 35s 1mn 6.5s 47mn 57s 1h 58mn 1h 56mn 1h 55mn 3h 13mn
SVM 4.6 4.5 57s 1mn 32s 13s 13s 13s 3.7s 4.2s 19s 24s 1mn 0.85s 1.3s 1mn 25s 6.1s 4.5s 1.7s 2.6s 15s 3.5s 14s 1mn 21s 1mn 28s 1mn 27s 7mn 8s
ERP+NN 5.7 5 48mn 39s 11h 30mn 5mn 18s 5mn 17s 5mn 17s 1mn 17s 1mn 22s 8mn 11s 31mn 41s 3h 12mn 3.9s 12h 37mn 1mn 12s 1mn 4.5s 11s 23s 17mn 47s 51s 5mn 48s 3h 12mn 3h 12mn 3h 12mn 7day 18h
DTW+NN 7.0 8 1mn 29s 2h 36mn 9.1s 8.6s 8.7s 3.5s 3.1s 17s 6mn 52s 42mn 8s 0.53s 2h 44mn 3.2s 3.3s 0.73s 1.5s 3mn 58s 2.7s 11s 4mn 47s 4mn 49s 5mn 11s 1day 17h
DTWC+NN 7.0 8 1mn 33s 2h 34mn 9s 8.9s 8.8s 2.7s 3.1s 18s 6mn 58s 43mn 24s 0.6s 2h 45mn 3.2s 3.3s 0.72s 1.6s 3mn 59s 2.7s 9.8s 4mn 55s 4mn 49s 4mn 52s 1day 17h
L1+NN 7.0 8 26s 48s 2.5s 2.5s 2.5s 0.64s 1.1s 5.8s 4.2s 13s 0.28s 1mn 20s 1.1s 1.2s 0.36s 0.72s 5.4s 0.97s 2.9s 1mn 12s 1mn 11s 1mn 11s 18mn 39s
LCSS+NN 7.3 5.5 31mn 4.9s 7h 48mn 3mn 21s 3mn 18s 3mn 22s 24s 36s 4mn 52s 25mn 11s 2h 15mn 2.2s 8h 7mn 44s 40s 7.1s 14s 11mn 52s 25s 3mn 6.2s 1h 57mn 1h 58mn 1h 59mn 5day 16h
LCSSC+NN 7.3 6 15mn 33s 4h 47mn 1mn 42s 1mn 41s 1mn 41s 14s 21s 2mn 31s 13mn 32s 1h 20mn 1.4s 4h 57mn 21s 20s 3.6s 7.5s 7mn 0.73s 14s 1mn 42s 1h 7.8s 1h 43s 1h 37s 3day 4h
RF 7.5 7 3mn 25s 6mn 46s 51s 50s 51s 0.61s 16s 1mn 12s 1mn 38s 4mn 56s 4.3s 4mn 6.3s 25s 18s 2.4s 11s 60s 16s 54s 6mn 59s 7mn 17s 7mn 4.7s 1h 1mn
ED+NN 8.3 9 27s 48s 2.7s 2.6s 2.6s 0.77s 1.3s 6.3s 4.4s 13s 0.3s 1mn 20s 1.2s 1.2s 0.39s 0.81s 5.6s 1s 2.6s 1mn 10s 1mn 11s 1mn 8.9s 18mn 43s
ED+5NN 10.5 12 29s 49s 2.7s 2.6s 2.7s 0.73s 1.3s 6.3s 4.3s 13s 0.31s 1mn 21s 1.2s 1.2s 0.43s 0.74s 5.6s 1s 2.9s 1mn 11s 1mn 11s 1mn 12s 18mn 50s
ED+CVkNN 11.6 13 43mn 39s 1h 13mn 3mn 20s 3mn 20s 3mn 21s 43s 1mn 30s 8mn 58s 5mn 27s 18mn 13s 18s 2h 6mn 1mn 27s 1mn 29s 21s 47s 7mn 56s 1mn 13s 4mn 1.1s 1h 55mn 1h 56mn 1h 56mn 1day 7h
ED+10NN 12.1 13 28s 48s 2.2s 2.2s 2.2s 0.51s 1s 5.7s 3.6s 12s 0.24s 1mn 17s 1s 1s 0.29s 0.56s 5.5s 1s 2.8s 1mn 11s 1mn 11s 1mn 11s 18mn 36s
EDR+NN 12.1 16 57mn 7.8s 11h 59mn 5mn 17s 5mn 23s 5mn 27s 2mn 32s 1mn 32s 7mn 41s 32mn 41s 3h 27mn 5.1s 14h 26mn 1mn 31s 1mn 0.88s 11s 21s 19mn 41s 1mn 5.7s 5mn 39s 3h 4mn 3h 14mn 3h 11mn 8day 20h
Linf+NN 12.3 15 31s 48s 2.5s 2.6s 2.5s 0.67s 1.4s 6.7s 4.1s 13s 0.25s 1mn 16s 1.1s 1.1s 0.28s 0.52s 5.5s 1s 3s 1mn 12s 1mn 13s 1mn 12s 18mn 27s
default 17.0 17 0.83s 1.6s 0.19s 0.2s 0.19s 0.075s 0.11s 0.36s 0.32s 0.76s 0.048s 1.7s 0.12s 0.12s 0.058s 0.088s 0.28s 0.098s 0.19s 1.1s 1.1s 1.1s 6.5s

#classes 3 4 12 12 12 4 2 14 5 7 2 8 10 2 2 2 6 2 25 8 8 8 3
length 166 1639 300 300 300 345 136 131 1092 1882 24 1024 99 84 70 65 398 82 270 315 315 315 1024
#ssts 4307 1420 780 780 780 322 884 2250 463 650 1096 2400 1141 1272 621 980 1020 1162 905 4478 4478 4478 9236
avg.err. .138 .050 .367 .336 .362 .091 .038 .099 .577 .505 .075 .087 .241 .078 .052 .055 .089 .066 .305 .259 .316 .314 .780
std.err. .165 .190 .191 .187 .191 .238 .127 .198 .084 .139 .122 .228 .077 .104 .103 .089 .199 .172 .139 .168 .155 .156 .933

23

G
u
il
l
a
m
e
-B

e
r
t
a
n
d

D
u
b
r
a
w
sk

i

Table 3: Classification error rates observed on the rotated UCR data sets. “O.” stands for the original and “R.” for the rotated
data. The average and median ranks only reflect the rotated results. Algorithms are sorted according to their average
rank on the rotated data sets. Note that GTC-DF and GTC-Set are consistently the highest on average ranking
algorithms, while the runner-ups change when compared to the non-rotated data results.

Algo. avg.rank med.rank 50words Adiac Beef CBF Coffee ECG200 FaceAll Face4 GunPoint Lighting2 Lighting7 OSULeaf Trace 2Patterns Fish Synthetic

O. R. O. R. O. O. R. O. R. O. O. R. O. R. O. R. O. R. O. R. O. R. O. R. O. R. O. R. O. R. O. R.

GTC DF 2.9 2 .220 .359 .243 .308 .300 .667 .004 .008 .036 .320 .105 .166 .044 .060 .018 .188 .015 .043 .190 .217 .203 .290 .242 .232 .000 .006 .001 .081 .077 .170 .008 .171
GTC Set 3.6 2.5 .239 .379 .259 .317 .267 .658 .004 .011 .036 .338 .115 .168 .048 .066 .018 .188 .015 .050 .231 .240 .203 .288 .247 .245 .000 .004 .001 .080 .063 .184 .008 .169
ERP+NN 4.4 5 .254 .459 .344 .651 .550 .623 .000 .000 .107 .371 .125 .177 .010 .027 .018 .060 .015 .112 .107 .172 .315 .349 .240 .298 .090 .222 .000 .112 .143 .320 .023 .205
DTWC+NN 6.4 6.5 .250 .630 .359 .859 .550 .617 .000 .042 .089 .445 .175 .256 .012 .329 .027 .525 .060 .254 .132 .312 .301 .495 .269 .465 .005 .349 .000 .109 .177 .633 .018 .337
DTW+NN 6.5 7 .261 .630 .359 .859 .550 .617 .000 .042 .107 .445 .175 .256 .012 .329 .027 .525 .060 .254 .132 .312 .294 .495 .269 .465 .005 .349 .000 .109 .177 .633 .018 .337
LCSS+NN 6.8 5.5 .360 .360 .362 .865 .550 .757 .012 .001 .161 .293 .215 .182 .283 .060 .152 .017 .035 .062 .223 .210 .441 .374 .179 .146 .060 .095 .001 .107 .091 .251 .262 .253
LCSSC+NN 6.8 5.5 .360 .360 .362 .865 .550 .757 .012 .001 .161 .293 .210 .182 .279 .060 .152 .017 .035 .062 .223 .210 .441 .374 .176 .146 .060 .095 .002 .107 .091 .251 .270 .253
EDR+NN 7.3 6 .171 .546 .830 .977 .567 .800 .009 .012 .036 .287 .105 .227 .008 .105 .009 .156 .055 .397 .182 .317 .308 .522 .143 .348 .030 .549 .000 .104 .226 .864 .112 .235
L1+NN 8.0 8 .282 .630 .350 .859 .550 .617 .015 .040 .143 .466 .065 .257 .031 .329 .027 .519 .050 .267 .190 .320 .322 .495 .328 .462 .135 .340 .003 .109 .191 .631 .100 .339
SVM 8.9 10 .277 .658 .344 .882 .667 .648 .002 .031 .071 .559 .115 .263 .023 .435 .062 .627 .015 .218 .248 .413 .350 .682 .301 .470 .130 .430 .013 .137 .094 .591 .018 .253
RF 9.0 10 .349 .751 .297 .941 .517 .587 .002 .048 .268 .500 .120 .311 .051 .578 .009 .609 .025 .214 .190 .347 .238 .531 .367 .532 .080 .334 .012 .159 .189 .689 .023 .290
ED+NN 9.2 10 .322 .665 .329 .848 .517 .615 .009 .059 .125 .484 .105 .262 .038 .413 .071 .588 .050 .333 .231 .445 .343 .661 .342 .474 .130 .495 .013 .120 .174 .611 .078 .360
ED+5NN 11.5 12 .345 .721 .387 .924 .550 .607 .009 .045 .304 .507 .110 .274 .080 .600 .125 .686 .095 .384 .281 .440 .378 .720 .391 .518 .315 .659 .020 .116 .180 .754 .092 .359
Linf+NN 12.4 13.5 .429 .767 .306 .812 .483 .630 .181 .412 .071 .500 .135 .279 .148 .625 .268 .724 .095 .404 .372 .463 .580 .780 .389 .517 .150 .636 .693 .759 .171 .585 .137 .479
ED+10NN 13.4 14 .402 .750 .435 .947 .567 .612 .008 .076 .286 .521 .095 .282 .111 .678 .152 .738 .120 .449 .355 .513 .427 .760 .457 .563 .445 .723 .032 .135 .211 .805 .113 .405
default 16.5 17 .880 .880 .986 .986 .983 .983 .712 .712 .625 .625 .335 .335 .855 .855 .696 .696 .620 .620 .397 .397 .734 .734 .781 .781 .850 .850 .739 .739 .937 .937 .885 .885

24

Classification of Time Sequences using Graphs of Temporal Constraints

Algorithm Error rate Accuracy Duration AUC

GTC DF 0.087 0.913 18mn 0.975
GTC Set 0.125 0.875 2h 0.958
ERP+NN 0.404 0.596 36h 0.524
LCSS+NN 0.423 0.577 32h 0.519
LCSSC+NN 0.423 0.577 9h 0.519
EDR+NN 0.462 0.538 36h 0.51
DTW+NN 0.471 0.529 1h 0.507
DTWC+NN 0.471 0.529 1h 0.507
L1+NN 0.471 0.529 24s 0.507
RF 0.471 0.529 7mn 0.507
ED+10NN 0.5 0.5 2.7s 0.500
SVM 0.5 0.5 3mn 0.488
default 0.5 0.5 0.67s 0.500
Avg. Vit 0.51 0.49 3.9s 0.492
ED+NN 0.529 0.471 26s 0.493
Linf+NN 0.577 0.423 25s 0.481

Table 4: Classification error, accuracy, computation time (of the complete 10-fold cross-
validation cycle), and AUC obtained on the bleeding detection data set. GTC
methods are by far the top performers on this data.

The rotated UCR data sets are harder to classify than the original, aligned UCR data
sets. In most cases, the error rates on the rotated data sets are higher for the same algorithm
than the rates observed on the non-rotated counterparts (see Table 3). The experiment
shows that GTC-DF and GTC-Set are substantially less impacted by this randomization
than any other of the evaluated methods, and that GTC-DF and GTC-Set remain the top
performers in terms of the average and median ranks (respectively an average and median
rank of 2.9 and 2 for GTC-DF, and 3.6 and 2.5 for GTC-Set (Table 3). As expected, GTC-
DF and GTC-Set yield similar error rates, and therefore their ranking impact each other.
Removing one of these two algorithms from the ranking would further increase the ranking
difference between the remaining proposed algorithm and the other state of the art methods
under consideration.

Finally, on the Bleeding Detection Data Set, GTC-DF shows an Area Under the Receiver
Operating Characteristic Curve (AUC) score of 96.2% and the accuracy at the default
sensitivity set point (50%) of 91.3%, while all other evaluated methods show performance
very close to random based on their empirical AUC scores (Table 4). This last result is
encouraging as it may allow developing effective cardio-respiratory monitors tailored to
detect specific hard-to-discern conditions.

In addition to overall highly competitive performance, learning of GTC-DF and GTC-
Set models is reasonably fast, even though these algorithms are not uniformly faster than
all of the evaluated alternatives. The 10-fold cross-validation on the Yoga data set (the
largest of the considered sets from Group 1) takes our approaches approximately 27 and
37 minutes respectively, while the next best on accuracy models require approximately 15
hours (ERP+NN and DTW+NN, Table 2).

25

Guillame-Bert and Dubrawski

0.01 0.10 1.00

False positive rate

0.00

0.25

0.50

0.75

1.00

T
ru

e
po

si
ti

ve
 r

at
e

GTC DF
RF on avg. vital values
Random
Confidence bounds
50% threshold

Figure 9: Receiver Operating Characteristic obtained for GTC-DF algorithm on the bleed-
ing detection data set compared to the performance of the Random Forest al-
gorithm on the flattened variant of the same data. False positive rate is scaled
logarithmically.

Table 5: P-values of the Wilcoxon signed-rank test on the 41 UCR data sets and between
each pair of the evaluated algorithms. Gray background is indicative of a positive
significance of performances with a .05% error. A “+1NN” suffix has been removed
from column labels for brevity.

Algorithm GTC DF GTC Set ERP DTW DTWC EDR SVM RF ED L1 LCSSC LCSS ED+5NN Linf ED+CVkNN ED+10NN

GTC DF 6.6e-3 2.4e-3 1.5e-4 1.5e-4 1.7e-5 2.3e-4 5.7e-7 6.9e-6 9.7e-5 2.7e-5 2.8e-5 4.2e-7 2.0e-7 8.8e-8 5.4e-8
GTC Set 0.994 3.9e-3 3.0e-4 2.9e-4 2.4e-5 3.8e-4 4.4e-6 1.3e-5 1.3e-4 4.1e-5 4.5e-5 5.2e-7 2.8e-7 1.4e-7 8.8e-8
ERP+1NN 0.998 0.996 8.6e-4 2.2e-3 7.9e-5 8.0e-2 3.2e-2 2.7e-4 1.5e-4 8.5e-4 8.1e-4 6.5e-6 1.3e-5 2.4e-6 1.9e-6
DTW+1NN 1.000 1.000 0.999 0.819 1.8e-3 0.898 0.569 2.6e-2 5.4e-2 0.180 0.180 5.4e-5 1.1e-4 9.0e-6 6.5e-6
DTWC+1NN 1.000 1.000 0.998 0.292 1.7e-3 0.892 0.592 2.7e-2 7.1e-2 0.175 0.173 5.4e-5 7.5e-5 9.0e-6 6.5e-6
EDR+1NN 1.000 1.000 1.000 0.998 0.998 0.997 0.996 0.958 0.992 0.945 0.944 0.738 0.341 0.447 0.447
SVM 1.000 1.000 0.922 0.104 0.111 3.1e-3 0.104 2.2e-4 1.2e-2 2.5e-2 2.4e-2 4.0e-7 2.1e-6 3.0e-7 2.6e-7
RF 1.000 1.000 0.969 0.436 0.413 3.8e-3 0.898 2.9e-2 0.124 0.140 0.147 1.0e-5 4.8e-5 5.5e-7 3.4e-7
ED+1NN 1.000 1.000 1.000 0.975 0.973 4.4e-2 1.000 0.971 0.930 0.373 0.384 4.7e-7 2.4e-6 1.8e-7 1.2e-7
L1+1NN 1.000 1.000 1.000 0.951 0.935 8.3e-3 0.988 0.879 7.2e-2 0.288 0.291 7.7e-6 9.3e-6 2.6e-7 1.8e-7
LCSSC+1NN 1.000 1.000 0.999 0.823 0.829 5.6e-2 0.976 0.863 0.632 0.716 0.275 5.8e-2 9.2e-3 4.4e-3 4.0e-3
LCSS+1NN 1.000 1.000 0.999 0.823 0.830 5.8e-2 0.976 0.856 0.621 0.714 0.763 5.8e-2 9.3e-3 4.5e-3 4.1e-3
ED+5NN 1.000 1.000 1.000 1.000 1.000 0.266 1.000 1.000 1.000 1.000 0.944 0.944 3.4e-3 1.2e-6 4.2e-7
Linf+1NN 1.000 1.000 1.000 1.000 1.000 0.664 1.000 1.000 1.000 1.000 0.991 0.991 0.997 0.860 0.838
ED+CVkNN 1.000 1.000 1.000 1.000 1.000 0.559 1.000 1.000 1.000 1.000 0.996 0.996 1.000 0.143 0.500
ED+10NN 1.000 1.000 1.000 1.000 1.000 0.559 1.000 1.000 1.000 1.000 0.996 0.996 1.000 0.166 0.977

7.7 Interpretability of Models

The ability to interpret a trained machine learning model typically improves understanding
of the studied process, it may lead to useful discoveries, and it generally improves the
acceptance of the model by its end-users. Many of the most powerful machine learning
algorithms belong to the informal class of black (or opaque) box algorithms and specifically
lack this useful ability. In our work, a single GTC is a graph of a usually small size
(typically less than five tests, this number can however be controlled and further reduced

26

Classification of Time Sequences using Graphs of Temporal Constraints

if needed). The resulting complexity of a single GTC is therefore manageable and the
model can practically be read by a typical trained user. However, the large amount and
the redundancy of GTCs in large GTC-DF or a GTC-Set models may still make it difficult
for the user to comprehend and interpret their structures. In this section, we present a two
straightforward methods to extract a small but representative subset of interpretable GTCs
from a GTC-Set model.

The first method is a non-weighed coverage algorithm guided by immediate information
gain. At each step of the process, all GTCs are evaluated and the one with the highest
information gain is selected. Next, all SSTSs correctly classified by this selected GTC are
removed form data. This sequence is repeated until all SSTSs have been removed, or until
no remaining GTC has a strictly positive information gain, or until a user-specified number
of GTCs have been extracted. We refer to this method as the “Coverage selection method”.

This method is similar in nature to the feature selection steps in CBA (Liu et al., 1998)
and CMAR (Li et al., 2001) algorithms. However, while the CBA and the CMAR use feature
selection to build a classifier from a pool of already extracted patterns, our algorithms use
the method presented below to extract an interpretable and informative set of patterns from
an already existing and functional classifier.

The application of p boolean patterns as a list of exception rules defines p + 1 com-
binations (e.g. the second rule is only tested if the first one does not apply). However,
the independent application of p boolean patterns defines 2p combinations. The second
method is a greedy forward selection guided by the immediate information gain from all
the considered patterns i.e. by the 2p combinations. This second method is more likely
to over fit than the first method when a large number of patterns is selected. But it gives
an equal importance to all the patterns and observations. We refer to this method as the
“Combination selection method”.

The primary goal of the extracted patterns is not to perform predictions but to help
the user interpret the models. As shown below, the selected GTCs typically show reduced
classification performance but lower complexity than the corresponding full GTC-Sets.

Figure 10 shows the first two selected GTCs by the Combination selection method on
the first cross-validation folds of a few UCR data sets (Coffee, CBF, ECG200, Wager, Yoga)
and the Bleeding Detection Data Set. Figure 11 shows the empirical class distribution of
the held-out test data classified by these top GTCs (the held-out test sets have not been
used either for training or selection of the GTCs). We can see a very good effectiveness of
just the first two (or just one for the Coffee data set) greedily selected GTCs at expressing
output class distributions. For instance, in case of the CBF data set using the first selected
GTC enables perfect separation of class 2 from the rest of the data, and adding the second
greedily selected GTC discriminates class 1 from class 3 data in the remainder. Other
results shown in Figure 11 indicate a very strong, even if not perfect, utility of just the
top 2 GTCs to express class distributions in data. This suggests a potential for obtaining
highly interpretable and simple models with impressive classification performance if that
is attainable, and gradually adding complexity as required to achieve desired accuracy of
classification while limiting overall complexity of the resulting models and maintaining their
interpretability.

Figure 12 illustrates an example of application of the single top GTC extracted for the
first SSTS of the first test fold of the UCR Coffee data set. The time series graph depicts

27

Guillame-Bert and Dubrawski

the original scalar time series of the original data and the panel above it depicts occurrences
of the discrete events extracted from it. This particular GTC requires that the standard
deviation of the raw signal computed on a trailing time window 16 time units wide ought to
peak-up (show a local maximum over time) during period between 226 and 252 time units
from the time of occurrence of the starting event labeled as “begin”. This is the positive
node plotted in the graph diagram in the right part of Figure 12. Concurrently, this GTC
also requires that no event of the standard deviation of the raw time series computed over
the trailing window 16 time units wide increase, crossing the threshold of 0.75 units, during
time interval between 103 and 109 time units from “begin” (the negative node in the GTC
diagram) will occur. If these conditions are met, the GTC is matched, and using just
this GTC to perform classification of the underlying time series would be predicted as an
instance of class 1.

Interestingly, the class distribution of the first fold of the Coffee data set can be explained
perfectly with just a single GTC of a relatively small size (Fig. 6). It only consists of three
tests (Fig. 10). We conclude that this data set appears to be quite simple to handle. The
first fold of the CBF data set can be explained perfectly and entirely with just two GTCs.
In the ECG200 data set, the top two GTCs can classify correctly 90% of the held-out test
data. Yoga appears to be the most complex of the data sets considered in Fig. 10). The top
two GTCs extracted from its fist cross-validation fold are significantly more complex than
in the case of other data sets, with 10 tests each. These two GTCs can correctly classify
76% of the held-out data. Interestingly, this finding is somewhat intuitive since for all
evaluated algorithms this data takes the longest to process due to its inherent complexity.
For Yoga data set, the GTC models achieve prevailing accuracy but they require more
GTCs of greater complexity to accomplish that.

Table 6 summarizes the aggregated classification performance obtained with the two
selection methods, when varying the number of GTCs used per data set, and compared to
the results obtained when using the complete GTC-Set. We use UCR Group 1 and Bleeding
Detection Data Set. The results reflect average performance from 10-fold cross-validation,
so the extracted GTCs may vary between folds. In terms of error rates, UCR:Trace,
UCR:Lighting2, UCR:ECG200, UCR:Coffee and UCR:Beef data are are well handled by
the top two GTCs in comparison to the fully developed GTC-Set. On the other hand,
performance revealed on UCR:2Patterns and UCR:Synthetic data substantially diminishes
when just the simple two-GTC models are used. Finally, The Combination selection method
performs better that the Coverage selection method on most data sets (16 over 18 for two
selected GTCs, and 14 over 18 for four selected GTCs).

8. Conclusion

We introduced Graphs of Temporal Constraints (GTC), a new expressive model for tem-
poral pattern representation. We also presented two methods (GTC-DF and GTC-Set) of
inferring GTCs from data to enable classification of Symbolic and Scalar Time Sequences
(SSTS). Our methods stand-out from previously known approaches because: (1) They offer
a high power of expression, enabled by the parametric and structural nature of the pro-
posed representation; (2) The computational cost of learning and applying these models is
manageable and often competitive when compared to the most potent alternatives; (3) The

28

Classification of Time Sequences using Graphs of Temporal Constraints

begin

sd[16]_cu[1]

[37,92]

[67,74]

begin

sd[32]_cu[.75] cd[1.6]

[13,36]

begin

sd[64]_cu[.75]

sma[32]_cd[1] sd[32]_cd[.5]

[13,40]

[8,44] [13,30]

begin

sd[16]_cd[.25] sd[16]_cu[.25] sd[32]_cu[.25]

[81,125]
[44,144]

[71,110]

begin

sd[64]_pu[10] sd[16]_pu[10]

[114,145]
[135,148]

begin

sd[64]_pu cu[-1.8] sd[32]_pu

sd[32]_cd[.25]sma[32]_cu[-1.2] cu[1.6] sma[32]_dc[1] sd[64]_pd

cu[0]

value<.32

[292,366]
[48,77]

[198,205]

[-55,53][-86,-70] [-100,366] [-30,212]
[47,127]

[346,364]

CVP_pd

Air_dp Air_pu Air_pu CVP_pu

Air<14Air_pd Art_pu

[.366,.368]

[-3.114,-3.112] [2.356,2.358]

[1.932,2.006]

[-2.204,-2.134] [3.556,3.582]

Air_dp

Art_pu CVP_pd

[-2.792,-2.790] [-1.412,-1.410]

[-4.,-1.412]

begin

sd[16]_pu sd[16]_cu[.75]

[226,252] [103,109]

UCR: Coffee UCR: ECG200 UCR: CBF UCR: Wafer

UCR: Yoga Internal bleeding

GTC #1
GTC #1

GTC #1 GTC #1

GTC #1

GTC #2

GTC #2 GTC #2

GTC #2

GTC #1

begin

sd[16]_cd[.75] sd[16]_cu[.25]

[47,56] [90,95]

sd[64]_cd[1] sd[64]_pu[10]

cu[-1.2]cu[1]

[62,77]
[30,35]

[-100,52]

begin

sd[64]_cu[.5]

sma[32]_pu[10]

[176,189]

[161,242]

GTC #2

Figure 10: Graphical representations of the first two selected GTCs for the first cross-
validation fold of a few evaluation data sets with the Combination selection
method. Meaning of the event and scalar names: begin: begin of the SSTS,
sd[x]: standard deviation over the trailing window x time units wide, cd[x]:
signal crosses-down a threshold value x, cu[x]: signal crosses-up a threshold
value x, sma[x]: simple moving average over the trailing window x time units
wide, pu: peak up (local maximum over time), pd: peak down (local minimum
over time), CVP: central venous pressure, Air: airway pressure, Art: arterial
blood pressure.

users can read and interpret the models; and (4) In many cases, the users can easily project
any new SSTS data and pursue its meaningful interpretation using only a handful of the
most informative GTCs.

A wide range of experiments have been conducted to evaluate the proposed algorithms
against a rich and diverse collection of benchmark data, and they have been compared
to state-of-the-art alternative methods of temporal data classification. Experiments have
shown that the proposed algorithms on average decisively outperform previously known
best methods in terms accuracy of their predictions, while remaining highly competitive
in terms of overall computational costs. Additionally, we have shown how easy it is to
interpret the resulting models and we have presented a simple greedy procedure that in
many cases yields a manageably small yet highly expressive and highly accurate models

29

Guillame-Bert and Dubrawski

32% 40%

26%
0%

cbfcoffee

16%

83%

ecg200

1% 10%

87%

0%

wafer yoga
no

t #
1

#1

not #2 #2 not #2 #2 not #2 #2 not #2 #2

class #3

class #1

class #2

25% 16%

33% 25%

bleeding
not #2 #2

70%
15%

5% 10%

22%
51%

14% 12%

Figure 11: Held-out set empirical class separation achieved by simultaneously using the
top two greedily selected GTCs for each of the considered data sets by the
Combination selection method. For Coffee data set, only one GTC is needed
to achieve the perfect class separation on the particular subset of testing data.
The surface of each area represents the proportion of data it represents. This
proportion is also shown with the percentage value beneath each graph. Pie
charts are used to show distributions of target classes.

0

10

20

30

40

sc
al

ar
ev

en
ts

begin

sd[16]_pu

sd[16]_cu[.75]

value

Top #1 GTC

time

begin

sd[16]_pu sd[16]_cu[.75]

[226,252] [103,109]

Figure 12: Instance of test SSTS of the UCR Coffee data set and illustration of the appli-
cation of the first selected GTC extracted for it using the greedy procedure.

that can drive knowledge discovery and interpretability of the results in many real-world
application scenarios.

30

Classification of Time Sequences using Graphs of Temporal Constraints

Data Set Classes GTC Set Top 2 Cov Top 2 Cb Cov/Cb Gb/Orig Top 4 Cov. Top 4 Cb Cov/Gb Cb/Orig

Trace 5 .000 .325 .000 .000 .325 .005 65.000
Lighting2 2 .223 .298 .289 1.029 1.296 .298 .248 1.200 1.111
ECG200 2 .120 .230 .190 1.211 1.583 .205 .175 1.171 1.458
Coffee 2 .036 .071 .071 1.000 2.000 .071 .071 1.000 2.000
Beef 6 .250 .683 .500 1.367 2.000 .567 .500 1.133 2.000
OSULeaf 7 .265 .520 .550 .947 2.077 .505 .419 1.205 1.581
Lighting7 7 .203 .566 .538 1.052 2.655 .469 .406 1.155 2.000
Wafer 2 .001 .003 .002 1.429 2.800 .001 .002 .625 3.200
50words 51 .235 .768 .754 1.019 3.202 .691 .625 1.104 2.657
CBF 4 .004 .014 .014 1.000 3.250 .013 .015 .857 3.500
Adiac 38 .256 .941 .930 1.012 3.630 .904 .816 1.108 3.185
Yoga 3 .045 .245 .222 1.102 4.946 .172 .198 .867 4.419
GunPoint 3 .010 .050 .050 1.000 5.000 .050 .055 .909 5.500
FaceFour 5 .018 .339 .098 3.455 5.500 .339 .116 2.923 6.500
Fish 8 .074 .700 .546 1.283 7.346 .500 .271 1.842 3.654
FaceAll 15 .045 .672 .684 .983 15.22 .557 .492 1.132 10.96
Synthetic 7 .012 .588 .478 1.230 41.00 .392 .143 2.733 12.28
2Patterns 5 .001 .301 .300 1.006 374.5 .224 .087 2.568 109.2

Table 6: Comparison of empirical classification error rates observed via 10-fold cross-
validation when using only the top few (2 and 4) GTCs obtained using the Cover-
age (Cov) and Combination (Cb) selection methods, versus using the fully devel-
oped GTC-Set model. “Cb/Orig” denotes the ratio of error rates of the compact
model extracted by the combination selection method vs. full GTC-Set. “Cov/Cb”
denotes the ratio of error rates of the coverage selection method vs. the combi-
nation selection method. It is intended to reflect the drop of performance due to
using a simplified representation. Entries are sorted by the ratio for the 2-GTC
models (“Cb/Orig”).

References

Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association rules
in large databases. In Proceedings of the 20th International Conference on Very Large
Data Bases, VLDB ’94, pages 487–499, San Francisco, CA, USA, 1994. Morgan Kauf-
mann Publishers Inc. ISBN 1-55860-153-8. URL http://dl.acm.org/citation.cfm?

id=645920.672836.

Johannes Aßfalg, Hans-Peter Kriegel, Peer Kröger, Peter Kunath, Alexey Pryakhin, and
Matthias Renz. Similarity Search on Time Series Based on Threshold Queries. Advances
in Database Technology, pages 276–294, 2006.

Iyad Batal, Dmitriy Fradkin, James Harrison, Fabian Moerchen, and Milos Hauskrecht.
Mining recent temporal patterns for event detection in multivariate time series data.
Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery
and data mining - KDD ’12, page 280, 2012.

31

http://dl.acm.org/citation.cfm?id=645920.672836
http://dl.acm.org/citation.cfm?id=645920.672836

Guillame-Bert and Dubrawski

Stephen D. Bay and Michael J. Pazzani. Detecting group differences: Mining contrast
sets. Data Mining and Knowledge Discovery, 5(3):213–246, 2001. ISSN 1573-756X. doi:
10.1023/A:1011429418057. URL http://dx.doi.org/10.1023/A:1011429418057.

Donald Berndt and James Clifford. Using dynamic time warping to find patterns in time
series. Workshop on Knowledge Knowledge Discovery in Databases, 398:359–370, 1994.

Leo Breiman. Random forests. Machine learning, pages 5–32, 2001.

Björn Bringmann, Siegfried Nijssen, and Albrecht Zimmermann. Pattern-based classifica-
tion: A unifying perspective. CoRR, abs/1111.6191, 2011. URL http://arxiv.org/

abs/1111.6191.

Lei Chen and Raymond Ng. On the marriage of Lp-norms and edit distance. Proceedings
of the 30th International Conference on Very Large Data Bases, 30:792–803, 2004.

Lei Chen, M. Tamer Özsu, and Vincent Oria. Robust and fast similarity search for moving
object trajectories. Proceedings of the 2005 ACM SIGMOD international conference on
Management of data - SIGMOD ’05, page 491, 2005.

Rina Dechter. Temporal constraint networks, 1991.

Janez Demšar. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn.
Res., 7:1–30, December 2006. ISSN 1532-4435.

Houtao Deng, George Runger, Eugene Tuv, and Martyanov Vladimir. A time series forest
for classification and feature extraction. Information Sciences, 239:142–153, 2013.

Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, and Eamonn Keogh. Query-
ing and mining of time series data: experimental comparison of representations and dis-
tance measures. Proceedings of the VLDB Endowment, 1(2):1542–1552, 2008.

Guozhu Dong and Jinyan Li. Efficient mining of emerging patterns: Discovering trends
and differences. In Proceedings of the Fifth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’99, pages 43–52, New York, NY, USA,
1999. ACM. ISBN 1-58113-143-7. doi: 10.1145/312129.312191. URL http://doi.acm.

org/10.1145/312129.312191.

Christophe Dousson and Thang Vu Duong. Discovering chronicles with numerical time
constraints from alarm logs for monitoring dynamic systems. IJCAI International Joint
Conference on Artificial Intelligence, 1:620–626, 1999.

Elias Frentzos, Kostas Gratsias, and Yannis Theodoridis. Index-Based Most Similar Search.
Proceedings of the 23th International Conference on Data Engineering (ICDE’07), pages
816–825, 2007.

Yoav Freund and Robert E. Schapire. A Short Introduction to Boosting. 14(5):771–780,
2009.

Mathieu Guillame-Bert. Datasets for gtc classification. URL http://mathieu.

guillame-bert.com/dataset.

32

http://dx.doi.org/10.1023/A:1011429418057
http://arxiv.org/abs/1111.6191
http://arxiv.org/abs/1111.6191
http://doi.acm.org/10.1145/312129.312191
http://doi.acm.org/10.1145/312129.312191
http://mathieu.guillame-bert.com/dataset
http://mathieu.guillame-bert.com/dataset

Classification of Time Sequences using Graphs of Temporal Constraints

Mathieu Guillame-Bert. Learning Temporal Association Rules on Symbolic Time Sequences.
PhD thesis, 2012.

Mathieu Guillame-Bert and Artur Dubrawski. Learning Temporal Rules to Forecast Events
in Multivariate Time Sequences. In NIPS Workshop : Machine Learning for Clinical Data
Analysis, Healthcare and Genomics, 2014.

Jiawei Han, Jian Pei, Yiwen Yin, and Runying Mao. Mining frequent patterns without
candidate generation: A frequent-pattern tree approach. Data Min. Knowl. Discov., 8
(1):53–87, January 2004. ISSN 1384-5810. doi: 10.1023/B:DAMI.0000005258.31418.83.
URL http://dx.doi.org/10.1023/B:DAMI.0000005258.31418.83.

Eamonn Keogh and Chotirat Ann Ratanamahatana. Exact indexing of dynamic time warp-
ing. Knowl. Inf. Syst., 7(3):358–386, March 2005.

Willi Klösgen. Advances in knowledge discovery and data mining. chapter Explora: A
Multipattern and Multistrategy Discovery Assistant, pages 249–271. American Associa-
tion for Artificial Intelligence, Menlo Park, CA, USA, 1996. ISBN 0-262-56097-6. URL
http://dl.acm.org/citation.cfm?id=257938.257965.

Wenmin Li, Jiawei Han, and Jian Pei. Cmar: accurate and efficient classification based on
multiple class-association rules. In Data Mining, 2001. ICDM 2001, Proceedings IEEE
International Conference on, pages 369–376, 2001.

Bing Liu, Wynne Hsu, and Yiming Ma. Integrating classification and association rule
mining. pages 80–86, 1998.

Heikki Mannila, Hannu Toivonen, and Inkeri Verkamo. Discovery of frequent episodes in
event sequences. Data Mining and Knowledge, 289:259–289, 1997.

David Meyer, Friedrich Leisch, and Kurt Hornik. The support vector machine under test.
Neurocomputing, 55(1-2):169–186, 2003.

Michael D. Morse and Jignesh M. Patel. An efficient and accurate method for evaluating
time series similarity. ACM SIGMOD international conference on Management of data,
page 569, 2007.

Stephen Muggleton. Inductive logic programming. New Generation Computing, 8(4):295–
318, 1991.

Petra Kralj Novak, Nada Lavrač, and Geoffrey I. Webb. Supervised descriptive rule
discovery: A unifying survey of contrast set, emerging pattern and subgroup min-
ing. J. Mach. Learn. Res., 10:377–403, June 2009. ISSN 1532-4435. URL http:

//dl.acm.org/citation.cfm?id=1577069.1577083.

S. Nowozin, K. Tsuda, T. Uno, T. Kudo, and G. Bakir. Weighted substructure mining for
image analysis. In 2007 IEEE Conference on Computer Vision and Pattern Recognition,
pages 1–8, June 2007. doi: 10.1109/CVPR.2007.383171.

33

http://dx.doi.org/10.1023/B:DAMI.0000005258.31418.83
http://dl.acm.org/citation.cfm?id=257938.257965
http://dl.acm.org/citation.cfm?id=1577069.1577083
http://dl.acm.org/citation.cfm?id=1577069.1577083

Guillame-Bert and Dubrawski

Jian Pei, Jiawei Han, B. Mortazavi-Asl, H. Pinto, Qiming Chen, U. Dayal, and Mei-
Chun Hsu. Prefixspan,: mining sequential patterns efficiently by prefix-projected pattern
growth. In Data Engineering, 2001. Proceedings. 17th International Conference on, pages
215–224, 2001. doi: 10.1109/ICDE.2001.914830.

J Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1993.

Juan J. Rodŕıguez and Carlos J. Alonso. Interval and dynamic time warping-based decision
trees. Proceedings of the 2004 ACM symposium on Applied computing - SAC ’04, page
548, 2004.

Juan J. Rodriguez, Carlos J. Alonso, and Henrik Bostrom. Learning first order logic time
series classifiers: Rules and boosting. In DjamelA. Zighed, Jan Komorowski, and Jan
Zytkow, editors, Principles of Data Mining and Knowledge Discovery, volume 1910 of
Lecture Notes in Computer Science, pages 299–308. Springer Berlin Heidelberg, 2000.

Ramakrishnan Srikant and Rakesh Agrawal. Mining sequential patterns: Generalizations
and performance improvements. In Proceedings of the 5th International Conference on
Extending Database Technology: Advances in Database Technology, EDBT ’96, pages 3–
17, London, UK, UK, 1996. Springer-Verlag. ISBN 3-540-61057-X. URL http://dl.

acm.org/citation.cfm?id=645337.650382.

M. Vlachos, G. Kollios, and D. Gunopulos. Discovering similar multidimensional trajecto-
ries. Proceedings 18th International Conference on Data Engineering, 2002.

Xifeng Yan, Hong Cheng, Jiawei Han, and Philip S. Yu. Mining significant graph patterns
by leap search. In Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’08, pages 433–444, New York, NY, USA, 2008. ACM.
ISBN 978-1-60558-102-6. doi: 10.1145/1376616.1376662. URL http://doi.acm.org/

10.1145/1376616.1376662.

Lexiang Ye and Eamonn Keogh. Time series shapelets: a new primitive for data mining.
Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 947–956, 2009.

Mohammed J. Zaki. SPADE: An efficient algorithm for mining frequent sequences. Machine
Learning, 42(1-2):31–60, 2001.

34

http://dl.acm.org/citation.cfm?id=645337.650382
http://dl.acm.org/citation.cfm?id=645337.650382
http://doi.acm.org/10.1145/1376616.1376662
http://doi.acm.org/10.1145/1376616.1376662

	Introduction
	Problem Definition
	Related Work
	Graphs of Temporal Constraints
	Classification with GTCs
	Learning Temporal Patterns
	Constructive Operations on GTCs
	Information Gain Maximization
	Learning Decision Trees and Forests of GTCs
	Learning Sets of GTCs
	Finding the Optimal Scalar Tests
	Finding the Optimal Segment of R

	Experimental Evaluation
	Synthetic Data (1 set)
	UCR Time Series Classification Repository (41 UCR Data Sets)
	16 Rotated UCR Data Sets
	Internal Bleeding Detection Data Set (1 Set)
	Experimental Setup
	Results
	Interpretability of Models

	Conclusion

