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Abstract
We present an approach based on feed-forward neural networks for learning the distribution

over textual documents. This approach is inspired by the Neural Autoregressive Distribution Esti-
mator (NADE) model which has been shown to be a good estimator of the distribution over discrete-
valued high-dimensional vectors. In this paper, we present how NADE can successfully be adapted
to textual data, retaining the property that sampling or computing the probability of an observation
can be done exactly and efficiently. The approach can also be used to learn deep representations of
documents that are competitive to those learned by alternative topic modeling approaches. Finally,
we describe how the approach can be combined with a regular neural network N-gram model and
substantially improve its performance, by making its learned representation sensitive to the larger,
document-level context.
Keywords: Neural networks, Deep learning, Topic models, Language models, Autoregressive
models

1. Introduction

One of the most common problems in machine learning is to estimate a distribution p(v) of multidi-
mensional data from a set of examples {v(t)}Tt=1. Indeed, good estimates of p(v) implicitly require
modeling the dependencies between the variables in v, which is required to extract meaningful rep-
resentations of this data or make predictions about this data. We are particularly interested in the
case where v is not a sequence, where the order in the vector is not relevant (random order).

The biggest challenge one faces in distribution estimation is the well-known curse of dimen-
sionality. In fact, this issue is particularly important in distribution estimation, even more so than
in other machine learning problems. This is because a good distribution estimator must provide an
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accurate value of p(v) for any given v (i.e. not only for likely values of v), while the number of
possible values grows exponentially as the number of dimensions of the input vector v increases.

One example of such a model that has been successful at tackling the curse of dimensionality is
the restricted Boltzmann machine (RBM) (Hinton, 2002). The RBM and other models derived from
it (e.g. the Replicated Softmax of Salakhutdinov and Hinton (2009)) are frequently trained as models
of the probability distribution of high-dimensional observations and then used as feature extractors.
Unfortunately, one problem with these models is that for moderately large models, calculating their
estimate of p(v) is intractable. Indeed, this calculation requires computing the partition function
which normalizes the model distribution. The consequences of this property of the RBM are that
approximation must be taken to train it by maximum likelihood, and that its estimation of p(v)
cannot be entirely trusted.

In an attempt to tackle these issues of the RBM, the Neural Autoregressive Distribution Esti-
mator (NADE) was introduced by Larochelle and Murray (2011). NADE’s parametrization is in-
spired by the RBM, but uses feed-forward neural networks and the framework of autoregression for
modeling the probability distribution of binary variables in high-dimensional vectors. Importantly,
computing the probability of an observation under NADE can be done exactly and efficiently.

In this paper, we describe a variety of ways to extend NADE to model data from text documents.
Why work with text, where the word order is important, when we said previously that we are
interested in the order not being relevant? Because the text is often represented with bag-of-words,
and it has no information about the order of the words. The advantage here is that we can model a
good part of the text semantically while ignoring its syntax.

We start by describing Document NADE (DocNADE), a single hidden layer feed-forward neural
network model for bag-of-words observations, i.e. orderless sets of words. This requires adapting
NADE to vector observations v, where each of element vi represents a word and where the order of
the dimensions is random. Each word is represented with a lower-dimensional, real-valued embed-
ding vector, where similar words should have similar embeddings. This is in line with much of the
recent work on using feed-forward neural network models to learn word vector embeddings (Bengio
et al., 2003; Mnih and Hinton, 2007, 2009; Mikolov, 2013) to counteract the curse of dimensional-
ity. However, in DocNADE, the word representations are trained to reflect the topics (i.e. semantics)
of documents only, as opposed to their syntactical properties, due to the orderless nature of bags-of-
words.

We then describe how to train a deep version of DocNADE. First described by Zheng et al.
(2015) in the context of image modeling, here we empirically evaluate them for text documents and
show that they are competitive to existing topic models, both in terms of perplexity and document
retrieval performances.

Finally, we present how the topic-level modeling ability of DocNADE can be used to obtain a
useful representation of context (semantic information about the past) for language modeling. We
empirically demonstrate that by learning a topical representation (representation based on subjects,
topics) of previous sentences, we can improve the perplexity performance of an N-gram neural
language model.

2. Document NADE (DocNADE)

DocNADE is derived from the Neural Autoregressive Distribution Estimation (NADE). We first
describe NADE in this Section.
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2.1 Neural Autoregressive Distribution Estimation (NADE)

NADE, introduced by Larochelle and Murray (2011), is a tractable distribution estimator for mod-
eling the distribution over high-dimensional binary vectors. Let us consider a binary vector of D
observations, v ∈ {0, 1}D, where the order has no meaning. We use the notation vi to denote the
i-th component of v and v<i ∈ {0, 1}i−1 to contain the first i − 1 components of v. v<i is the
sub-vector [v1, . . . , vi−1]>:

v = [v1, ... , vi−1︸ ︷︷ ︸
v<i

, vi, ... , vD]
T . (1)

The NADE model estimates the probability of the vector v by applying the probability chain rule
as follows:

p(v) =

D∏
i=1

p(vi|v<i). (2)

The peculiarity of NADE lies in the neural architecture designed to estimate the conditional prob-
abilities involved in Equation 2. To predict the component i, the model first computes its hidden
layer of dimension H

hi(v<i) = g (c+W:,<i · v<i) , (3)

leading to the following probability model:

p(vi = 1|v<i) = sigm (bi +Vi,: · hi(v<i)) . (4)

In these two equations, sigm(x) = 1/(1 + exp(−x)) denotes the sigmoid activation function while
function g(·) could be any activation function. Larochelle and Murray (2011) used the sigmoid
function for g(·). W ∈ RH×D and V ∈ RD×H are the parameter matrices along with the associ-
ated bias terms b ∈ RD and c ∈ RH . The notation W:,<i represents a matrix made of the i − 1
first columns of W. The vector Vi,: is made from the i-th row of V and is composed of weights
associated to a logistic classifier, meaning that each row of V represent a different logistic classifier.

Instead of a single projection of the input vector (like for a typical autoencoder, the left part of
Figure 1), the NADE model relies on a set of separate hidden layers hi(v<i) that each represent the
previous inputs in a latent space (right part of Figure 1). The connections between the input dimen-
sion vi and each hidden layer hi(v<i) are tied as shown with the blue lines in Figure 1, allowing
the model to compute all the hidden layers for one input in O(DH). The parameters {b, c,W,V}
are learned by minimizing the average negative log-likelihood using stochastic gradient descent.

2.2 From NADE to DocNADE

The Document NADE model (DocNADE) aims at learning meaningful representations of texts from
a collection of unlabeled documents. Implemented as a feed-forward architecture, it extends NADE
to provide an efficient and meaningful generative model of document bags-of-words. This model
embeds, as NADE did, a set of hidden layers. Their role is to capture salient statistical patterns in the
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A) Autoencoder B) NADE

Figure 1: A) Typical structure for an autoencoder. B) Illustration of NADE. Colored lines iden-
tify the connections that share parameters and v̂i is a shorthand for the autoregressive
conditional p(vi|v<i). The observations vi are binary.

co-occurrence of words within documents and can be considered as modeling hidden topics. This
is called topic modeling (Steyvers and Griffiths, 2007), where a topic model gives a mathematical
representation of a document in the form of a vector (of real values). In our case each element of
the vector is a neuron of the hidden layer and can be associated to a hidden subject where its value
would represent how much that subject is part of the text. This representation can be seen as a
composition of the subjects.

To represent a document for DocNADE, we transform a bag-of-words into a sequence v of
arbitrary sizeD. Each element of v corresponds to a multinomial observation (representing a word)
over a fixed vocabulary of size V :

v = [v1, v2, ... , vD] , vi ∈ {1, 2, ... , V } . (5)

Therefore vi represents the index in the vocabulary of the i-th word of the document. For now,
we assume that an ordering of the words is given, but we will discuss the general case of orderless
bags-of-words in the next Section (2.2.1) and show that we can simply use a random order for the
words during training.

The DocNADE model uses a word representation matrix W ∈ RH×V , where each column
W:,vi of the matrix is a vector representing one of the words in the vocabulary (see Figure 2). This
matrix makes the connection possible between the index vi of a word and its embedding.

The main approach taken by DocNADE is similar to NADE, but differs significantly in the
design of parameter tying. The probability of a document v is estimated using the probability chain
rule, but the architecture is modified to cope with large vocabularies. Each word observation vi of
the document v leads to a hidden layer hi, which represents the past observations v<i (see figure 3).
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Figure 2: Word representation matrix W, where each column of the matrix is a vector representing
a word of the vocabulary.

This hidden layer is computed as follows:

hi(v<i) = g

(
c+

∑
k<i

W:,vk

)
, (6)

where each column of the matrix W acts as a vector of size H that represents a word. The embed-
ding of the ith word in the document is thus the column of index vi in the matrix W.
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Figure 3: (Left) Representation of the computation of a hidden layer hi, function g(·) can be any
activation function. (Right) Illustration of DocNADE. Connections between each multi-
nomial observation vi and hidden units are also shared, and each conditional p(vi|v<i) is
decomposed into a tree of binary logistic regressions.

Notice that by sharing the word representation matrix across positions in the document, each
hidden layer hi(v<i) is in fact independent of the order of the words within v<i. We made the
hypothesis that even if the word order affect semantics, most of its information depends on the set
of words used. DocNADE ignores in which order the previously observed words appeared. The
implications of this choice is that the learned hidden representation will not model the syntactic
structure of the document and focus entirely on its document-level semantics, i.e. its topics. It also
means that the first word at the beginning of the sequence has the same influence as the last one, and
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its importance compared to the other words does not deteriorate over time. This phenomenon can
be observed in the left part of Figure 3. With this illustration we see that if we swap the first word
v1 with the last one vi−1 we would obtain the same hidden representation hi.

It is also worth noticing that we can compute hi+1 recursively by keeping track of the pre-
activation of the previous hidden layer hi as follows:

hi+1(v<i+1) = g

W:,vi + c+
∑
k<i

W:,vk︸ ︷︷ ︸
Precomputed for hi(v<i)

 (7)

The weight sharing between the hidden layers enables us to compute all the hidden layers hi(v<i)
for a document in O(DH).

To compute the probability of a full document p(v), we need to estimate all conditional proba-
bilities p(vi|v<i). A straightforward solution would be to compute each p(vi|v<i) using a softmax
layer with a shared weight matrix and bias with each of the hidden layers hi. However, the com-
putational cost of this approach is prohibitive, as it scales linearly with the vocabulary size.1 To
overcome this issue, we represent a distribution over the vocabulary by a probabilistic binary tree,
where the leaves correspond to the words. This approach is widely used in the field of neural
probabilistic language models (Morin and Bengio, 2005; Mnih and Hinton, 2009). Each word is
represented by a path in the tree, going from the root to the leaf associated to that word. A binary
logistic regression unit is associated to each node in the tree and gives the probability of the binary
choice, going left or right. A word probability can therefore be estimated by the path’s probability
in this tree, resulting in a complexity in O(log V ) for a balanced tree. In our experiments, we used a
randomly generated full binary tree with V leaves, each assigned to a unique word in the vocabulary.

Figure 4: Path of the word vi in a binary tree. We compute the probability of the left/right choice
(0/1) for each node of the path.

More formally, let’s denote by l(vi) the sequence of nodes composing the path, from the root of
the tree to the leaf corresponding to the word vi. Then, π(vi) is the sequence of left/right decisions
of the nodes in l(vi). For example, the root of the tree is always the first element l(vi)1 and the value

1. For most natural language processing tasks, the vocabulary size exceeds 10, 000.
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π(vi)1 will be 0 if the word is in the left sub-tree and 1 if it is in the right sub-tree (see figure 4).
The matrix V stores by row the weights associated to each logistic classifier. There is one logistic
classifier per node in the tree, but only a fraction of them is used for each word. Let Vl(vi)m,: and
bl(vi)m be the weights and bias of the logistic unit associated with the node n(vi)m. The probability
p(vi|v<i) given the tree and the hidden layer hi(v<i) is computed by the following formulas:

p(vi = w|v<i) =
|π(vi)|∏
m=1

p(π(vi)m = π(w)m|v<i), with (8)

p(π(vi)m = 1|v<i) = sigm
(
bl(vi)m +Vl(vi)m,: · hi(v<i)

)
. (9)

This hierarchical architecture allows us to efficiently compute the probability of each word in a
document and therefore the probability of the whole document with the probability chain rule (see
Equation 2). As in the NADE model, the parameters of the model {b, c,W,V} are learnt by
minimizing the negative log-likelihood using stochastic gradient descent.

Since there is log(V ) logistic regression units for a word (one per node), each of them has a
time complexity of O(H), the complexity of computing the probability for a document of D words
is in O(log(V )DH).

For using DocNADE to extract features from a complete document, we propose to use

h(v) = hD+1(v<D+1) = g

(
c+

D∑
k=1

W:,vk

)
(10)

which would be the hidden layer computed to obtain the conditional probability of a hypothetical
(D + 1)-th word appearing in the document. In other words, h(v) is the representation of all the
words in the document. Notice that we do not average the document representation to become
invariant to document length. Averaging did not result in any performance improvement in our
preliminary experiments. We conjecture that it is because every word count ni in the data was
replaced by log(1 + ni), which reduces the variability of the input values and makes the model
more invariant to the document length. However, averaging sometimes is useful, such as for the
language model approach (see Section 4).

Algorithm 1 gives the pseudo-code for computing the negative log-likelihood cost used during
training and the hidden layer used for representing the whole document under DocNADE.

2.2.1 TRAINING FROM BAG-OF-WORDS COUNTS

So far, we have assumed that the ordering of the words in the document is known. However, a
document often takes the form of word-count vectors in which the original word order, required for
specifying the sequence of conditionals p(vi|v<i), has been lost.

It is however still possible to successfully train a DocNADE despite the absence of this infor-
mation. The idea is to assume that each observed document v was generated by initially sampling
a seed document ṽ from DocNADE, whose words were then shuffled using a randomly generated
ordering to produce v. With this approach, we can express the probability distribution of v by
computing the marginal over all possible seed document:

p(v) =
∑

ṽ∈V(v)

p(v, ṽ) =
∑

ṽ∈V(v)

p(v|ṽ)p(ṽ) (11)

7
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Algorithm 1 Computing of the cost for training and the hidden layer for representing an entire
document (DocNADE model)
Input: Multinomial observation v

a← c
NLL← 0
For i = 1 to D Do

hi ← g(a)

p(vi)← 1
For m = 1 to |π(vi)| Do
p(π(vi)m = 1|v<i)← sigm

(
bl(vi)m +Vl(vi)m,: · hi(v<i)

)
p(vi)← p(vi) (p(π(vi)m = 1|v<i)π(vi)m + (1− p(π(vi)m = 1|v<i)1−π(vi)m))

End for

NLL← NLL− log p(vi)
a← a+W:,vi

End for

hfinal ← g(a)

Return NLL, hfinal

where p(ṽ) is modeled by DocNADE. ṽ is the same as the observed document v but with a different
(random) word sequence order, and V(v) is the set of all the documents ṽ that has the same word
count n(v) = n(ṽ). With the assumption of orderings being uniformly sampled, we can replace
p(v|ṽ) with 1

|V(v)| giving us:

p(v) =
∑

ṽ∈V(v)

1

|V(v)|
p(ṽ) =

1

|V(v)|
∑

ṽ∈V(v)

p(ṽ) . (12)

In practice, one approach to training the DocNADE model over ṽ is to artificially generate
ordered documents by uniformly sampling words, without replacement, from the bags-of-words in
the dataset. This would be equivalent to taking each original document and shuffling the order of
its words. This approach can be shown to minimize a stochastic upper bound on the true negative
log-likelihood of documents. As we will see, experiments show that convincing performance could
still be reached.

With this training procedure, DocNADE shows its ability to learn and predict a new word in a
document at a random position while preserving the overall semantic properties of the document.
The model is therefore learning not to insert intruder words, i.e. words that do not belong with the
others. After training, a document’s learned representation should contain valuable information to
identify intruder words for this document. It is interesting to note that the detection of such intruder
words has been used previously as a task in user studies to evaluate the quality of the topics learned
by LDA, though at the level of single topics and not whole documents (Chang et al., 2009).
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The goal with DocNADE is to have a simple, powerful, fast way to train model that can also be
used with data that have lost the information about ordering. We want to learn topic-level semantics,
where the order of the words is less important than the existence of words is, instead of learning
syntax, where the order of the words is more important. In this context, it makes no sense to apply
an RNN-like model on randomly shuffled words, since there’s no position varying information to
model.

3. Deep Document NADE

The single hidden layer version of DocNADE already achieves very competitive performance for
topic modeling (Larochelle and Lauly, 2012). Extending it to a deep architecture with multiple
hidden layer could however enable better performance, as suggested by the recent and impressive
success of deep neural networks. Unfortunately, deriving a deep version of DocNADE cannot be
achieved solely by adding hidden layers to the definition of the conditionals p(vi|v<i). Indeed,
computing p(v) requires computing each p(vi|v<i) conditional (one for each word), and it is no
longer possible to use Equation 7 to compute the sequence of all hidden layers in O(DH) when
there are multiple deep hidden layers.

In this Section, we describe an alternative training procedure that enables us the introduction of
multiple stacked hidden layers. This procedure was first introduced by Zheng et al. (2015) to model
images, which was itself borrowing from the training scheme introduced by Uria et al. (2014).

As mentioned in Section 2.2.1, DocNADE can be trained on random permutations of the words
from training documents. As noticed by Uria et al. (2014), the use of many orderings during training
can be seen as the instantiation of many different DocNADE models that share a single set of
parameters. Thus, training DocNADE with random permutations also amounts to minimizing the
negative log-likelihood averaged across all possible orderings, for each training example v.

In the context of deep NADE models, a key observation is that training on all possible orderings
implies that for a given context v<i, we encourage the model to be equally good at predicting any
of the remaining words appearing next. Thus, we redesign the training algorithm such that, instead
of sampling a complete ordering of all words for each update, we instead sample a single context
v<i and perform an update of the conditionals using that context. This is done as follows. For a
given document, after generating vector v by shuffling the words from the document, a split point i
is randomly drawn. From this split point we obtain two parts of the document, v<i and v≥i:

v = [v1, ... , vi−1︸ ︷︷ ︸
v<i

, vi, ... , vD︸ ︷︷ ︸
v≥i

]>. (13)

The vector v<i is considered as the input and the vector v≥i contains the targets to be predicted
by the model. Since a training update relies on the computation of a single latent representation,
that of v<i for the drawn value of i, deeper hidden layers can be added at a reasonable increase in
computation. We call a deep DocNADE trained with this procedure a DeepDocNADE.
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Figure 5: (Left) Representation of the computation by summation of the first hidden layer h(1),
which is equivalent to multiplying the bag-of-words x (v<i) with the word representation
matrix W(1) . (Right) Illustration of DeepDocNADE architecture.

In DeepDocNADE the conditionals p(vi|v<i) are modeled as follows. The first hidden layer
h(1)(v<i) represents the conditioning context v<i as in the single hidden layer DocNADE:

h(1) (v<i) = g

(
c(1) +

∑
k<i

W(1)
:,vk

)
= g

(
c(1) +W(1) · x (v<i)

)
(14)

where x (v<i) is the histogram vector representation (bag-of-words) of the word sequence v<i, and
the exponent is used as an index over the hidden layers and its parameters, with (1) referring to the
first layer (see Figure 5). The matrix W(1) is the word representation matrix of DeepDocNADE.
Notice that like DocNADE, the first hidden layer h(1)(v<i) of DeepDocNADE is independent of
the order of the words within v<i. We can now easily add new hidden layers as in a regular deep
feed-forward neural network:

h(n)(v<i) = g(c(n) +W(n) · h(n−1)(v<i)), (15)

for n = 2, . . . , N , where N is the total number of hidden layers. From the last hidden layer h(N),
we compute the conditional p(vi = w|v<i), for any word w:

ŷw = p(vi = w|v<i) = softmax(Vw,: · h(N)(v<i) + bw), (16)

ŷ = softmax(V · h(N)(v<i) + b), (17)

10
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where V ∈ RV×H(N)
is the output parameter matrix and b the bias vector. The notation ŷ is a

vector that represents the probability of all the vocabulary words computed at once. Each element
of the vector, ŷ1 to ŷV , represents one of the words in the vocabulary. We use ŷw to make the
connection with vi = w (the index of the word w at time i).

Finally, the loss function used to update the model for the given context v<i is:

L(v) =
Dv

Dv − i+ 1

∑
w∈v≥i

− log p(vi = w|v<i), (18)

where Dv is the number of words in v, and the summation iterates over all the words w present in
v≥i. Thus, as described earlier, the model predicts each remaining word after the splitting position
i as if it was actually at position i. The factor in front of the summation comes from the fact
that the complete log-likelihood would contain Dv log-conditionals and that we are averaging over
Dv − i + 1 possible choices for the word at position i. For a more detailed presentation, see
Zheng et al. (2015). The average loss function of Equation 18 is optimized with stochastic gradient
descent.2

Note that to compute the probability p(vi = w|v<i), a probabilistic tree could again be used.
However, since all probabilities needed for an update are based on a single context v<i, a single
softmax layer is sufficient to compute all necessary quantities. Therefore the computational burden
of a conventional softmax is not as prohibitive as for DocNADE, especially with an efficient im-
plementation on the GPU. For this reason, in our experiments with DeepDocNADE we opted for a
regular softmax.

4. DocNADE Language Model

While topic models such as DocNADE can be useful in learning topic representations of documents,
they are very poor models of language. In DocNADE, this is due to the fact that, when assigning
a probability to the next word in a sentence, it ignores the order in which the previously observed
words appeared. Yet, this ordering of words conveys a lot of information regarding a syntactic role
of the next word or the finer semantics within the sentence. In fact, most of that information is
predictable from the last few words, which is why N-gram language models remain a dominating
approach to language modeling.

In this Section, we propose a new model that extends DocNADE to mitigate the influence of both
short and long term dependencies in a single model, which we refer to as the DocNADE language
model or DocNADE-LM. The solution we propose enhances the bag-of-words representation with
the explicit inclusion of n-gram dependencies.

Figure 6 depicts the overall architecture. This model can be seen as an extension of the sem-
inal work on neural language models by Bengio et al. (2003) that includes the representation of a
document’s larger context. It can also be seen as a neural extension of the cache-based language
model introduced in (Kuhn and Mori, 1990), where the n-gram probability is interpolated with the

2. A document is usually represented as bag-of-words. Generating a word vector v from its bag-of-words, shuffling
the word count vector v, splitting it, and then regenerating the histogram x (v<i) and x (v≥i) is unfortunately fairly
inefficient for processing samples in a mini-batch fashion. Hence, in practice, we split the original histogram x (v)
directly by uniformly sampling, for each word individually, how many are put on the left of the split (the others are
put on the right of the split). This procedure, used also by Zheng et al. (2015), is only an approximation to the correct
procedure mentioned in the main text, but results in substantial speedup while also yielding good performance.
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Figure 6: Illustration of the conditional p(vi|v<i) in a trigram NADE language model. Compared to
DocNADE, this model incorporates the architecture of a neural language model, that first
maps previous words (2 for a trigram model) to vectors using an embedding matrix WLM

before connecting them to the hidden layer using regular (untied) parameter matrices (U1,
U2 for a trigram). In our experiments, each conditional p(vi|v<i) exploits decomposed
into a tree of logistic regressions, the hierarchical softmax.

word distribution observed in a dynamic cache. This cache of a fixed size keeps track of previously
observed words to include long term dependencies in the prediction and preserve semantic consis-
tency beyond the scope of the n-gram. The DocNADE language model maintains an unbounded
cache and defines a proper, jointly trained solution to mitigate these two kinds (long and short) of
dependencies.

As in DocNADE, a document v is modeled as a sequence of multinomial observations. The
sequence size is arbitrary and this time the order is important, each element vi consists of the i-th
word of the sequence and represent an index in a vocabulary of size V . The conditional probability
of a word given its history p(vi|v<i) is now expressed as a smooth function of a hidden layer
hi(v<i) used to predict word vi. The peculiarity of the DocNADE language model lies in the
definition of this hidden layer, which now includes two terms:

hi(v<i) = g(b+ hDN
i (v<i) + hLM

i (v<i)). (19)

The first term borrows from the DocNADE model by aggregating embeddings for all the previous
words in the history:

hDN
i (v<i) =

1

i− 1

∑
k<i

WDN
:,vk

, (20)

where i − 1 is the number of words used to create hDN
i (v<i). We average the hidden rep-

resentation by the number of words to get good results for the language modeling task, so that the
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representation can become invariant to the document’s length. The hidden representation hDN
i (v<i)

models the semantic aspects of the text that have been observed so far. As we explained earlier for
DocNADE, the order of the words within v<i is not modeled. The hidden layer hDN

i (v<i) can be
seen as a context representation of the past where the influence of a word relative to other words
does not diminish over time.

The second contribution derives from a neural n-gram language model as follows:

hLM
i (v<i) =

n−1∑
k=1

Uk ·WLM
:,vi−k

. (21)

In this formula, the history for the word vi is restricted to the n − 1 preceding words, following
the common n-gram assumption. The term hLM

i hence represents the continuous representation of
these n − 1 words, in which word embeddings are linearly transformed by the ordered matrices
U1,U2, ...,Un−1. Moreover, b gathers the bias terms for the hidden layer. In this model, two
sets of word embeddings are defined, WDN and WLM, which are respectively associated to the
DocNADE and neural language model parts. For simplicity, we assume both are of the same size
H .

Given hidden layer hi(v<i), conditional probabilities p(vi|v<i) can be estimated, and thus p(v).
For the aforementioned reason explained in DocNADE, the output layer is structured as a proba-
bilistic tree for efficient computations. Specifically, we decided to use a variation of the probabilistic
binary tree, known as a hierarchical softmax layer. In this case, instead of having binary nodes with
multiple levels in the tree, we have only two levels where all words have their leaf at level two and
each node is a multiclass (i.e. softmax) logistic regression with roughly

√
V classes (one for each

children). Computing probabilities in such a structured layer can be done using only two matrix
multiplications, which can be efficiently computed on the GPU.

With a hidden layer of sizeH , the complexity of computing the softmax at one node isO(H
√
V ).

If we have D words in a given document, the complexity of computing all necessary probabilities
from the hidden layers is thus O(DH

√
V ). It also requires O(DH) computations to compute the

hidden representations for the DocNADE part and O(nH2) for the language model part. The full
complexity for computing p(v) and the updates for the parameters is thusO(DH

√
V +DH+nH2).

Once again, the loss function of the model is the negative log-likelihood, and we minimize
it by using stochastic gradient descent over documents, to learn the values of the parameters
{b, c,V,WLM,WDN,U1, ...,Un}.

5. Related Work

As NADE was inspired by the RBM, DocNADE can be seen as related to the Replicated Softmax
model (Salakhutdinov and Hinton, 2009), an extension of the RBM to document modeling. Here,
we describe in more detail the Replicated Softmax, along with its relationship with DocNADE.

Much like the RBM, the Replicated Softmax models observations using a latent, stochastic
binary layer h. Here, the observation is a document v and interacts with the hidden layer h through
an energy function similar to RBM’s:

E(v,h) = −D c>h+

D∑
i=1

−h>W:,vi − bvi = −D c>h− h>Wn(v)− b>n(v), (22)
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Figure 7: Replicated Softmax model. Each multinomial observation vi is a word. Connections
between each multinomial observation vi and hidden units are shared.

where n(v) is a bag-of-words vector of size V (the size of the vocabulary) containing the word
count of each word in the vocabulary for document v. h is a stochastic, binary hidden layer vector,
and W:,vi is the vi-th column vector of matrix W. c and b are the bias vectors for the visible and
the hidden layers. We see here that the larger v is, the bigger the number of terms in the sum over
i is, resulting in a high energy value. For this reason, the hidden bias term c>h is multiplied by
D, to be commensurate with the contribution of the visible layer.. We can see also that connection
parameters are shared across different positions i in v, as illustrated in Figure 7.

The conditional probabilities of the hidden and the visible layer factorize as in the RBM, in the
following way:

p(h|v) =
∏
j

p(hj |v) , p(v|h) =
D∏
i=1

p(vi|h) (23)

where the factors p(hj |v) and p(vi|h) are such that

p(hj = 1|v) = sigm(Dcj +
∑
i

Wjvi) (24)

p(vi = w|h) = exp(bw + h>W:,w)∑
w′ exp(bw′ + h>W:,w′)

(25)

The normalized exponential part in p(vi = w|h) is simply the softmax function. To train this model,
we minimize the negative log-likelihood (NLL). Its gradient for a document v(t) with respect to the
parameters θ = {W, c,b} is calculated as follows:

−∂ log p(v
(t))

∂θ
= EEh|v(t)

[
∂

∂θ
E(v(t),h)

]
− EEv,h

[
∂

∂θ
E(v,h)

]
. (26)

As with the conventional RBM, the second expectation in Equation 26 is computationally in-
tractable. The gradient of the negative log-likelihood is therefore approximated by replacing the
second expectation with an estimated value obtained by contrastive divergence (Hinton, 2002). This
approach consists of performing K steps of block Gibbs sampling, starting at v(t) and using Equa-
tions 24 and 25, to obtain a point estimate of the expectation over v. A large values of K must
be used to reduce the bias of gradient estimates and obtain good estimates of the distribution. This
approximation is used to perform stochastic gradient descent.
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During Gibbs sampling, the Replicated Softmax model must compute and sample from p(vi =
w|h), which requires the computation of a large softmax. Most importantly, the computation of the
softmax most be repeated K times for each update, which can be prohibitive, especially for large
vocabularies. Unlike DocNADE, this softmax cannot simply be replaced by a structured softmax.

DocNADE is closely related to how the Replicated Softmax approximates, through mean-field
inference, the conditionals p(vi = w|v<i). Computing the conditional p(vi = w|v<i) with the
Replicated Softmax is intractable. However, we could use mean-field inference to approximate the
full conditional p(vi,v>i,h|v<i) by introducing a factorized approximate distribution:

q(vi,v>i,h|v<i) =
∏
k≥i

q(vk|v<i)
∏
j

q(hj |v<i) , (27)

where q(vk = w|v<i) = µkw(i) and q(hj = 1|v<i) = τj(i). We would find the parameters
µkw(i) and τj(i) that minimize the KL divergence between q(vi,v>i,h|v<i) and p(vi,v>i,h|v<i)
by applying the following message passing equations until convergence:

τj(i)← sigm

D cj +
∑
k≥i

V∑
w′=1

Wjw′µkw′(i) +
∑
k<i

Wjvk

 , (28)

µkw(i)←
exp(bw +

∑
jWjwτj(i))∑

w′ exp(bw′ +
∑

jWjw′τj(i))
. (29)

with k ∈ {i, . . . ,D}, j ∈ {1, . . . ,H} and w ∈ {1, . . . , V }. The conditional p(vi = w|v<i) is then
estimated with µkw(i) for all i. We note that one iteration of mean-field (with µkw′(i) initialized to
0) in the Replicated Softmax corresponds to the conditional p(vi = w|v<i) computed by DocNADE
with a single hidden layer and a flat softmax output layer.

In our experiment, we show that DocNADE compares favorably to Replicated Softmax.

5.1 Related work discussion

With DocNADE, the conditional probability of each word in a document is computed given the set
of previously observed words. The probability distribution of the whole document is modeled using
the probability chain rule. DocNADE automatically learns the underlying word representations
and can compute the probability of a document exactly and efficiently. Similarly, the Replicated
Softmax (Salakhutdinov and Hinton, 2009) also models the distribution, but because calculating
the needed partition function for moderately large models is intractable, an approximation must
be made to compute the probability of a document, making the estimate not entirely trustable.
There are also other works that can learn good word representations like DocNADE, such as typical
autoencoder, word2vec, doc2vec, etc. For example, people could use continuous bag-of-words
autoencoder to learn good representations. The popular word2vec approaches, CBOW and Skip-
gram (Mikolov et al., 2013), also learn word representations. The CBOW task is to predict a word
given a surrounding context of N words where the Skip-gram does the opposite, predicting the
N context words surrounding a specific word. To generate a document representation, Doc2vec
(Le and Mikolov, 2014) (also called paragraph-vectors) modifies word2vec by adding a document-
unique feature vector during training. For inference, a new document is presented, and all the model
parameters are fixed to calculate the document vector. The advantage of DocNADE over all these
above proposals is that it can model the probability of the documents as well as learn representations
of words. Hence, the representations are more suitable for document retrieval tasks.
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6. Topic modeling experiments

To compare the topic models, two quantitative measures are used. The first one evaluates the gen-
erative ability of different models, by computing the perplexity on held-out texts. The second one
compares the quality of document representations for information retrieval.

Two different datasets are used for the experiments in this Section, a small one and a relatively
big one, 20 Newsgroups and RCV1-V2 (Reuters Corpus Volume I) respectively. The 20 News-
groups corpus has 18,786 documents (postings) partitioned into 20 different classes (newsgroups).
RCV1-V2 is a much bigger dataset composed of 804,414 documents (newswire stories) manually
categorized into 103 classes (topics). The two datasets were preprocessed by stemming the text and
removing common stop-words. The 2,000 most frequent words of the 20 Newsgroups training set
and the 10,000 most frequent words of the RCV1-V2 training set were used to create the dictionary
for each dataset. Also, every word count ni, used to represent the number of times a word appears in
a document, was replaced with log(1 + ni) rounded to the nearest integer, following Salakhutdinov
and Hinton (2009).

For these experiments, all the hidden representations of all the models are composed of 50
dimensional features. Early stopping on the validation set is used for avoiding overfitting and for
model selection.

6.1 Generative Model Evaluation

For the generative model evaluation, we follow the experimental setup proposed by Salakhutdinov
and Hinton (2009) for 20 Newsgroups and RCV1-V2 datasets. We use the exact same split for the
sake of comparison. The setup consists of respectively 11,284 and 402,207 training examples for
20 Newsgroups and RCV1-V2. We randomly extract 1,000 and 10,000 documents from the training
sets of 20 Newsgroups and RCV1-V2, respectively, to build a validation set. The average perplexity
per word is used for comparison. This perplexity is estimated using the 50 first documents of a
separate test set, as follows:

exp

(
− 1

T

∑
t

1

|vt|
log p(vt)

)
, (30)

where T is the total number of examples in the test set and vt is the t-th test document.3

Table 1 presents the perplexities per word results for 20 Newsgroups and RCV1-V2. We com-
pare 5 different models: the Latent Dirichlet Allocation (LDA) (Blei et al., 2003), the Replicated
Softmax, the recently proposed fast Deep AutoRegressive Networks (fDARN) (Mnih and Gregor,
2014), DocNADE and DeepDocNADE (DeepDN in the table). Each model uses 50 latent topics
(size of the representation of a document). For the experiments with DeepDocNADE, we provide
the performance when using 1, 2, and 3 hidden layers. As shown in Table 1, DeepDocNADE re-
sults in the best generative performances. Our best DeepDocNADE models were trained with the
Adam optimizer (Kingma and Ba, 2014) and with tanh activation function. The hyper-parameters
of Adam were selected on the validation set.

3. Note that there is a difference between the sizes, for the training sets and test sets of 20 Newsgroups and RCV1-V2
reported in this paper and the one reported in the original data paper of Salakhutdinov and Hinton (2009). The correct
values are the ones given in this Section, which was confirmed after personal communication with Salakhutdinov and
Hinton (2009).
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Dataset LDA
Replicated

fDARN DocNADE
DeepDN DeepDN DeepDN

Softmax (1layer) (2layer) (3layer)
20 News 1091 953 917 896 835 877 923
RCV1-v2 1437 988 724 742 579 552 539

Table 1: Test perplexity per word for models with a document representation of size 50 (50 topics).
The results for LDA and Replicated Softmax were taken from Salakhutdinov and Hinton
(2009).
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Figure 8: Perplexity obtained with different numbers of word orderings m for 20 Newsgroups on
the left and RCV1-V2 on the right.

Furthermore, following Uria et al. (2014), an ensemble approach is used to compute the proba-
bility of documents, where each component of the ensembles are the same DeepDocNADE model
evaluated on a different word ordering. The perplexity with M ensembles is then

exp

(
− 1

T

∑
t

1

|vt|
log

(
1

M

∑
m

p(v(t,m))

))
, (31)

where T is the total number of examples,M is the number of ensembles (word orderings) and v(t,m)

denotes the m-th word ordering for the t-th document. We try M = {1, 2, 4, 16, 32, 64, 128, 256},
with the results in Table 1 using M = 256. For the 20 Newsgroups dataset, adding more hidden
layers to DeepDocNADE fails to further improve the performance. We hypothesize that the rel-
atively small size of this dataset makes it hard to successfully train a deep model. However, the
opposite is observed on the RCV1-V2 dataset, which is more than an order of magnitude larger than
20 Newsgroups. In this case, DeepDocNADE outperforms fDARN and DocNADE, with a relative
perplexity reduction of 20%, 24% and 26% with respectively 1,2 and 3 hidden layers.

To illustrate the impact of M on the performance of DeepDocNADE, Figure 8 shows the per-
plexity on both datasets using the different values for M that we tried. We can observe that beyond
M = 128, this hyper-parameter has only a minimal impact on the perplexity.
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weapons medical companies define israel book windows
weapon treatment demand defined israeli reading dos
shooting medecine commercial definition israelis read microsoft
firearms patients agency refer arab books version
assault process company make palestinian relevent ms
armed studies credit examples arabs collection pc

Table 2: The five nearest neighbors in the word representation space learned by DocNADE.

6.2 Document Retrieval Evaluation

A document retrieval evaluation task was also used to evaluate the quality of the document repre-
sentation learned by each model. As in the previous Section, the datasets under consideration are
20 Newsgroups and RCV1-V2. The experimental setup is the same for the 20 Newsgroups dataset,
while for the RCV1-V2 dataset, we reproduce the same setup as the one used by Srivastava et al.
(2013). The training set contains 794,414 examples and 10,000 examples constituted the test set.

For DocNADE and DeepDocNADE, the representation of a document is obtained simply by
computing the top-most hidden layer (Equation 10) when feeding all the words of a document as
input.

The retrieval task follows the setup by Srivastava et al. (2013). The documents in the training
and validation sets are used as the database for retrieval, while the test set is used as the query
set. The similarity between a query and all examples in the database is computed using the cosine
similarity between their vector representations. For each query, documents in the database are then
ranked according to this similarity, and precision/recall (PR) curves are computed, by comparing
the label of the query documents with those of the database documents. Since documents often have
multiple labels (specifically those in RCV1-V2), the PR curves for each of its labels are computed
individually and then averaged for each query. Finally, we report the global average of these (query-
averaged) curves to compare models against each other. Training and model selection is otherwise
performed as done in the generative modeling evaluation.

As shown in Figure 9, DeepDocNADE always yields very competitive results, on both datasets,
and outperforming the other models in most cases. Specifically, for the 20 Newsgroups dataset,
DeepDocNADE with 2 and 3 hidden layers always perform better than the other methods. Deep-
DocNADE with 1 hidden layer also performs better than the other baselines when retrieving the top
few documents ( e.g. when recall is smaller than 0.2).

6.3 Qualitative Inspection of Learned Representations

In this Section, we want to assess if the DocNADE approach for topic modeling can capture mean-
ingful semantic properties of texts.

First, one way to explore the semantic properties of trained models is through their learned word
embeddings. Each of the columns of the matrix W represents a word w where W:,w is the vector
representation of w. Table 2 shows the five nearest words for some chosen words according to their
embeddings, from a DocNADE model. We observe for each example the semantic consistency of
the word representations. Similar results are observed for DeepDocNADE models.

18



DOCNADE

20 NewsGroups
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Figure 9: Precision-Recall curves for document retrieval task. On the left are the results using a
hidden layer size of 128, while the plots on the right are for a size of 512.

We have also attempted to measure whether the hidden units of the first hidden layer of Doc-
NADE and DeepDocNADE models modeled distinct topics. Understanding the function repre-
sented by hidden units in neural networks is not a trivial affair, but we considered the following
simple approach. For a given hidden unit, its connections to words are interpreted as the importance
of the word for the associated topic. We thus select the words having the strongest positive con-
nections for a hidden unit, i.e. for the i-th hidden unit we chose the words w that have the highest
connection values Wi,w.

With this approach, fifty topics were obtained from a DocNADE model (with the sigmoid acti-
vation function) trained on 20 Newsgroups. Four of the fifty topics are shown in Table 3 and can be
readily interpreted as topics representing: religion, space, sports and security. Note that those four
topics are actual (sub)categories in 20 Newsgroups.

That said, we have had less success understanding the topics extracted when using the tanh
activation function or when using DeepDocNADE. It thus seems that these models learn a latent
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Hidden unit topics
jesus shuttle season encryption

atheism orbit players escrow
christianity lunar nhl pgp

christ spacecraft league crypto
athos nasa braves nsa

atheists space playoffs rutgers
bible launch rangers clipper

christians saturn hockey secure
sin billion pitching encrypted

atheist satellite team keys

Table 3: Illustration of some topics learned by DocNADE. A topic i is visualized by picking the 10
words w with strongest connection Wiw.

representation that does not align its dimensions with concepts that are easily interpretable, even
though it is clearly capturing well the statistics of documents.

7. Language Modeling Experiments

In this Section, we test whether our proposed approach to incorporating a DocNADE component to
a neural language model can improve the performance of a neural language model. Specifically, we
considered treating a text corpus as a sequence of documents. We used the APNews dataset, as pro-
vided by Mnih and Hinton (2009). Unfortunately, information about the original segmentation into
documents of the corpus was not available in the data as provided by Mnih and Hinton (2009), thus
we simulated the presence of documents by grouping one or more adjacent sentences, for training
and evaluating DocNADE-LM, making sure the generated documents were non-overlapping. This
approach still allows us to test whether DocNADE-LM is able to effectively leverage the larger
context of words in making its predictions.

Since language models are generative models, the perplexity measured on some held-out texts
is widely used for evaluation. Following Mnih and Hinton (2007) and Mnih and Hinton (2009), we
use the APNews dataset containing Associated Press news stories from 1995 and 1996. The dataset
is again split into training, validation and test sets with respectively 633,143, 43,702 and 44,601
sentences. The vocabulary is composed of 17,964 words.

For these experiments, all the hidden representations of all the models are composed of 100
dimensional features. Early stopping on the validation set is used for avoiding overfitting and for
model selection. The perplexity scores of Table 4 are computed on the test set.

The LM model in Table 4 corresponds to a regular neural (feed-forward) network language
model. It is equivalent to using only the language model part of DocNADE-LM. These results are
meant to measure whether the DocNADE part of DocNADE-LM indeed improves performances.

We also compare against the log-bilinear language (LBL) model of Mnih and Hinton (2007)).
While we used a hierarchical softmax to compute the conditional word probabilities for the LM
model (see Section 4), the LBL model uses a full softmax output layer that uses the same word rep-
resentation matrix at the input and output. This latter model is therefore slower to train. Later, Mnih
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Models Number of grouped sentences Perplexity
KN6 1 123.5
LBL 1 117.0
HLBL 1 112.1
LSTM 1 116.26
GRU 1 109.42
LM 1 119.78
DocNADE-LM 1 111.93
DocNADE-LM 2 110.9
DocNADE-LM 3 109.8
DocNADE-LM 4 109.78
DocNADE-LM 5 109.22

Table 4: Test perplexity per word for models with 100 topics. The results for HLBL and LBL were
taken from Mnih and Hinton (2009).

and Hinton (2009) also proposed an adaptive approach to learning a structured softmax layer, thus
we also compare against their best approach. All the aforementioned baselines are 6-gram models,
taking in consideration the five previous words to predict the next one. We also compare with a
more traditional 6-gram model using Kneser-Ney smoothing, taken from Mnih and Hinton (2007).
Finally we compare our results against recurrent language model using ether LSTM from Graves
(2013) or GRU from Cho et al. (2014). These models are trained with stochastic gradient descent,
using full backpropagation through time. They are considered as states of the art for modeling
sequences.

From Table 4, we see that adding context to DocNADE-LM, by increasing the size of the multi-
sentence segments, improves the performance of the model (compared to LM) and also surpasses
the performance of the most competitive alternatives.

7.1 Qualitative Inspection of Learned Representations

In this Section we explore the semantic properties of texts learned by the DocNADE-LM model.
Interestingly, we can examine the two different components (DN and LM) separately. Because
the DocNADE part and the language modeling part of the model each have their own word matrix,
WDN and WLM respectively, we can compare their contribution through these learned embeddings.
As explained in the previous Section, each of the columns of the matrices represents a wordw where
WDN

:,w and WLM
:,w are two different vector representations of the same word w.

We can see from Tables 5 and 6 that the two parts of the DocNADE-LM model have learned
different properties of words. An interesting example is the nearest neighbors of the word israel,
where the DocNADE focuses on the politico-cultural relation between these words, whereas the
language model part has learned the concept of countries in general.
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weapons medical companies define israel book windows
security doctor industry spoken israeli story yards
humanitarian health corp to palestinian novel rubber
terrorists medicine firms think of jerusalem author piled
deployment physicians products of lebanon joke fire department
diplomats treatment company bottom line palestinians writers shell

Table 5: The five nearest neighbors in the word representation space learned by the DocNADE part
of the DocNADE-LM model.

weapons medical companies define israel book windows
systems special countries talk about china film houses
aircraft japanese nations place russia service room
drugs bank states destroy cuba program vehicle
equipment media americans show north korea movie restaurant
services political parties over lebanon information car

Table 6: The five nearest neighbors in the word representation space learned by the language model
part of the DocNADE-LM model.

8. Conclusion

We have presented models inspired by NADE that can achieve state-of-the-art performances for
modeling documents. For topic modeling, DocNADE had competitive results while its deep ver-
sion, DeepDocNADE, outperformed the current state-of-the-art in generative document modeling,
based on a test set perplexity. Good performances were also observed when we used these models
as feature extractors to represent documents for the task of information retrieval. As for language
modeling, the competitive performances of the DocNADE language model showed that combin-
ing contextual information by leveraging the DocNADE architecture can significantly improve the
performance of a neural probabilistic N-gram language model.
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