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Abstract
We consider the problem of low canonical polyadic (CP) rank tensor completion. A completion
is a tensor whose entries agree with the observed entries and its rank matches the given CP rank.
We analyze the manifold structure corresponding to the tensors with the given rank and define a
set of polynomials based on the sampling pattern and CP decomposition. Then, we show that fi-
nite completability of the sampled tensor is equivalent to having a certain number of algebraically
independent polynomials among the defined polynomials. Our proposed approach results in char-
acterizing the maximum number of algebraically independent polynomials in terms of a simple
geometric structure of the sampling pattern, and therefore we obtain the deterministic necessary
and sufficient condition on the sampling pattern for finite completability of the sampled tensor.
Moreover, assuming that the entries of the tensor are sampled independently with probability p and
using the mentioned deterministic analysis, we propose a combinatorial method to derive a lower
bound on the sampling probability p, or equivalently, the number of sampled entries that guaran-
tees finite completability with high probability. We also show that the existing result for the matrix
completion problem can be used to obtain a loose lower bound on the sampling probability p. In
addition, we obtain deterministic and probabilistic conditions for unique completability. It is seen
that the number of samples required for finite or unique completability obtained by the proposed
analysis on the CP manifold is orders-of-magnitude lower than that is obtained by the existing
analysis on the Grassmannian manifold.
Keywords: Low-rank tensor completion, canonical polyadic (CP) decomposition, finite com-
pletability, unique completability, algebraic geometry, Bernstein’s theorem.

1. Introduction

The fast progress in data science and technology has given rise to the extensive applications of
multi-way datasets, which allow us to take advantage of the inherent correlations across different
attributes. The classical matrix analysis limits its efficiency in exploiting the correlations across
different features from a multi-way perspective. In contrast, analysis of multi-way data (tensor),
which was originally proposed in the field of psychometrics and recently found applications in
machine learning and signal processing, is capable of taking full advantage of these correlations
(De Lathauwer, 2009; Kolda and Bader, 2009; Abraham et al., 2012; Grasedyck et al., 2013; Muti
and Bourennane, 2007; Signoretto et al., 2011). The problem of low-rank tensor completion, i.e.,
reconstructing a tensor from a subset of its entries given the rank, which is generally NP hard
(Hillar and Lim, 2013), arises in compressed sensing (Lim and Comon, 2010; Sidiropoulos and
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Kyrillidis, 2012; Gandy et al., 2011), visual data reconstruction (Liu et al., 2013, 2016), seismic
data processing (Kreimer et al., 2013; Ely et al., 2013), etc. Existing approaches to low-rank data
completion mainly focus on convex relaxation of matrix rank (Candès and Recht, 2009; Candès and
Tao, 2010; Cai et al., 2010; Ashraphijuo et al., 2016b; Candès et al., 2013; Ashraphijuo et al., 2015)
or different convex relaxations of tensor ranks (Gandy et al., 2011; Tomioka et al., 2010; Signoretto
et al., 2014; Romera-Paredes and Pontil, 2013). In addition, there are some other works which
provide a completion of the given rank using alternating minimization, e.g., for low-CP-rank tensor
(Jain and Oh, 2014) and low-TT-rank tensor (Wang et al., 2016).

Tensors consisting of real-world datasets usually have a low rank structure. The manifold of
low-rank tensors has recently been investigated in several works (Grasedyck et al., 2013; Ashraphi-
juo et al., 2016a; Ashraphijuo and Wang, 2017). In this paper, we focus on the canonical polyadic
(CP) decomposition (Harshman, 1970; ten Berge and Sidiropoulos, 2002; Carroll and Chang, 1970;
Stegeman and Sidiropoulos, 2007) and the corresponding CP rank, but in general there are other
well-known tensor decompositions including Tucker decomposition (Kolda, 2001; Grasedyck, 2010;
Kressner et al., 2014), tensor-train (TT) decomposition (Oseledets, 2011; Holtz et al., 2012), tubal
rank decomposition (Kilmer et al., 2013) and several other methods (De Lathauwer et al., 2000;
Papalexakis et al., 2012). Note that most existing literature on tensor completion based on various
optimization formulations use CP rank (Gandy et al., 2011; Krishnamurthy and Singh, 2013).

Deterministic conditions on the locations of the sampled entries (sampling pattern) are obtained
through algebraic geometry analyses on Grassmannian manifold that lead to finite/unique solutions
to the matrix completion problem (Pimentel-Alarcón et al., 2016d). Also, deterministic conditions
on the sampling patterns have been studied for subspace clustering in (Pimentel-Alarcón et al.,
2016c, 2015, 2016a,b). In this paper, we study the fundamental conditions on the sampling pat-
tern to ensure finite or unique number of completions, where these fundamental conditions are
independent of the correlations of the entries of the tensor, in contrast to the common assumption
adopted in literature such as incoherence. Given the rank of a matrix, Pimentel-Alarcón et. al. in
(Pimentel-Alarcón et al., 2016d) obtains such fundamental conditions on the sampling pattern for
finite completability of the matrix. Previously, we treated the same problem for multi-view matrix
(Ashraphijuo et al., 2017c,b), tensor given its Tucker rank (Ashraphijuo et al., 2016a, 2017a), and
tensor given its TT rank(Ashraphijuo and Wang, 2017). In this paper, the structure of the CP decom-
position and the geometry of the corresponding manifold are investigated to obtain the fundamental
conditions for finite completability given its CP rank. These recently developed algebraic geometry
analyses can also be used to approximate the rank of partially sampled data (Ashraphijuo et al.,
2017d).

To emphasize the contribution of this work, we highlight the differences and challenges in com-
parison with the Tucker and TT tensor models. In CP decomposition, the notion of tensor multi-
plication is different from those for Tucker and TT, and therefore the geometry of the manifold and
the algebraic variety are completely different. Moreover, in CP decomposition we are dealing with
the sum of several tensor products, which is not the case in Tucker and TT decompositions, and
therefore the equivalence classes or geometric patterns that are needed to study the algebraic variety
are different. Moreover, CP rank is a scalar and the ranks of matricizations and unfoldings are not
given in contrast with the Tucker and TT models.

Let U denote the sampled tensor and Ω denote the binary sampling pattern tensor that is of
the same dimension and size as U . The entries of Ω that correspond to the observed entries of U
are equal to 1 and the rest of the entries are set as 0. Assume that the entries of U are sampled
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independently with probability p. This paper is mainly concerned with treating the following three
problems.

Problem (i): Given the CP rank, characterize the necessary and sufficient conditions on the
sampling pattern Ω, under which there exist only finitely many completions of U .

We consider the CP decomposition of the sampled tensor, where all rank-1 tensors in this de-
composition are unknown and we only have some entries of U . Then, each sampled entry results
in a polynomial such that the variables of the polynomial are the entries of the rank-1 tensors in the
CP decomposition. We propose a novel analysis on the CP manifold to obtain the maximum num-
ber of algebraically independent polynomials, among all polynomials corresponding to the sampled
entries, in terms of the geometric structure of the sampling pattern Ω. We show that if the maxi-
mum number of algebraically independent polynomials is a given number, then the sampled tensor
U is finitely completable. Due to the fundamental differences between the CP decomposition and
the Tucker or TT decomposition, this analysis is completely different from our previous works
(Ashraphijuo et al., 2016a; Ashraphijuo and Wang, 2017). Moreover, note that our proposed alge-
braic geometry analysis on the CP manifold is not a simple generalization of the existing analysis on
the Grassmannian manifold (Pimentel-Alarcón et al., 2016d) even though the CP decomposition is
a generalization of rank factorization of a matrix, as almost every step needs to be developed anew.

Problem (ii): Characterize conditions on the sampling pattern to ensure that there is exactly
one completion for the given CP rank.

Similar to Problem (i), our approach is to study the algebraic independence of the polynomials
corresponding to the samples. We exploit the properties of a set of minimally algebraically depen-
dent polynomials to add additional constraints on the sampling pattern such that each of the rank-1
tensors in the CP decomposition can be determined uniquely.

As we will observe later, the deterministic conditions for finite or unique completability are
combinatorial in nature, which are hard to verify if they hold true in practice. Therefore, we also
provide a probabilistic analysis to verify the validity of such conditions based on the number of
samples or the sampling probability. However, we cannot guarantee the validity of the constraints
with probability one anymore (i.e., not deterministically anymore) and instead we show that the
combinatorial conditions hold true with high probability if the sampling probability is above certain
threshold.

Problem (iii): Provide a lower bound on the total number of sampled entries or the sampling
probability p such that the proposed conditions on the sampling pattern Ω for finite and unique
completability are satisfied with high probability.

We develop several combinatorial tools together with our previous graph theory results in (Ashraphi-
juo et al., 2016a) to obtain lower bounds on the total number of sampled entries, i.e., lower bounds
on the sampling probability p, such that the deterministic conditions for Problems (i) and (ii) are met
with high probability. Particularly, it is shown in (Krishnamurthy and Singh, 2013),O(nr

d−1
2 d2 log(r))

samples are required to recover the tensor U ∈ R

d︷ ︸︸ ︷
n× . . .× n of rank r. Recall that in this paper, we

obtain the number samples to ensure finite/unique completability that is independent of the comple-
tion algorithm. As we show later, using the existing analysis on the Grassmannian manifold results
in O(n

d+1
2 max {d log(n) + log(r), r}) samples to ensure finite/unique completability. However,

our proposed analysis on the CP manifold results inO(n2 max {log(nrd), r}) samples to guarantee
the finiteness of the number of completions, which is significantly lower than that given in (Krish-
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namurthy and Singh, 2013). Hence, the fundamental conditions for tensor completion motivate new
optimization formulation to close the gap in the number of required samples.

Tucker decomposition consists of a core tensor multiplied by a matrix along each dimension. TT
decomposition of a d-way tensor consists of the train-wise multiplication of a matrix and d−2 three-
way tensors and finally another matrix. Tucker and TT ranks are defined as the vectors consisting
of rank of matricizations and rank of unfoldings, respectively. The structure of the manifold of
the tensors with a fixed Tucker (or TT) rank vector is fundamentally different with that of the CP
manifold.

Note that the general framework of using rank factorization to study the algebraic independence
of the polynomials through counting the number of involved variables in the polynomials is indeed
similar to that in (Pimentel-Alarcón et al., 2016d; Ashraphijuo et al., 2016a; Ashraphijuo and Wang,
2017) to some extent. However, since the manifold considered in this paper (CP manifold) is fun-
damentally different from the Grassmannian or Tucker or TT manifold, all results in this paper are
original. In particular, we mention some of the main differences: (i) geometry of the manifold, (ii)
the equivalence class for the basis and consequently (iii) the canonical basis, (iv) the structure of the
polynomials, etc., are fundamentally different from those in the literature. Hence, the determinis-
tic analyses are fundamentally different (excluding Lemma 7). As a consequence, the probabilistic
analysis is also basically different as the combinatorial condition (6) is obtained based on the defined
geometry and equivalence class for CP decomposition. However, some lemmas including the gen-
eralization of Hall’s theorem for bipartite graphs (Lemma 18) or Lemma 17 that applies pigeonhole
principle are taken from our previous papers (Ashraphijuo et al., 2016a; Ashraphijuo and Wang,
2017) in probabilistic analysis.

The remainder of this paper is organized as follows. In Section 2, the preliminaries and problem
statement are presented. In Section 3, we develop necessary and sufficient deterministic conditions
for finite completability. In Section 4, we develop probabilistic conditions for finite completability.
In Section 5, we consider unique completability and obtain both deterministic and probabilistic
conditions. Some numerical results are provided in Section 6. Finally, Section 7 concludes the
paper.

2. Background

2.1 Preliminaries and Notations

In this paper, it is assumed that a d-way tensor U ∈ Rn1×···×nd is sampled. Throughout this paper,
we use CP rank as the rank of a tensor, which is defined as the minimum number r such that there
exist ali ∈ Rni for 1 ≤ i ≤ d and 1 ≤ l ≤ r and

U =

r∑
l=1

al1 ⊗ al2 ⊗ . . .⊗ ald, (1)

or equivalently,

U(x1, x2, . . . , xd) =
r∑
l=1

al1(x1)al2(x2) . . .ald(xd), (2)
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where ⊗ denotes the tensor product (outer product) and U(x1, x2, . . . , xd) denotes the entry of the
sampled tensor with coordinates ~x = (x1, x2, . . . , xd) and ali(xi) denotes the xi-th entry of vector
ali. Note that al1 ⊗ al2 ⊗ . . .⊗ ald ∈ Rn1×···×nd is a rank-1 tensor, l = 1, 2, . . . , r.

Denote Ω as the binary sampling pattern tensor that is of the same size as U and Ω(~x) = 1 if
U(~x) is observed and Ω(~x) = 0 otherwise. Also define x+ , max{0, x}.

For a nonempty I ⊂ {1, . . . , d}, define NI , Πi∈I ni and also denote Ī , {1, . . . , d}\I . Let
Ũ(I) ∈ RNI×NĪ be the unfolding of the tensor U corresponding to the set I such that U(~x) =

Ũ(I)(M̃I(xi1 , . . . , xi|I|), M̃Ī(xi|I|+1
, . . . , xid)), where I = {i1, . . . , i|I|}, Ī = {i|I|+1, . . . , id},

M̃I : (xi1 , . . . , xi|I|) → {1, 2, . . . , NI} and M̃Ī : (xi|I|+1
, . . . , xid) → {1, 2, . . . , N̄Ī} are two

bijective mappings. For i ∈ {1, . . . , d} and I = {i}, we denote the unfolding corresponding to I
by U(i) and we call it the i-th matricization of tensor U .

2.2 Problem Statement and A Motivating Example

We are interested in finding necessary and sufficient deterministic conditions on the sampling pat-
tern tensor Ω under which there are infinite, finite, or unique completions of the sampled tensor U
that satisfy the given CP rank constraint. Furthermore, we are interested in finding probabilistic con-
ditions on the number of samples or the sampling probability that ensure the obtained deterministic
conditions for finite and unique completability hold with high probability.

To motivate our proposed analysis in this paper on the CP manifold, we compare the following
two approaches using a simple example to emphasize the exigency of our proposed analysis: (i)
analyzing each of the unfoldings individually, (ii) analyzing based on the CP decomposition.

Consider a three-way tensor U ∈ R2×2×2 with CP rank of 1. Assume that the entries (1, 1, 1),
(2, 1, 1), (1, 2, 1) and (1, 1, 2) are observed. As a result of Lemma 11 in this paper, all unfoldings of
this tensor are rank-1 matrices. It is shown in Section II of (Ashraphijuo et al., 2016a) that having
any 4 entries of a rank-1 2 × 4 matrix, there are infinitely many completions for it. As a result,
any unfolding of U is infinitely many completable given only the corresponding rank constraint.
Next, using the CP decomposition (1), we show that there are only finitely many completions of the
sampled tensor of CP rank 1.

Define a1
1 = [x x′]> ∈ R2, a1

2 = [y y′]> ∈ R2 and a1
3 = [z z′]> ∈ R2. Then, according to (1),

we have the following

U(1, 1, 1) = xyz, U(2, 2, 1) = x′y′z, (3)

U(2, 1, 1) = x′yz, U(2, 1, 2) = x′yz′,

U(1, 2, 1) = xy′z, U(1, 2, 2) = xy′z′,

U(1, 1, 2) = xyz′, U(2, 2, 2) = x′y′z′.
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Recall that (1, 1, 1), (2, 1, 1), (1, 2, 1), and (1, 1, 2) are the observed entries. Hence, the un-
known entries can be determined uniquely in terms of the 4 observed entries as

U(2, 2, 1) = x′y′z =
U(2, 1, 1)U(1, 2, 1)

U(1, 1, 1)
, (4)

U(2, 1, 2) = x′yz′ =
U(2, 1, 1)U(1, 1, 2)

U(1, 1, 1)
,

U(1, 2, 2) = xy′z′ =
U(1, 2, 1)U(1, 1, 2)

U(1, 1, 1)
,

U(2, 2, 2) = x′y′z′ =
U(2, 1, 1)U(1, 2, 1)U(1, 1, 2)

U(1, 1, 1)U(1, 1, 1)
.

Therefore, based on the CP decomposition, the sampled tensor U is finitely (uniquely) many
completable. Hence, this example illustrates that collapsing a tensor into a matrix results in loss of
information and thus motivate the investigation of the tensor CP manifold.

3. Deterministic Conditions for Finite Completability

In this section, we characterize the necessary and sufficient condition on the sampling pattern for
finite completability of the sampled tensor given its CP rank. In Section 3.1, we define a poly-
nomial based on each observed entry and through studying the geometry of the manifold of the
corresponding CP rank, we transform the problem of finite completability of U to the problem of
including enough number of algebraically independent polynomials among the defined polynomials
for the observed entries. In Section 3.2, a binary tensor is constructed based on the sampling pat-
tern Ω, which allows us to study the algebraic independence of a subset of polynomials among all
defined polynomials based on the samples. In Section 3.3, we characterize the connection between
the maximum number of algebraically independent polynomials among all the defined polynomials
and finite completability of the sampled tensor.

3.1 Geometry

Suppose that the sampled tensor U is chosen generically from the manifold of the tensors in Rn1×···×nd

of rank r. Assume that ali vectors are unknown for 1 ≤ i ≤ d and 1 ≤ l ≤ r. For notational sim-
plicity, define the tuples Al = (al1,a

l
2, . . . ,a

l
d) for l = 1, . . . , r and A = (A1, . . . ,Ar). Moreover,

define Ai = [a1
i |a2

i |. . . |ari ] ∈ Rni×r. Note that each of the sampled entries results in a polynomials
in terms of the entries of A as in (2).

Here, we briefly mention the following two facts to highlight the fundamentals of our proposed
analysis.

• Fact 1: As it can be seen from (2), any observed entry U(~x) results in an equation that
involves one entry of ali, i = 1, . . . , d and l = 1, . . . , r. Considering the entries of A as
variables (right-hand side of (2)), each observed entry results in a polynomial in terms of these
variables. Moreover, for any observed entry U(~x), the value of xi specifies the location of the
entry of ali that is involved in the corresponding polynomial, i = 1, . . . , d and l = 1, . . . , r.

• Fact 2: It can be concluded from Bernstein’s theorem (Sturmfels, 2002) that in a system
of n polynomials in n variables with coefficients chosen generically, the polynomials are
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algebraically independent with probability one, and therefore there exist only finitely many
solutions.

The following assumption will be used frequently in this paper.
Assumption 1: Each row of the d-th matricization of the sampled tensor, i.e., U(d) includes at

least r observed entries.
Observe that each row of the d-th matricization of the sampled tensor includes n1 × n2 × . . .×

nd−1 entries. In order to show that Assumption 1 is a very mild assumption, as an example assume
that n1 = n2 = · · · = nd−1 = n. Then, each row of U(d) has nd−1 entries and Assumption 1
requires r sampled entries among them. As we consider the low-rank scenario, we show in Section
4 how realistic this assumption is in terms of the sampling probability.

Lemma 1 Given Ai’s for i = 1, . . . , d− 1 and Assumption 1, Ad can be determined uniquely.

Proof Each row of Ad has r entries and also as it can be seen from (2), each observed entry in
the i-th row of U(d) results in a degree-1 polynomial in terms of the r entries of the i-th row of
Ad. Since Assumption 1 holds, for each row of Ad that has r variables, we have at least r degree-1
polynomials. Genericity of the coefficients of these polynomials results that each row of Ad can be
determined uniquely.

As a result of Lemma 1, we can obtain Ad in terms of the entries of Ai’s for i = 1, . . . , d−1. As
mentioned earlier, each observed entry is equivalent to a polynomial in the format of (2). Consider
all such polynomials excluding those that have been used to obtain Ad (r samples at each row of
U(d)) and denote this set of polynomials in terms of the entries of Ai’s for i = 1, . . . , d − 1 by
P(Ω).

We are interested in defining an equivalence class such that each class includes exactly one
of the decompositions among all rank-r decompositions of a particular tensor and the pattern in
Lemma 3 characterizes such an equivalence class. Lemma 2 below is a re-statement of Lemma 1
in (Ashraphijuo and Wang, 2017), which characterizes such an equivalence class or equivalently
geometric pattern for a matrix instead of tensor. This lemma will be used to show Lemma 3 later.

Lemma 2 Let X denote a generically chosen matrix from the manifold of n1 × n2 matrices of
rank r and also Q ∈ Rr×r be a given full rank matrix. Then, there exists a unique decomposition
X = YZ such that Y ∈ Rn1×r, Z ∈ Rr×n2 and P = Q, where P ∈ Rr×r represents a submatrix1

of Y.

In Lemma 3, we generalize Lemma 2 and characterize the similar pattern for a multi-way tensor.
Assuming that P represents the submatrix of Y consists of the first r columns and the first r rows of
Y and also Q is equal to the r×r identity matrix, this pattern is called the canonical decomposition
of X. The canonical decomposition is shown for a rank-2 matrix as the following

1 −1 0 −1

2 2 4 6

−1 3 2 5

1 2 3 5

=

1 0

0 1

y1 y2

y3 y4

× x1 x2 x3 x4

x5 x6 x7 x8
,

1. Specified by a subset of rows and a subset of columns (not necessarily consecutive).

7



MORTEZA ASHRAPHIJUO, AND XIAODONG WANG

where xi’s and yi’s can be determined uniquely as

y1 y2

y3 y4
=

−2 1
2

−1
2

3
4

and
x1 x2 x3 x4

x5 x6 x7 x8
=

1 −1 0 −1

2 2 4 6
.

Also, the above canonical decomposition can be written as the following

1 −1 0 −1

2 2 4 6

−1 3 2 5

1 2 3 5

=

1

0

y1

y3

× x1 x2 x3 x4 +

0

1

y2

y4

× x5 x6 x7 x8

.

Generalization of the canonical decomposition for multi-way tensor is as the following

a1
1 =

1

0
...
0

a1
1(r + 1)

...
a1

1(n1)

, . . . , ar1 =

0

0
...
1

ar1(r + 1)
...

ar1(n1)

,

and for i ∈ {2, . . . , d− 1}

a1
i =

1

a1
i (2)
...

a1
i (ni)

, . . . , ari =

1

ari (2)
...

ari (ni)

.

Lemma 3 Let j ∈ {1, . . . , d − 1} be a fixed number and define J = {1, . . . , d − 1}\{j}. Assume
that the full rank matrix Qj ∈ Rr×r and matrices Qi ∈ R1×r with nonzero entries for i ∈ J are
given. Also, let Pi denote an arbitrary submatrix of Ai, i = 1, 2, . . . , d− 1, where Pj ∈ Rr×r and
Pi ∈ R1×r for i ∈ J . Then, with probability one, there exists exactly one rank-r decomposition of
U such that Pi = Qi, i = 1, . . . , d− 1.

Proof First we claim that there exists at most one rank-r decomposition of U such that Pi = Qi,
i = 1, . . . , d− 1. We assume that Pi = Qi, i = 1, . . . , d− 1 and also U is given. Then, it suffices
to show that the rest of the entries of A can be determined in at most a unique way (no more than
one solution) in terms of the given parameters such that (1) holds. Note that if a variable can be
determined uniquely through two different ways (two sets of samples or equations), in general either
it can be determined uniquely if both ways result in the same value or it does not have any solution
otherwise. Let yi denote the row number of submatrix Pi ∈ R1×r for i ∈ J and Yj = {y1

j , . . . , y
r
j}

denote the row numbers of submatrix Pj ∈ Rr×r.
As the first step of proving our claim, we show that Ad can be determined uniquely. Consider the

subtensor U ′ = U(y1, . . . , yj−1, Yj , yj+1, . . . , yd−1, :) ∈ R

j−1︷ ︸︸ ︷
1× . . .× 1×r×

d−j−1︷ ︸︸ ︷
1× . . .× 1×nd which
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includes rnd entries. Having CP decomposition (2), each entry of U ′ results in one degree-1 poly-
nomial in terms of the entries of Ad with coefficients in terms of the entries of Qi’s. Let the matrix
U′ ∈ Rr×nd represent the rnd entries of U ′. Moreover, define C = [c1|. . . |cr] ∈ Rr×r where
cl = (Πi∈JPi(1, l)) qlj ∈ Rr×1 for l = 1, . . . , r and qlj ∈ Rr×1 is the l-th column of Qj .

Observe that CP decomposition (2) for the entries of U ′ can be written as U′ = CA>d . Recall
that Qj is full rank, and therefore qlj’s are linearly independent, l = 1, . . . , r. Also, a system of
equations with at least m linearly independent degree-1 polynomials in m variables does not have
more than one solution. Hence, cl’s are also linearly independent for l = 1, . . . , r, and therefore C
is full rank. As a result, Ad can be determined uniquely. In the second step, similar to the first step,
we can show that the rest of Ai’s have at most one solution having one entry of Ad which has been
already obtained.

Finally, we also claim that there exists at least one rank-r decomposition of U such that Pi =
Qi, i = 1, . . . , d − 1. We show this by induction on d. For d = 2, this is a result of Lemma 2.
Induction hypothesis states that the claim holds for d = k−1 and we need to show that it also holds
for d = k. Since by merging dimension k − 1 and k for each of the rank-1 tensors of the corre-
sponding CP decomposition and using induction hypothesis this step reduces to showing a rank-1
matrix can be decomposed to two vectors such that one component of one of them is given which is
again a special case of Lemma 2 for rank-1 scenario.

Assume that S denotes the set of all possible Ai’s for i = 1, . . . , d − 1 given Ad without any
polynomial constraint. Lemma 3 results in a pattern that characterizes exactly one rank-r decompo-
sition among all rank-r decompositions, and therefore the dimension of S is equal to the number of
unknowns, i.e., number of entries of Ai’s for i = 1, . . . , d− 1 excluding those that are involved in
the pattern Pi’s in Lemma 3 which is r(

∑d−1
i=1 ni)− r2 − r(d− 2).

Lemma 4 For almost every U , the sampled tensor is finitely completable if and only if the maximum
number of algebraically independent polynomials in P(Ω) is equal to r(

∑d−1
i=1 ni)− r2− r(d− 2).

Proof The proof is omitted due to the similarity to the proof of Lemma 2 in (Ashraphijuo et al.,
2016a) with the only difference that here the dimension is r(

∑d−1
i=1 ni) − r2 − r(d − 2) instead of(

Πj
i=1ni

)(
Πd
i=j+1ri

)
−
(∑d

i=j+1 r
2
i

)
which is the dimension of the core in Tucker decomposi-

tion.

3.2 Constraint Tensor

In this section, we provide a procedure to construct a binary tensor Ω̆ based on Ω such that P(Ω̆) =
P(Ω) and each polynomial can be represented by one d-way subtensor of Ω̆ which belongs to
Rn1×n2×···×nd−1×1. Using Ω̆, we are able to recognize the observed entries that have been used to
obtain the Ad in terms of the entries of A1, . . . ,Ad−1, and we can study the algebraic independence
of the polynomials in P(Ω) which is directly related to finite completability through Lemma 4.

For each subtensor Y of the sampled tensor U , let NΩ(Y) denote the number of sampled entries
in Y . Specifically, consider any subtensor Y ∈ Rn1×n2×···×nd−1×1 of the tensor U . Then, since r
of the polynomials have been used to obtain Ad, Y contributes NΩ(Y)− r polynomial equations in
terms of the entries of A1, . . . ,Ad−1 among all NΩ(U)− rnd polynomials in P(Ω).

9
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The sampled tensor U includes nd subtensors that belong to Rn1×n2×···×nd−1×1 and let Yi for
1 ≤ i ≤ nd denote these nd subtensors. Define a binary valued tensor Y̆i ∈ Rn1×n2×···×nd−1×ki ,
where ki = NΩ(Yi) − r and its entries are described as the following. We can look at Y̆i as ki
tensors each belongs to Rn1×n2×···×nd−1×1. For each of the mentioned ki tensors in Y̆i we set the
entries corresponding to the r observed entries that are used to obtain Ad equal to 1. For each of
the other ki observed entries that have not been used to obtain Ad, we pick one of the ki tensors of
Y̆i and set its corresponding entry (the same location as that specific observed entry) equal to 1 and
set the rest of the entries equal to 0. In the case that ki = 0 we simply ignore Y̆i, i.e., Y̆i = ∅

By putting together all nd tensors in dimension d, we construct a binary valued tensor Ω̆ ∈
Rn1×n2×···×nd−1×K , where K =

∑nd
i=1 ki = NΩ(U) − rnd and call it the constraint tensor. Ob-

serve that each subtensor of Ω̆ which belongs to Rn1×n2×···×nd−1×1 includes exactly r + 1 nonzero
entries. In the following we show this procedure for an example.

Example 1 Consider an example in which d = 3 and r = 2 and U ∈ R3×3×3. Assume that
Ω(x, y, z) = 1 if (x, y, z) ∈ S and Ω(x, y, z) = 0 otherwise, where

S = {(1, 1, 1), (1, 2, 1), (2, 3, 1), (3, 3, 1), (1, 1, 2), (2, 1, 2), (3, 2, 2), (1, 3, 3), (3, 2, 3)},

represents the set of observed entries. Hence, observed entries (1, 1, 1), (1, 2, 1), (2, 3, 1), (3, 3, 1)
belong toY1, observed entries (1, 1, 2), (2, 1, 2), (3, 2, 2) belong toY2, and observed entries (1, 3, 3),
(3, 2, 3) belong to Y3. As a result, k1 = 4 − 2 = 2, k2 = 3 − 2 = 1, and k3 = 2 − 2 = 0. Hence,
Y̆1 ∈ R3×3×2, Y̆2 ∈ R3×3×1, and Y̆3 = ∅, and therefore the constraint tensor Ω̆ belongs to R3×3×3.

Also, assume that the entries that we use to obtain A3 in terms of the entries of A1 and A2 are
(2, 3, 1), (3, 3, 1), (1, 1, 2), (2, 1, 2), (1, 3, 3) and (3, 2, 3). Note that Y̆1(2, 3, 1) = Y̆1(2, 3, 2) =
Y̆1(3, 3, 1) = Y̆1(3, 3, 2) = 1 (correspond to entries of Y1 that have been used to obtain A3),
and also for the two other observed entries we have Y̆1(1, 1, 1) = 1 (correspond to U(1, 1, 1))
and Y̆1(1, 2, 2) = 1 (correspond to U(1, 2, 1)) and the rest of the entries of Y̆1 are equal to zero.
Similarly, Y̆2(1, 1, 1) = Y̆2(2, 1, 1) = Y̆2(3, 2, 1) = 1 and the rest of the entries of Y̆2 are equal to
zero.

Then, Ω̆(x, y, z) = 1 if (x, y, z) ∈ S ′ and Ω̆(x, y, z) = 0 otherwise, where

S̆ = {(1, 1, 1), (1, 2, 2), (2, 3, 1), (2, 3, 2), (3, 3, 1), (3, 3, 2), (1, 1, 3), (2, 1, 3), (3, 2, 3)}.

Note that each subtensor of Ω̆ that belongs to Rn1×...×nd−1×1 represents one of the polynomials
in P(Ω) besides showing the polynomials that have been used to obtain Ad. More specifically,
consider a subtensor of Ω̆ that belongs to Rn1×...×nd−1×1 with r + 1 nonzero entries. Observe that
exactly r of them correspond to the observed entries that have been used to obtain Ad. Hence,
this subtensor represents a polynomial after replacing entries of Ad by the expressions in terms of
entries of A1, . . . ,Ad−1, i.e., a polynomial in P(Ω).

3.3 Algebraic Independence

In this section, we obtain the maximum number of algebraically independent polynomials in P(Ω̆)
in terms of the simple geometrical structure of nonzero entries of Ω, i.e., the locations of the sampled
entries. On the other hand, Lemma 4 provides the required number of algebraically independent
polynomials in P(Ω) for finite completability. Hence, at the end of this section, we obtain the
necessary and sufficient deterministic conditions on the sampling pattern for finite completability.
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According to Lemma 3, as we consider one particular equivalence class some of the entries
of Ai’s are known, i.e., P1, . . . ,Pd−1 in the statement of the lemma. Therefore, in order to find
the number of variables (unknown entries of Ai’s) in a set of polynomials, we should subtract the
number of known entries in the corresponding pattern from the total number of involved entries.
Also, recall that the sampled tensor is chosen generically from the corresponding manifold, and
therefore according to Fact 2, the independency of the polynomials can be studied through studying
the number of variables involved in each subset of them.

Definition 5 Let Ω̆′ ∈ Rn1×n2×···×nd−1×t be a subtensor of the constraint tensor Ω̆. Let mi(Ω̆
′)

denote the number of nonzero rows of Ω̆′(i). Also, let P(Ω̆′) denote the set of polynomials that

correspond to nonzero entries of Ω̆′.

The following lemma gives an upper bound on the maximum number of algebraically inde-
pendent polynomials in the set P(Ω̆′) for an arbitrary subtensor Ω̆′ ∈ Rn1×n2×···×nd−1×t of the
constraint tensor. Note that P(Ω̆′) includes exactly t polynomials as each subtensor belonging to
Rn1×n2×···×nd−1×1 represents one polynomial.

Lemma 6 Suppose that Assumption 1 holds. Consider an arbitrary subtensor Ω̆′ ∈ Rn1×n2×···×nd−1×t

of the constraint tensor Ω̆. The maximum number of algebraically independent polynomials in
P(Ω̆′) is at most

r

((
d−1∑
i=1

mi(Ω̆
′)

)
− min

{
max

{
m1(Ω̆′), . . . ,md−1(Ω̆′)

}
, r
}
− (d− 2)

)
. (5)

Proof As a consequence of Fact 2, the maximum number of algebraically independent polynomials
in a subset of polynomials ofP(Ω̆′) is at most equal to the total number of variables that are involved
in the corresponding polynomials. Note that by observing the structure of (2) and Fact 1, the number
of entries of Ai that are involved in the polynomials P(Ω̆′) is equal to rmi(Ω̆

′), i = 1, . . . , d −
1. Therefore, the total number of entries of A1, . . . ,Ad−1 that are involved in the polynomials
P(Ω̆′) is equal to r

(∑d−1
i=1 mi(Ω̆

′)
)

. However, some of the entries of A1, . . . ,Ad−1 are known
and depending on the equivalence class we should subtract them from the total number of involved
entries.

For a fixed number j in Lemma 3, it is easily verified that the total number of variables (unknown

entries) of A1, . . . ,Ad−1 that are involved in the polynomialsP(Ω̆′) is equal to r
∑

i∈J

(
mi(Ω̆

′)− 1
)+

+r
(
mj(Ω̆

′)− r
)+

, with J = {1, . . . , d − 1}\{j}. Note that
(
mi(Ω̆

′)− 1
)+

= mi(Ω̆
′) − 1,(

mj(Ω̆
′)− r

)+
= mj(Ω̆

′) − min
{
mj(Ω̆

′), r
}

. However, j is not a fixed number in general.
Therefore, the maximum number of known entries of A1, . . . ,Ad−1 that are involved in the poly-
nomials P(Ω̆′) is equal to
r
(

min
{

max
{
m1(Ω̆′), . . . ,md−1(Ω̆′)

}
, r
}
− (d− 2)

)
, which results that the number of vari-

ables of A1, . . . ,Ad−1 that are involved in the polynomials P(Ω̆′) is equal to (5).

The set of polynomials corresponding to Ω̆′, i.e., P(Ω̆′) is called minimally algebraically de-
pendent if the polynomials in P(Ω̆′) are algebraically dependent but polynomials in every of its

11
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proper subsets are algebraically independent. The following lemma provides an important property
about a set of minimally algebraically dependent P(Ω̆′). This lemma will be used later to derive the
maximum number of algebraically independent polynomials in P(Ω̆′).

Lemma 7 Suppose that Assumption 1 holds. Consider an arbitrary subtensor Ω̆′ ∈ Rn1×n2×···×nd−1×t

of the constraint tensor Ω̆. Assume that polynomials in P(Ω̆′) are minimally algebraically depen-
dent. Then, the number of variables (unknown entries) of A1, . . . ,Ad−1 that are involved in P(Ω̆′)
is equal to t− 1.

Proof Let the set of polynomials {p1, , p2 . . . , pt} represent P(Ω̆′). Then, P(Ω̆′)\pi (all polyno-
mials in P(Ω̆′) excluding pi) is a set of algebraically independent polynomials, i = 1, . . . , t. The
number of involved variables in P(Ω̆′)\pi is at least equal to the number of polynomials, i.e., t− 1.
Therefore, the number of involved variables in P(Ω̆′) is at least t− 1.

By contradiction, assume that the number of variables that are involved in the set of polynomi-
als P(Ω̆′) is at least t. Then, we claim that for any subset of the polynomials of P(Ω̆′) the number
of involved variables is at least equal to the number of polynomials in that subset. If the subset is
equal to P(Ω̆′), the claim is just the assumption of contradiction. If the subset is a proper subset of
P(Ω̆′), according to the assumption in the statement of Lemma, the polynomials are algebraically
independent, and therefore, the claim holds. Hence, the polynomials in P(Ω̆′) are algebraically
independent which contradicts the assumption.

Given an arbitrary subtensor Ω̆′ ∈ Rn1×n2×···×nd−1×t of the constraint tensor Ω̆, we are inter-
ested in obtaining the maximum number of algebraically independent polynomials in P(Ω̆′) based
on the structure of nonzero entries of Ω̆′. The next lemma can be used to characterize this number
in terms of a simple geometric structure of nonzero entries of Ω̆′.

Lemma 8 Suppose that Assumption 1 holds. Consider an arbitrary subtensor Ω̆′ ∈ Rn1×n2×···×nd−1×t

of the constraint tensor Ω̆. The polynomials in P(Ω̆′) are algebraically independent if and only if
for any t′ ∈ {1, . . . , t} and any subtensor Ω̆′′ ∈ Rn1×n2×···×nd−1×t′ of Ω̆′ we have

r

((
d−1∑
i=1

mi(Ω̆
′′)

)
− min

{
max

{
m1(Ω̆′′), . . . ,md−1(Ω̆′′)

}
, r
}
− (d− 2)

)
≥ t′. (6)

Proof First, assume that all polynomials in P(Ω̆′) are algebraically independent. Also, by contra-
diction assume that there exists a subtensor Ω̆′′ ∈ Rn1×n2×···×nd−1×t′ of Ω̆′ that (6) does not hold
for. Note that P(Ω̆′′) includes t′ polynomials. On the other hand, according to Lemma 6, the maxi-
mum number of algebraically independent polynomials in P(Ω̆′′) is no greater than the LHS of (6),
and therefore the polynomials in P(Ω̆′′) are not algebraically independent. Hence, the polynomials
in P(Ω̆′) are not algebraically independent as well.

In order to prove the other side of the statement, assume that the polynomials in P(Ω̆′) are alge-
braically dependent. Hence, there exists a subset of the polynomials that are minimally algebraically
dependent and let us denote it by P(Ω̆′′), where Ω̆′′ ∈ Rn1×n2×···×nd−1×t′ is a subtensor of Ω̆′. As
stated in Lemma 7, the number of involved variables in polynomials in P(Ω̆′′) is equal to t′− 1. On
the other hand, in the proof of Lemma 6, we showed that the number involved variables is at least

12
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equal the LHS of (6). Therefore, the LHS of (6) is less than or equal to t′ − 1 or equivalently

r

((
d−1∑
i=1

mi(Ω̆
′′)

)
−min

{
max

{
m1(Ω̆′′), . . . ,md−1(Ω̆′′)

}
, r
}
− (d− 2)

)
< t′. (7)

Finally, the following theorem characterizes the necessary and sufficient condition on Ω̆ for
finite completability of the sampled tensor U .

Theorem 9 Suppose that Assumption 1 holds. For almost every U , the sampled tensor U is finitely
completable if and only if Ω̆ contains a subtensor Ω̆′ ∈ Rn1×n2×···×nd−1×t such that (i) t =
r(
∑d−1

i=1 ni)−r2−r(d−2) and (ii) for any t′ ∈ {1, . . . , t} and any subtensor Ω̆′′ ∈ Rn1×n2×···×nd−1×t′

of Ω̆′, (6) holds.

Proof Lemma 4 states that for almost every U , there exist finitely many completions of the sam-
pled tensor if and only if P(Ω̆) includes r(

∑d−1
i=1 ni) − r2 − r(d − 2) algebraically indepen-

dent polynomials. Moreover, according to Lemma 8, polynomials corresponding to a subtensor
Ω̆′ ∈ Rn1×n2×···×nd−1×t of the constraint tensor are algebraically independent if and only if condi-
tion (ii) of the statement of the Theorem holds. Therefore, for almost every U , conditions (i) and
(ii) hold if and only if the sampled tensor U is finitely completable.

Note that the condition given in (6) is combinatorial in nature and hard to verify in practice. In
the next section, we provide a lower bound on the number of samples so that both Assumption 1
and the combinatorial condition given in (6) hold true with high probability (not deterministically,
i.e., with probability one anymore).

4. Probabilistic Conditions for Finite Completability

Assume that the entries of the tensor are sampled independently with probability p. In this section,
we are interested in obtaining a condition in terms of the number of samples, i.e., the sampling
probability, to ensure the finite completability of the sampled tensor with high probability. In Section
4.1, we apply the existing results on the Grassmannian manifold in (Pimentel-Alarcón et al., 2016d)
on any of the unfoldings of the sampled tensor to derive the mentioned probabilistic condition. In
Section 4.2, we obtain the conditions on the number of samples to ensure that conditions (i) and
(ii) in the statement of Theorem 9 hold with high probability or in other words, to ensure the finite
completability with high probability. For the notational simplicity in this section, we assume that
n1 = n2 = · · · = nd, i.e., U ∈ Rn×n×...×n.

4.1 Unfolding Approach

In this section, we are interested in applying the existing analysis based on the Grassmannian man-
ifold to obtain probabilistic conditions on the sampling pattern for finite completability with high
probability. The following theorem restates Theorem 3 in (Pimentel-Alarcón et al., 2016d).
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Theorem 10 Consider an n×N matrix with the given rank k and let 0 < ε < 1 be given. Suppose
k ≤ n

6 and that each column of the sampled matrix is observed in at least l entries, distributed
uniformly at random and independently across entries, where

l > max
{

12 log
(n
ε

)
+ 12, 2k

}
. (8)

Also, assume that k(n− k) ≤ N . Then, with probability at least 1− ε, the sampled matrix will be
finitely completable.

Observe that in the case of 1 < k < n − 1, the assumption k(n − k) ≤ N results that n < N
which is very important to check when we apply this theorem. In order to use Theorem 10, we need
the following lemma to obtain an upper bound on the rank of unfoldings of U .

Lemma 11 Consider an arbitrary nonempty I ⊂ {1, . . . , d} and recall that r denotes the CP rank
of U . Then, rank

(
Ũ(I)

)
≤ r.

Proof In order to show rank
(
Ũ(I)

)
≤ r, we show the existence of a CP decomposition of Ũ(I)

with r components, i.e., we show that there exist ali ∈ Rmi for 1 ≤ i ≤ 2, 1 ≤ l ≤ r, m1 , NI and
m2 , NĪ such that

Ũ(I) =
r∑
l=1

al1 ⊗ al2. (9)

In order to do so, recall that since the CP rank of U is r, there exist bli ∈ Rni for 1 ≤ i ≤ d and
1 ≤ l ≤ r such that

U =

r∑
l=1

bl1 ⊗ bl2 ⊗ . . .⊗ bld. (10)

DefineAl1 = bli1 ⊗ . . .⊗bli|I| andAl2 = bli|I|+1
⊗ . . .⊗blid for 1 ≤ l ≤ l, where I = {i1, . . . , i|I|},

Ī = {i|I|+1, . . . , id}. Let al1 and al2 denote the vectorizations of Al1 and Al2 with the same bijective
mappings M̃I : (xi1 , . . . , xi|I|) → {1, 2, . . . , NI} and M̃Ī : (xi|I|+1

, . . . , xid) → {1, 2, . . . , N̄Ī} of

the unfolding Ũ(I). Hence, there exist ali ∈ Rmi for 1 ≤ i ≤ 2, 1 ≤ l ≤ r such that (9) holds.

Remark 12 Assume that k ≤ k′ ≤ n
6 , l > max

{
12 log

(
n
ε

)
+ 12, 2k′

}
and k′(n − k′) ≤ N .

Then, we have l > max
{

12 log
(
n
ε

)
+ 12, 2k

}
since k ≤ k′. Moreover, we have k(n − k) ≤ N

since k + k′ < n which results k(n− k) < k′(n− k′).

Lemma 13 Let I = {i1, . . . , i|I|} be an arbitrary nonempty and proper subset of {1, . . . , d}. As-
sume that |I|< d

2 and r ≤ n
6 , where r is the CP rank of the sampled tensor U . Moreover, assume

that each column of Ũ(I) is observed in at least l entries, distributed uniformly at random and
independently across entries, where

l > max

{
12 log

(
NIr

ε

)
+ 12, 2r

}
. (11)

Then, with probability at least 1− ε, the sampled tensor will be finitely completable.
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Proof According to Lemma 11, rI , rank
(
Ũ(I)

)
≤ r. Note that NI ≤ n

d−1
2 = n

d+1
2

n ≤ NĪ
n

which results that r(NI − r) ≤ NĪ . Furthermore, according to Remark 12, we have rI(NI − rI) ≤
NĪ and also

l > max

{
12 log

(
NIr

ε

)
+ 12, 2rI

}
. (12)

Therefore, according to Theorem 10, Ũ(I) is finitely completable for an arbitrary value of rI that
belongs to {1, . . . , r} with probability at least 1 − ε

r . Hence, with probability at least 1 − ε, for
all possible values of rI , Ũ(I) is finitely completable, i.e., Ũ(I) is finitely completable. In order
to complete to proof, it suffices to observe that finite completability of any of the unfoldings of U
results the finite completability of U .

Remark 14 In the case of |I|> d
2 in Lemma 13, we can simply consider the transpose of Ũ(I) to

have the similar results.

Remark 15 Lemma 13 requires

nd−|I|max

{
12 log

(
n|I|r

ε

)
+ 12, 2r

}
(13)

samples in total to ensure the finite completability of U with probability at least 1 − ε. Hence, the
best bound on the total number of samples to ensure the finite completability with probability at
least 1− ε will be obtained when |I|= bd−1

2 c, which is

nd
d+1

2
emax

{
12 log

(
nb

d−1
2
cr

ε

)
+ 12, 2r

}
. (14)

4.2 CP Approach

In this section, we present an approach based on the tensor CP decomposition instead of unfolding.
Conditions (i) and (ii) in Theorem 9 ensure finite completability with probability one. Here, using
combinatorial methods, we derive a lower bound on the number of sampled entries, i.e., the sam-
pling probability, which ensures conditions (i) and (ii) in Theorem 9 hold with high probability. We
first provide a few lemmas from our previous works. Lemma 16 below is Lemma 5 in (Ashraphijuo
et al., 2017c), which will be used later.

Lemma 16 Assume that r′ ≤ n
6 and also each column of Ω(1) (first matricization of Ω) includes at

least l nonzero entries, where

l > max

{
9 log

(n
ε

)
+ 3 log

(
k

ε

)
+ 6, 2r′

}
. (15)

Let Ω′(1) be an arbitrary set of n− r′ columns of Ω(1). Then, with probability at least 1− ε
k , every

subset Ω′′(1) of columns of Ω′(1) satisfies

m1(Ω′′)− r′ ≥ t, (16)

where t is the number of columns of Ω′′(1) and m1(Ω′′) is the number of nonzero rows of Ω′′(1).
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The proof of the above lemma is based on a simple combinatorial idea to upper bound the
number of possible patterns that do not satisfy the mentioned property.

Lemma 17 Let j ∈ {1, 2, . . . , d − 1} be a fixed number and I = {1, 2, . . . , j}. Consider an
arbitrary set Ω̃′(I) of n − r′ columns of Ω̃(I), where r′ ≤ r ≤ n

6 . Assume that n > 200, and also

each column of Ω̃(I) includes at least l nonzero entries, where

l > max

{
27 log

(n
ε

)
+ 9 log

(
2k

ε

)
+ 18, 6r′

}
, (17)

where k ≤ r. Then, with probability at least 1 − ε
2k , each column of Ω̃′(I) includes more than

l0 , max
{

9 log
(
n
ε

)
+ 3 log

(
2k
ε

)
+ 6, 2r′

}
observed entries of Ω with different values of the i-th

coordinate, i.e., the i-th matricization of the tensor Ω′ that corresponds to Ω̃′(I) includes more than
l0 nonzero rows, 1 ≤ i ≤ j.

Proof The proof is omitted due to the similarity to the proof for Lemma 9 in (Ashraphijuo and
Wang, 2017).

The following lemma is Lemma 8 in (Ashraphijuo et al., 2016a), which states that if the property
in Lemma 16 holds for the sampling pattern Ω, it will be satisfied for Ω̆ as well.

Lemma 18 Let r′ be a given nonnegative integer and 1 ≤ i ≤ j ≤ d − 1 and I = {1, 2, . . . , j}.
Assume that there exists an nj × (n− r′) matrix Ω̃′(I) composed of n− r′ columns of Ω̃(I) such that

each column of Ω̃′(I) includes at least r′ + 1 nonzero entries and satisfies the following property:

• Denote an nj× t matrix (for any 1 ≤ t ≤ n−r′) composed of any t columns of Ω̃′(I) by Ω̃′′(I).
Then

mi(Ω
′′)− r′ ≥ t, (18)

where Ω̃′′(I) is the unfolding of Ω′′ corresponding to the set I .

Then, there exists an nj × (n − r′) matrix ˜̆Ω′(I) such that: each column has exactly r′ + 1 entries

equal to one, and if ˜̆Ω′(I)(x, y) = 1 then we have Ω̃′(I)(x, y) = 1. Moreover, ˜̆Ω′(I) satisfies the
above-mentioned property.

The proof of the above lemma is based a novel generalization of Hall’s theorem for bipartite
graph. This generalization is shown by strong induction on the number of nodes.

Lemma 19 Assume that n > 200, 1 ≤ i ≤ j ≤ d − 1 and I = {1, 2, . . . , j}. Consider r disjoint
sets Ω̃′l(I)

, each with n− r′i columns of Ω̃(I) for 1 ≤ l ≤ r, where r′i ≤ r ≤ n
6 . Let Ω̃′(I) denote the

union of all r sets of columns Ω̃′l(I)
’s. Assume that each column of Ω̃(I) includes at least l nonzero

entries, where

l > max

{
27 log

(n
ε

)
+ 9 log

(
2rk

ε

)
+ 18, 6r′i

}
. (19)
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Then, there exists an nj × r(n− r′i) matrix ˜̆Ω′(I) such that: each column has exactly r′i + 1 entries

equal to one, and if ˜̆Ω′(I)(x, y) = 1 then we have Ω̃′(I)(x, y) = 1 and also it satisfies the following

property: with probability at least 1− ε
k , every subset ˜̆Ω′′(I) of columns of ˜̆Ω′(I) satisfies the following

inequality

r
(
mi(Ω̆

′′)− r′i
)
≥ t, (20)

where t is the number of columns of ˜̆Ω′′(I) and Ω̆′′ is the tensor corresponding to unfolding ˜̆Ω′′(I).
Proof We first claim that with probability at least 1 − ε

kr , every subset Ω̃′′l(I)
of columns of Ω̃′l(I)

satisfies

mi(Ω
′′
l )− r′i ≥ t, (21)

where t is the number of columns of Ω̃′′l(I)
and Ω′′l is the tensor corresponding to unfolding Ω̃′′l(I)

.
For simplicity we denote the above-mentioned property by Property I. According to Lemma 17,
with probability at least 1− ε

2kr , the i-th matricization of the tensor Ω′′l includes more than
max

{
9 log

(
n
ε

)
+ 3 log

(
2kr
ε

)
+ 6, 2r′i

}
nonzero rows, 1 ≤ i ≤ j, and we denote this property by

Property II. On the other hand, given that Property II holds for Ω′′l and according to Lemma 16, with
probability at least 1− ε

2kr , Property I holds for Ω′′l as well. Hence, with probability at least 1− ε
kr ,

Property I holds for Ω′′l , which completes the proof our earlier claim.
Consequently, according to Lemma 18, with probability at least 1 − ε

kr , there exists an nj ×

(n − r′i) matrix ˜̆
Ω
′
l(I)

such that: each column has exactly r′i + 1 entries equal to one, and if˜̆
Ω
′
l(I)

(x, y) = 1 then we have Ω̃′l(I)
(x, y) = 1 and also Ω̆′l satisfies Property I. Finally define˜̆

Ω
′
(I) ,

[ ˜̆
Ω
′
1(I)
| ˜̆Ω′2(I)

|. . . | ˜̆Ω′r(I)

]
. Since each Ω̆′l satisfies Property I with probability at least 1− ε

kr ,

all Ω̆′l’s satisfy Property I with probability at least 1 − ε
k , simultaneously. Consider an arbitrary

subset ˜̆Ω′′(I) of columns of ˜̆Ω′(I). Let ˜̆Ω′′l(I)
denote those columns of ˜̆Ω′′(I) that belong to ˜̆Ω′l(I)

and

define tl as the number of columns of ˜̆Ω′′l(I)
, 1 ≤ l ≤ r, and define t as the number of columns of˜̆

Ω
′′
(I). Without loss of generality, assume that t1 ≤ t2 ≤ . . . ≤ tr. Also, assume that all Ω̆′l’s satisfy

Property I. Hence, we have

t =
r∑
l=1

tl ≤ rtr ≤ r
(
mi(Ω̆

′′
r)− r′i

)
≤ r

(
mi(Ω̆

′′)− r′i
)
. (22)

Theorem 20 Assume that d > 2, n > max{200, r(d − 2)}, r ≤ n
6 and I = {1, 2, . . . , d − 2}.

Assume that each column of Ω̃(I) includes at least l nonzero entries, where

l > max

{
27 log

(n
ε

)
+ 9 log

(
2r(d− 2)

ε

)
+ 18, 6r

}
. (23)
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Then, with probability at least 1 − ε, for almost every U ∈ R

d︷ ︸︸ ︷
n× . . .× n, there exist only finitely

many completions of the sampled tensor U with CP rank r.

Proof Define the (d − 1)-way tensor U ′ ∈ R
d−2︷ ︸︸ ︷

n× . . .× n×n2
which is obtained through merging

the (d − 1)-th and d-th dimensions of the tensor U . Observe that the finiteness of the number of
completions of the tensor U ′ of rank r ensures the finiteness of the number of completions of the
tensor U of rank r. For notational simplicity, let Ω and Ω̆ denote the (d− 1)-way sampling pattern
and constraint tensors corresponding to U ′, respectively. In order to complete the proof it suffices
to show with probability at least 1 − ε, conditions (i) and (ii) in Theorem 9 hold for this modified
(d− 1)-way tensor.

Now, we apply Lemma 19 for each of the numbers r′1 = 1, . . . , r′d−3 = 1, r′d−2 = r. Also,
note that since n > r(d − 2) we conclude n2 > r(n − r) + (d − 3)r(n − 1), and therefore Ω̃(I)

includes more than r(n−r)+(d−3)r(n−1) columns. According to Lemma 19, there exist Ω̆′i for

1 ≤ i ≤ d− 2 such that: (i) each column of ˜̆Ω′i(I)
includes r′i + 1 nonzero entries for 1 ≤ i ≤ d− 2,

and if ˜̆Ω′i(I)
(x, y) = 1 then we have Ω̃′i(I)

(x, y) = 1, (ii) ˜̆Ω′i(I)
includes r(n − 1) and r(n − r)

columns for 1 ≤ i ≤ d− 3 and i = d− 2, respectively, (iii) with probability at least 1− ε
d−2 , every

subset ˜̆Ω′′i(I)
of columns of ˜̆Ω′i(I)

satisfies (20) for r′1 = 1, . . . , r′d−3 = 1, r′d−2 = r.

Recall that each column of Ω̃(I) includes r+ 1 nonzero entries, and therefore for 1 ≤ i ≤ d− 3

that we have r′i + 1 = 2, the column of Ω̃(I) corresponding to an column of ˜̆Ω′i(I)
has r − 1 more

nonzero entries.
Observe that max

{
9 log

(
n
ε

)
+ 3 log

(
2kr
ε

)
+ 6, 2r

}
≥ 2r ≥ (r − 1) + 2. According to

Lemma 17 and given (23), for each column of ˜̆Ω′i(I)
there exists another r − 1 zero entries (xs, ys)

for s ∈ {1, . . . , r − 1} in different rows of the (d− 2)-th matricization of Ω̆′i from the two nonzero

entries such that Ω̃′i(I)
(xs, ys) = 1, i = 1, . . . , d−3. Hence, for each column of ˜̆Ω′i(I)

, we substitute

it with the column of Ω̃(I) that the value of such r − 1 entries (in different rows of the (d − 2)-

th matricization of Ω̆′i) is 1 instead of 0 , i = 1, . . . , d − 3. Therefore, each column of ˜̆Ω′i(I)

includes exactly r + 1 nonzero entries for 1 ≤ i ≤ d− 3 such that if ˜̆Ω′i(I)
(x, y) = 1 then we have

Ω̃′i(I)
(x, y) = 1.

Let ˜̆Ω′(I) =

[ ˜̆
Ω
′
1(I)
|. . . | ˜̆Ω′d−2(I)

]
, which includes r(n−r)+(d−3)r(n−1) columns. Therefore,

Ω̆′ ∈ R
d−2︷ ︸︸ ︷

n× . . .× n×t is a subtensor of the constraint tensor such that t = r(
∑d−2

i=1 n)− r2− r(d− 3)

and also and with probability at least 1− ε, every subset ˜̆Ω′′i(I)
of columns of ˜̆Ω′i(I)

satisfies (20) for
r′1 = 1, . . . , r′d−3 = 1, r′d−2 = r, simultaneously for i = 1, . . . , d− 2.

Consider an arbitrary subset ˜̆Ω′′(I) of columns of ˜̆Ω′(I). Let ˜̆Ω′′i(I)
denote those columns of ˜̆Ω′′(I)

that belong to ˜̆Ω′i(I)
and define ti as the number of columns of ˜̆Ω′′i(I)

, 1 ≤ i ≤ d − 2, and define t

18
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as the number of columns of ˜̆Ω′′(I). Also, assume that all Ω̆′l’s satisfy (20) for r′1 = 1, . . . , r′d−3 =
1, r′d−2 = r. Then, we have the following two scenarios:

(i) td−2 = 0: Hence, we have t =
∑d−3

i=1 ti. Moreover, we have

ti ≤ r
(
mi(Ω̆

′′
i )− 1

)+
≤ r

(
mi(Ω̆

′′)− 1
)+

= r
(
mi(Ω̆

′′)− 1
)
, (24)

for 1 ≤ i ≤ d − 3. Recall that each column of ˜̆Ω′i(I)
includes at least r nonzero entries in different

rows of the (d−2)-th matricization of Ω̆′i for 1 ≤ i ≤ d−3. On the other hand, since ˜̆Ω′′(I) includes

at least one column of
[ ˜̆
Ω
′
1(I)
|. . . | ˜̆Ω′d−3(I)

]
(recall that td−2 = 0), we have

r ≤ md−2(Ω̆′′), (25)

which also results that min
{

max
{
m1(Ω̆′′), . . . ,md−2(Ω̆′′)

}
, r
}

= r.
Therefore, having (24) and (25), we conclude

t =
d−3∑
i=1

ti ≤
d−3∑
i=1

r
(
mi(Ω̆

′′)− 1
)
≤

d−3∑
i=1

r
(
mi(Ω̆

′′)− 1
)

+ r
(
md−2(Ω̆′′)− r

)
(26)

= r

(
d−2∑
i=1

mi(Ω̆
′′)

)
− r2 − r(d− 3)

= r

((
d−2∑
i=1

mi(Ω̆
′′)

)
−min

{
max

{
m1(Ω̆′′), . . . ,md−2(Ω̆′′)

}
, r
}
− (d− 3)

)
.

(ii) td−2 > 0: Hence, we have

td−2 ≤ r
(
md−2(Ω̆′′d−2)− r

)
≤ r

(
md−2(Ω̆′′)− r

)
, (27)

which also results that min
{

max
{
m1(Ω̆′′), . . . ,md−2(Ω̆′′)

}
, r
}

= r. Moreover, similar to sce-
nario (i), (24) holds. Therefore, having (24) and (27), we conclude

t =
d−2∑
i=1

ti ≤
d−3∑
i=1

r
(
mi(Ω̆

′′)− 1
)

+ r
(
md−2(Ω̆′′)− r

)
= r

(
d−2∑
i=1

mi(Ω̆
′′)

)
− r2 − r(d− 3) (28)

= r

((
d−2∑
i=1

mi(Ω̆
′′)

)
−min

{
max

{
m1(Ω̆′′), . . . ,md−2(Ω̆′′)

}
, r
}
− (d− 3)

)
.

Remark 21 Observe that each row of the d-matricization of U consists of exactly n columns of
Ω̃(I), where I = {1, 2, . . . , d − 2}. Hence, given (23), Assumption 1 holds with probability one
since Assumption 1 only requires r sampled entries at each row of the d-matricization of U . More-
over, note that in the above theorem we showed that given (23), constraint (6) holds with high
probability and this ensures finite completability with high probability (since Assumption 1 holds
with probability one).
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Note that for the general values of n1, . . . , nd the same proof will still work, but instead of the
assumption n > max{200, r(d−2)}, we need another assumption in terms of n1, . . . , nd to ensure
that the corresponding unfolding has enough number of columns.

Remark 22 A tensor U that satisfies the properties in the statement of Theorem 20 requires

n2 max

{
27 log

(n
ε

)
+ 9 log

(
2r(d− 2)

ε

)
+ 18, 6r

}
(29)

samples to be finitely completable with probability at least 1− ε, which is lower than the number of
samples required by the unfolding approach given in (14) by orders of magnitude.

The following lemma is taken from (Ashraphijuo et al., 2016a) and is used in Lemma 24 to
derive a lower bound on the sampling probability that results (23) with high probability.

Lemma 23 Consider a vector with n entries where each entry is observed with probability p
independently from the other entries. If p > p′ = k

n + 1
4
√
n

, then with probability at least(
1− exp(−

√
n

2 )
)

, more than k entries are observed.

The proof of the above lemma is simply based on Azuma’s inequality.

Lemma 24 Assume that d > 2, n > max{200, r(d − 2)} and r ≤ n
6 . Moreover, assume that the

sampling probability satisfies

p >
1

nd−2
max

{
27 log

(n
ε

)
+ 9 log

(
2r(d− 2)

ε

)
+ 18, 6r

}
+

1
4
√
nd−2

. (30)

Then, with probability at least (1− ε)
(

1− exp(−
√
nd−2

2 )
)n2

, U is finitely completable.

Proof According to Lemma 23, (30) results that each column of Ω̃(I) includes at least l nonzero en-

tries, where I = {1, 2, . . . , d−2} and l satisfies (23) with probability at least
(

1− exp(−
√
nd−2

2 )
)

.

Therefore, with probability at least
(

1− exp(−
√
nd−2

2 )
)n2

, all n2 columns of Ω̃(I) satisfy (23).

Hence, according to Theorem 20, with probability at least (1 − ε)
(

1− exp(−
√
nd−2

2 )
)n2

, U is
finitely completable.

5. Deterministic and Probabilistic Conditions for Unique Completability

In this section, we are interested in characterizing the deterministic and probabilistic conditions
on the sampling pattern for unique completability. In previous sections we characterized the cor-
responding conditions for finite completability in Theorem 9 and Theorem 20. However, for ma-
trix and tensor completion problems, finite completability does not necessarily imply unique com-
pletability (Ashraphijuo et al., 2016a). In this section, we add some additional mild restrictions on
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Ω in the statement of Theorem 9 to ensure unique completability (deterministic) and also increase
the number of samples given in the statement of Theorem 20 mildly to ensure unique completability
with high probability (probabilistic). As the first step of this procedure, we use the following lemma
for minimally algebraically dependent polynomials to obtain the variables involved in these poly-
nomials uniquely. Hence, by obtaining all entries of the CP decomposition of the sampled tensor U
we can show the uniqueness of U .

Lemma 25 Suppose that Assumption 1 holds. Let Ω̆′ ∈ Rn1×n2×...×nd−1×t be an arbitrary sub-
tensor of the constraint tensor Ω̆. Assume that polynomials in P(Ω̆′) are minimally algebraically
dependent. Then, all variables (unknown entries) of A1, . . . ,Ad−1 that are involved in P(Ω̆′) can
be determined uniquely.

Proof According to Lemma 7, the number of involved variables in polynomials in P(Ω̆′) =
{p1, p2, . . . , pt} is t−1 and are denoted by {x1, . . . , xt−1}. Moreover, as mentioned in the proof of
Lemma 7, P(Ω̆′)\pi is a set of algebraically independent polynomials and the number of involved
variables is t− 1, i = 1, . . . , t. Consider an arbitrary variable x1 that is involved in polynomials in
P(Ω̆′) and without loss of generality, assume that x1 is involved in p1.

On the other hand, as mentioned all variables {x1, . . . , xt−1} are involved in algebraically inde-
pendent polynomials in P(Ω̆′)\p1. Hence, tuple (x1, . . . , xt−1) can be determined finitely. Given
that one of these finitely many tuples (x1, . . . , xt−1) satisfy polynomial equation p1, with proba-
bility one there does not exist another tuple (x1, . . . , xt−1) among them that satisfies polynomial
equation p1. This is because with probability zero a tuple satisfy a polynomial equation in which
the coefficients are chosen generically, and also the fact that the number of such tuples is finite.

Condition (i) in Theorem 26 results in r(
∑d−1

i=1 ni) − r2 − r(d − 2) algebraically independent
polynomials in terms of the entries of A1, . . . ,Ad−1, i.e., results in finite completability. Hence,
adding a single polynomial corresponding to any observed entry to these r(

∑d−1
i=1 ni)− r2 − r(d−

2) algebraically independent polynomials results in a set of algebraically dependent polynomials.
Then, according to Lemma 25 a subset of the entries of A1, . . . ,Ad−1 can be determined uniquely
and these additional polynomials are captured in the structure of condition (ii) such that all entries
of CP decomposition can be determined uniquely.

Theorem 26 Suppose that Assumption 1 holds. Also, assume that there exist disjoint subtensors
Ω̆′ ∈ Rn1×n2×···×nd−1×t and Ω̆′

i ∈ Rn1×n2×···×nd−1×ti (for 1 ≤ i ≤ 2d − 2) of the constraint
tensor such that the following conditions hold:

(i) t = r(
∑d−1

i=1 ni) − r2 − r(d − 2) and for any t′ ∈ {1, . . . , t} and any subtensor Ω̆′′ ∈
Rn1×n2×···×nd−1×t′ of Ω̆′, (6) holds.

(ii) for i ∈ {1, . . . , d − 1} we have ti = ni − 1 and for i ∈ {d, . . . , 2d − 2} we have ti =
ni−d+1 − r. Also, for any t′i ∈ {1, . . . , ti} and any subtensor Ω̆′′

i ∈ Rn1×n2×···×nd−1×t′i of the
tensor Ω̆′

i
, the following inequalities hold

mi(Ω̆
′′i)− 1 ≥ t′i, for i ∈ {1, . . . , d− 1}, (31)

and

mi−d+1(Ω̆′′
i
)− r ≥ t′i, for i ∈ {d, . . . , 2d− 2}. (32)
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Then, for almost every U , there exists only a unique tensor that fits in the sampled tensor U , and has
CP rank r.

Proof As we showed in the proof of Theorem 9, P(Ω̆′) includes t = r(
∑d−1

i=1 ni)− r2 − r(d− 2)
algebraically independent polynomials which results the finite completability of the sampled tensor
U . Let {p1, . . . , pt} denote these t algebraically independent polynomials in P(Ω̆′). Now, having
{p1, . . . , pt} andP(Ω̆′

i
) for 1 ≤ i ≤ 2d−2, and using Lemma 25 several times, we show the unique

completability. Recall that t is the number of total variables among the polynomials, and therefore
union of any polynomial p0 and {p1, . . . , pt} is a set of algebraically dependent polynomials. Hence,
there exists a set of polynomials P(Ω̆′′) such that P(Ω̆′′) ⊂ {p1, . . . , pt} and also polynomials in
P(Ω̆′′)∪p0 are minimally algebraically dependent polynomials. Therefore, according to Lemma 25,
all variables involved in the polynomials P(Ω̆′′)∪p0 can be determined uniquely, and consequently,
all variables involved in p0 can be determined uniquely.

We can repeat the above procedure for any polynomial p0 ∈ P(Ω̆′
i
) to determine the involved

variables uniquely with the help of {p1, . . . , pt}, i = 1, . . . , 2d − 2. Hence, for any polynomial
p0 ∈ P(Ω̆′

i
) or p0 ∈ P(Ω̆′

i+d−1
), we obtain r degree-1 polynomials in terms of the entries of Ai

but some of the entries of CP decomposition are elements of the Qi matrices (in the statement of
Lemma 3), i = 1, . . . , d−1. In order to complete the proof, we need to show that condition (ii) with
the above procedure using {p1, . . . , pt} results in obtaining all variables uniquely. In particular, we
show that repeating the described procedure for any of the polynomials in P(Ω̆′

i
) and P(Ω̆′

i+d−1
)

result in obtaining all variables of the i-th element of CP decomposition uniquely.
According to Lemma 3, we have the following two scenarios for any i ∈ {1, . . . , d− 1}:
(i) Qi ∈ Rr×r: In this case, condition (ii) for Ω̆′′

i+d−1
and for any t′i+d−1 ∈ {1, . . . , ni− r} and

any subtensor Ω̆′′
i+d−1 ∈ Rn1×n2×···×nd−1×t′i+d−1 of the tensor Ω̆′

i+d−1
results

rmi(Ω̆
′′i+d−1

)− r2 ≥ rt′i+d−1. (33)

Note that rt′i+d−1 is the number of polynomials from the above mentioned procedure corresponding
to Ω̆′′

i+d−1
and rmi(Ω̆

′′i+d−1
) denotes the number of involved entries of Ai in these polynomials,

and therefore rmi(Ω̆
′′i+d−1

)−r2 is the number of involved variables of Ai in these polynomials. As
a result, according to Fact 2, given P(Ω̆′

i+d−1
) and {p1, . . . , pt}, the mentioned procedure results

in rni − r2 algebraically independent degree-1 polynomials in terms of the unknown entries of Ai.
Therefore, Ai can be determined uniquely.

(ii) Qi ∈ R1×r: Similar to scenario (i), condition (ii) for Ω̆′′
i

and for any t′i ∈ {1, . . . , ni} and
any subtensor Ω̆′′

i ∈ Rn1×n2×···×nd−1×t′i of the tensor Ω̆′
i

results

rmi(Ω̆
′′i)− r ≥ rt′i, (34)

and therefore similar to the previous scenario, Ai can be determined uniquely.

In Theorem 26, we obtained the deterministic condition on the sampling pattern for unique
completability. Note that Condition (i) in Theorem 26 is the same condition for finite completability.

In the remainder of this section, we are interested in characterizing the probabilistic conditions
on the number of samples to ensure unique completability with high probability. For the sake
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of simplicity, as in Section 4 we consider the sampled tensor U ∈ R

d︷ ︸︸ ︷
n× . . .× n. Recall that

for the general values of n1, . . . , nd the same proof will still work, but instead of assumption
n > max{200, (r + 2)(d− 2)}, we need another assumption in terms of n1, . . . , nd.

Theorem 27 Assume that d > 2, n > max{200, (r+2)(d−2)}, r ≤ n
6 and I = {1, 2, . . . , d−2}.

Assume that each column of Ω̃(I) includes at least l nonzero entries, where

l > max

{
27 log

(
2n

ε

)
+ 9 log

(
8r(d− 2)

ε

)
+ 18, 6r

}
. (35)

Then, with probability at least 1 − ε, for almost every U ∈ R

d︷ ︸︸ ︷
n× . . .× n, there exist only one

completion of the sampled tensor U with CP rank r.

Proof Similar to the proof of Theorem 20, define the (d − 1)-way tensor U ′ ∈ R
d−2︷ ︸︸ ︷

n× . . .× n×n2

which is obtained through merging the (d − 1)-th and d-th dimensions of the tensor U and recall
that the finiteness of the number of completions of the tensor U ′ of rank r ensures the finiteness of
the number of completions of the tensor U with rank r. Similarly, for simplicity, assume that Ω and
Ω̆ denote the (d−1)-way sampling pattern and constraint tensors corresponding to U ′, respectively.
Note that since n > (r+ 2)(d− 2), we conclude n2 > r(n− r) + (d− 3)r(n− 1) + 2(d− 2), and
therefore Ω̃(I) includes more than r(n− r) + (d− 3)r(n− 1) + 2n(d− 2) columns. According to
the proof of Theorem 20, considering r(n− r) + (d− 3)r(n− 1) arbitrary columns of Ω̃(I) results
in existence of Ω̆′ such that condition (i) holds with probability at least 1 − ε

2 . Also, there exist at
least 2n(d− 2) columns other than these r(n− r) + (d− 3)r(n− 1) columns.

Consider n−1 arbitrary columns of Ω̃(I). By setting r = 1 in the statement of Lemma 19, these
n− 1 columns result in Ω̆′′

i
with n− 1 columns such that with probability at least 1− ε

4r(d−2) , (31)

holds. Similarly, consider n−r arbitrary columns of Ω̃(I). Then, there exists Ω̆′′
i+d−2

such that with
probability at least 1− ε

4r(d−2) , (32) holds. Hence, condition (ii) holds (for all i ∈ {1, . . . , 2d− 4})
with probability at least 1 − ε

2r . Therefore, conditions (i) and (ii) hold with probability at least
1−

(
ε

2r + ε
2

)
≥ 1− ε.

Remark 28 A tensor U that satisfies the properties in the statement of Theorem 27 requires

n2 max

{
27 log

(
2n

ε

)
+ 9 log

(
8r(d− 2)

ε

)
+ 18, 6r

}
(36)

samples to be uniquely completable with probability at least 1 − ε, which is orders-of-magnitude
lower than the number of samples required by the unfolding approach given in (14). Note that the
number of samples given in Theorem 3 of (Pimentel-Alarcón et al., 2016d) results in both finite
and unique completability, and therefore the number of samples required by the unfolding approach
given in Remark 15 is for both finite and unique completability.

23



MORTEZA ASHRAPHIJUO, AND XIAODONG WANG

Lemma 29 Assume that d > 2, n > max{200, (r+ 2)(d− 2)} and r ≤ n
6 . Moreover, assume that

the sampling probability satisfies

p >
1

nd−2
max

{
27 log

(
2n

ε

)
+ 9 log

(
8r(d− 2)

ε

)
+ 18, 6r

}
+

1
4
√
nd−2

(37)

Then, with probability at least (1− ε)
(

1− exp(−
√
nd−2

2 )
)n2

, U is finitely completable.

Proof The proof is similar to the proof of Lemma 24.

Remark 30 Theorem 27 ensures that there exist enough number of algebraically independent poly-
nomials and according to Theorem 26, these algebraically independent polynomials can be distin-
guished among all the polynomials, which has a unique solution that leads to the unique completion
of the sampled tensor. Hence, Theorem 27 characterizes an information-theoretic sampling rate for
completing the sampled data. However, one direction for future research is to propose an algorithm
that solves this particular system of polynomials obtained from Theorem 26 in order to achieve the
bound in Theorem 27 and close the gap. Note that there are some fast methods to approximate
the zero of the system polynomials including generalizations of Newton-Raphson method, which is
independent from this work as in this work we find the information-theoretic rate of sampling to
ensure the proposed combinatorial deterministic conditions hold.

6. Numerical Comparisons

In order to show the advantage of our proposed CP approach over the unfolding approach, we
compare the lower bound on the total number of samples that is required for finite completability
using an example. Since the bound on the number of samples for finiteness and uniqueness are
the same for the unfolding approach and they are almost the same for the CP approach, we only
consider finiteness bounds for this example. In particular, we consider a 7-way tensor U (d = 7)
such that each dimension size is n = 103. We also consider the CP rank r which varies from 1 to
150. Figure 1 plots the bounds given in (14) (unfolding approach) and in (29) (CP approach) for the
corresponding rank value, where ε = 0.001. It is seen that the number of samples required by the
proposed CP approach is substantially lower than that is required by the unfolding approach.

Observe that the unfolding approach does not take advantage of the structural property of the
underlying CP model properly, and therefore our proposed multi-way analysis on CP manifold
significantly outperforms the simple two-way analysis.

7. Conclusions

This paper is concerned with the low CP rank tensor completion problem and aims to derive funda-
mental conditions on the sampling pattern for finite and unique completability of a sampled tensor
given its CP rank. In order to do so, a novel algebraic geometry analysis on the CP manifold is
proposed. In particular, each sampled entry can be treated as a polynomials in terms of the entries
of the components of the CP decomposition. We have defined a geometric pattern which classifies
all CP decompositions such that each class includes only one decomposition of any tensor. We have
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Figure 1: Lower bounds on the number of samples for a 7-way tensor.

shown that finite completability is equivalent to having a certain number of algebraically indepen-
dent polynomials among all the defined polynomials based on the sampled entries. Furthermore,
using the proposed classification, we can characterize the maximum number of algebraically in-
dependent polynomials in terms of a simple function of the sampling pattern. Moreover, we have
developed several combinatorial tools that are used to bound the number of samples to ensure finite
completability with high probability. Using these developed tools, we have treated three problems in
this paper: (i) Characterizing the deterministic necessary and sufficient conditions on the sampling
pattern, under which there are only finitely many completions given the CP rank, (ii) Characterizing
deterministic sufficient conditions on the sampling pattern, under which there exists exactly one
completion given the CP rank, (iii) Deriving lower bounds on the sampling probability or the num-
ber of samples such that the obtained deterministic conditions in Problems (i) and (ii) are satisfied
with high probability. In addition, it is seen that our proposed CP analysis leads to an orders-of-
magnitude lower number of samples than the unfolding approach that is based on analysis on the
Grassmannian manifold.
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