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Abstract

The Minimal Learning Machine (MLM) is a nonlinear, supervised approach based on learn-
ing linear mapping between distance matrices computed in input and output data spaces,
where distances are calculated using a subset of points called reference points. Its sim-
ple formulation has attracted several recent works on extensions and applications. In this
paper, we aim to address some open questions related to the MLM. First, we detail the
theoretical aspects that assure the MLM’s interpolation and universal approximation capa-
bilities, which had previously only been empirically verified. Second, we identify the major
importance of the task of selecting reference points for the MLM’s generalization capability.
Several clustering-based methods for reference point selection in regression scenarios are
then proposed and analyzed. Based on an extensive empirical evaluation, we conclude that
the evaluated methods are both scalable and useful. Specifically, for a small number of
reference points, the clustering-based methods outperform the standard random selection
of the original MLM formulation.
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1. Introduction

Machine learning techniques can be roughly categorized as unsupervised and supervised,
depending on whether the learning data comprises only input data or a complete set of
input-output pairs (Shalev-Shwartz and Ben-David, 2014). In terms of target data, semi-
supervised learning typically lies somewhere between these extremes (Gan et al., 2013), and
active (Aggarwal et al., 2014) or incremental (Losing et al., 2018) learning techniques ac-
quire the desired outputs during model construction incrementally, on a need-to-know basis.
A key concept in unsupervised learning, especially clustering, is the distance or dissimilar-
ity between two observations or an observation-metaobservation (e.g., cluster prototype)
pair (Reddy and Vinzamuri, 2013). Currently, supervised learning extensively uses deep
structures with multiple layers of weights and stochastic optimization in training (Hubara
et al., 2017).

The distance-based supervised methods provide a methodological middle ground and
link between unsupervised and supervised learning. Recent examples of such methods in-
clude the Minimal Learning Machine (de Souza Junior et al., 2015) and the Extreme Minimal
Learning Machine (Kärkkäinen, 2019). These methods’ core learning construct is distance
regression, based on the dissimilarity between observations. Hence, nonlinear regression and
classification can be performed for all entities whose dissimilarity can be metrically defined.
During learning, incremental use of the so-called reference points, together with the solution
of the corresponding distance-based linear system, is necessary, without any optimization
procedure (Kärkkäinen, 2019). Note that such distance-based supervised techniques also
enable direct utilization of metric learning techniques as part of their construction (e.g.,
Kulis, 2013).

The MLM’s increasing popularity can be explained by its simple formulation, easy im-
plementation, and promising results in several applications (Mesquita et al., 2017a; Coelho
et al., 2014; Marinho et al., 2017, 2018; Pihlajamäki et al., 2020). Apart from the MLM’s
applications, many studies from 2015 to 2020 have sought to improve and augment the
MLM’s basic form in order to handle missing values (Mesquita et al., 2015, 2017b) and
outliers (Gomes et al., 2017), perform ensemble learning (Mesquita et al., 2017a) and semi-
supervised learning (Caldas et al., 2018), speed up its computations (Florêncio et al., 2020;
Mesquita et al., 2017a; Marinho et al., 2016), and include a reject option in classification
tasks (de Oliveira et al., 2016).

1.1 Prior Work on Distance-Based Learning

Radial Basis Function Networks (RBFN) (Powell, 1987; Broomhead and Lowe, 1988) pop-
ularized the use of distance in training data as part of neural network models. Usually, the
distance in RBFN is further transformed with a nonlinear activation function, but early
papers analyzing the technique also explicated the use of a linear, distance-based kernel
(Poggio and Girosi, 1990; Park and Sandberg, 1991).

The actual development of dissimilarity-based machine learning techniques was ad-
vanced by Pekalska and Duin (2001), who proposed using a “global classifier defined on
the similarities to a small set of prototypes, called the representation set.” This repre-
sentation set is the set of reference points in MLM parlance. Moreover, similarly to Step
1 in MLM (see Section 2), dissimilarities and the corresponding distance matrix between
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objects in the representation and training sets were used by Pekalska and Duin (2001), who
applied the regularized linear normal density classifier. A linear classifier model based on
dissimilarities was then proposed by Pekalska et al. (2001), who estimated parameters sim-
ilarly to the SVM by solving a linear programming problem for the separating hyperplane
in binary classification. Fisher’s Linear Discriminant was used for distance-based spectral
classification by Paclık and Duin (2003).

According to Balcan et al. (2008), use of the Euclidean distance function corresponds
to the trivial identity kernel and to the corresponding scaled similarity function (Balcan
et al., 2008, Definition 1). Let us refer to this as the Euclidean kernel below. This means
that the distance transformation in the MLM introduces the famous kernel trick, where
the size of the implicit space coincides with the number of reference points. However,
because the whole construction of the kernelized learning in MLM occurs in the distance
space, this formulation differs from the SVM or kernel-perceptron and from the approaches
with dissimilarity kernels previously proposed by Pekalska and Duin (2001), Pekalska et al.
(2001), Paclık and Duin (2003), Pekalska et al. (2006), Pekalska and Duin (2008), Chen
et al. (2009), and Wang et al. (2009).

Closely related work to ours—again, in the context of Step 1 of the MLM—is by Zerzucha
et al. (2012), who used the complete Euclidean dissimilarity matrix with the partial least
squares method. Fuzzy clustering and leave-one-out cross-validation were suggested for the
identification of the most informative subset of data (i.e., reference point selection) and for
the reduced Euclidean distance matrix.

Feature selection combined with a distance-based classification of imbalanced data was
considered by Zhang et al. (2015), who used Naive Bayes, instance-based nearest neighbor,
Random Forest, Multilayer Perceptron, and Logistic Regression from WEKA as classifiers.
Note that SVM is the dominant (only practically) method used with distance-based kernels
for time series classification (Abanda et al., 2019). A dissimilarity-based method with
Random Forest as a classifier was proposed by Cao et al. (2019). A recent review on
various dissimilarity-based approaches was provided by Costa et al. (2020).

In conclusion, the use of distances, dissimilarities, or proximities in supervised learning
is not new (e.g., Balcan et al. 2008; Chen et al. 2009; Schleif and Tino 2015). As sum-
marized by Chen (2010), the most straightforward utilization of distance calculations is
using the pairwise distances as features of a predictive model. Indeed, this utilization is
part of the MLM, which is additionally characterized by reference point selection, genuine
distance regression, and the solution of a multilateration problem. Hence, the whole learn-
ing framework with MLM differs from earlier work in the field, as depicted, for example,
by Pekalska and Duin (2001), Paclık and Duin (2003), Pekalska et al. (2006), Wang et al.
(2007), Pekalska and Duin (2008), Balcan et al. (2008), Nguéma and Saint-Pierre (2008),
Chen et al. (2009), Chen (2010), and Schleif and Tino (2015).

1.2 The Importance of Reference Point Selection

In the MLM, reference points are a subset of training points, and they are used to build
the distance matrices that are a key component of the MLM’s induction process. In the
original MLM formulation, the reference points were randomly selected. As empirically
demonstrated by de Souza Junior et al. (2015), a poor choice of reference points can damage
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the MLM’s generalization capability. This phenomenon is even more likely to occur when
the number of reference points is small (de Souza Junior et al., 2015). An example of the
effects of different reference point selection strategies is provided in Section 4.2.

Also, a large number of proposals are available to improve the behaviour of the distance-
based methods using reference point selection (reference points are also referred to as proto-
types or landmarks). Pekalska et al. (2006) considered prototype/reference point selection
with Bayesian classifiers. They concluded that a set of few, evenly distributed centers pro-
vided better classification results (faster with higher accuracy) than the use of all training
examples.

Later suggestions toward this direction were provided by Plasencia-Calaña et al. (2014,
2017), again in the form of finding a small set of prototypes. A well-spread set of diverse
reference points was also suggested as part of the similarity-based learning framework by
Kar and Jain (2011).

Dias et al. (2018) proposed a strategy to select reference points based on identifying of
the class boundaries in a binary classification problem. The proposal prohibited selecting
any point as a reference point from a subset of points in the class boundary area. A similar
objective was pursued by Florêncio et al. (2018), who identified such a region using fuzzy
c-means. Maia et al. (2018) used a sparse regression method to build a linear mapping
between distance matrices. They selected the reference points according to the resulting
non-zero coefficients obtained by the linear model.

Even if the previous works on reference point selection have led to more compact models
with better generalization, the existing efforts have only focused on classification problems.
Additionally, none of these works have presented any theoretical results that can explain
the impact of choosing reference points in a general setting.

1.3 Contributions

In the present work, we advance the research field described above by: i) presenting proof
of the MLM’s interpolation capability when all training points are used as reference points;
ii) demonstrating the MLM’s universal approximation capability—even in scenarios where
reference point selection is considered; and iii) proposing and analyzing several reference
point selection strategies for regression problems based on elements of clustering methods.

When we choose clustering-based approaches, our basic hypothesis suggests, a set of well-
spread reference points in the data space will improve the MLM’s performance compared to
random selection. We validated this paper’s empirical contributions through computational
experiments with 15 regression data sets.

The remainder of this paper is organized as follows. Section 2 presents the MLM’s basic
formulation. Section 3 details our theoretical contributions to the MLM’s interpolation and
generalization capabilities. Section 4 describes clustering-based methodologies for reference
point selection. Section 5 presents a comprehensive set of experiments to evaluate clustering-
based methodologies for reference point selection. Finally, Section 6 concludes the paper.

2. Minimal Learning Machine

As previously discussed, the MLM is a distance-based supervised machine learning method.
The basic algorithm (de Souza Junior et al., 2013, 2015) comprises two main steps: i)
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regression estimation using the distance-based kernel and ii) distance-based interpolation
of a new output. For clarity, we describe these two steps below.

Let X = {xi}Ni=1 be a set of training inputs, where xi ∈ RP and Y = {yi}Ni=1 is the set of
the corresponding outputs, for yi ∈ RL, respectively. Moreover, we define the set of (input)
reference points R = {rk}Kk=1 as a non-empty subset of X , R ⊆ X , and let T = {tk}Kk=1

refer to the outputs of the corresponding reference inputs, that is, rk 7→ tk.

Next, we define two distance matrices, Dx ∈ RN×K and Dy ∈ RN×K , using the Eu-
clidean distance ‖ · ‖ as follows:

Dx =
[
‖xi − rk‖

]
i = 1, . . . , N, k = 1, . . . ,K, (1)

Dy =
[
‖yi − tk‖

]
i = 1, . . . , N, k = 1, . . . ,K. (2)

The key idea for the MLM’s first step is the assumption of a regression model between the
distance matrices: Dy = g(Dx) +E, where E denotes the residuals/error in this transfor-
mation. Assuming that the unknown regression model is linear in form, its transformation
matrix B ∈ RK×K can be estimated using the well-known ordinary least squares formula-
tion, as follows:

B =
(
DT
xDx

)−1
DT
xDy. (3)

The linear mapping represented by the matrix B, obtained in Eq. (3), is the MLM’s first
step.

For the second step, let x̃ be a new input vector whose output must be estimated. Hence,
based on the distance regression model from the first step, we seek the corresponding output
ỹ, satisfying

‖ỹ − tk‖ ≈ δk ∀k = 1, . . . ,K, (4)

where

δ =
[
‖x̃− rk‖

]K
k=1

B.

The solution to the multilateration problem in Eq. (4) can also be obtained using the
least-squares formulation by letting

ỹ∗ = argminJ (ỹ), where J (ỹ) =

K∑
k=1

(
‖ỹ − tk‖2 − δ2

k

)2
. (5)

As stated by de Souza Junior et al. (2015), many possible solvers exist for Eq. (5).
In the original formulation, the MLM solves the output estimation step using a nonlinear
optimization algorithm. Such an algorithm is used to find the point that minimizes the
double-quadratic error between the estimated distance and the real distance, calculated
on each candidate point. However, we want to verify whether, when the distances are
perfectly estimated, the point’s position can be recovered without error. To that end,
we follow an alternative formulation of the multilateration problem, called the Localization
Linear System (LLS), detailed in Appendix A. This formulation provides an efficient output
estimation method. The LLS method computes the output position by solving a linear
system. An output prediction algorithm for the MLM with LLS is depicted in Algorithm
1. Substitution “← [ ]” referes to the removal of an element from a vector.
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Algorithm 1 MLM output prediction with LLS

Input: input x̃, distance regression model B, reference points R and T .
Output: predicted output ỹ.

1: dx̃ ←
[
‖x̃− rk‖

]K
k=1

2: δ ← dx̃B // Predict distances in the output space
3: i∗ ← rand({1, . . . ,K})
4: t∗, δ∗ ← ti∗ , δ(i∗)
5: T , δ(i∗),K ← T \{ti∗}, [ ],K − 1 // Remove BAN from the set of reference points
6: b,A
7: for i ∈ {1, . . . ,K} do
8: b(i)← 1

2(δ∗2 + ‖t∗ − ti‖2 − dx̃(i)2)
9: A(i, :)← (ti − t∗)T

10: θ ← solve(Aθ = b) // Solve a linear system of equations
11: ỹ ← θ + t∗

In summary, the LLS solves a system in the form Aθ = b. The coefficient matrix A
is constructed based on all but one reference point, named the ”benchmark-anchor-node”
(BAN), and each row i is given by the difference between the i-th reference point and the
BAN. The vector θ is a simple translation of the target position. The vector b is computed
from the estimated distances between the target point and the reference points, as well as
the distance from the BAN itself to the other reference points.

In Algorithm 1, a linear system of equations in Step 10 is usually overdetermined. An
approximate solution can be obtained from the ordinary least squares (OLS) method with a
computational cost of O(L2K). Step 1 has a computational cost of O(KP ). Usually, Step 2
is, computationally, the most expensive step, and it determines the asymptotic behavior of
the computational complexity, O(K2), when K >> P and K >> L. Therefore, models with
a reduced number of reference points can lead to a significant computational time reduction
for the MLM prediction with the LLS when the input and output space dimensions are
small compared to K.

Nyström approximation Initially, one could draw similarities between the MLM formu-
lation and the methods that consider a Nyström approximation for Gram matrices (Williams
and Seeger, 2001; Drineas and Mahoney, 2005; Sun et al., 2015). Such methods are based
on the approximation K ≈ CW †CT , where K ∈ RN×N , W ∈ RK×K , C ∈ RN×K , and
K � N .

However, the exact least squares solution B = (DT
xDx)−1DT

xDy in the MLM’s first
step differs. Indeed, for K < N , the distance matrices Dx ∈ RN×K and Dy ∈ RN×K
are rectangular, and we cannot obtain the same solution by directly applying the standard
Nyström approach. We confirm the latter statement by considering the full distance ma-
trices ∆x ∈ RN×N and ∆y ∈ RN×N , which correspond to the solution B = ∆−1

x ∆y. By
considering a Nyström representation for ∆x, we would obtain B ≈ (CW †CT )−1∆y. The
inverse (CW †CT )−1 may exist only for K = N , the only case where we recover the least
squares solution by choosing, for instance, C = W = ∆x.
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Nevertheless, the vectors used to build the matrix W in a Nyström approximation,
usually called ”landmarks,” can be seen as analogous to the reference points in the MLM.
In the literature on the Nyström method, clustering algorithms are well known as a sen-
sible strategy for choosing landmarks (Zhang et al., 2008; Zhang and Kwok, 2010; Kumar
et al., 2012; Oglic and Gärtner, 2017; Pourkamali-Anaraki et al., 2018). This observation
encourages us to also pursue a clustering approach to select the MLM’s reference points.

3. MLM Theoretical Results

In this section, we detail some of the MLM’s theoretical guarantees. These results are
divided into two subsections: ”Interpolation Theory” and ”Universal Approximation Capa-
bility.”

3.1 Interpolation Theory

We show that the MLM can interpolate data in two steps. First, we show that the distance
matrix Dx, constructed using all points in the available data as reference points, is invertible.
According to Eq. (3), and given that DT

x = Dx when all data points act as reference points,
the distances can be estimated accurately. In the second step, we prove that—under certain
conditions that will be described—the estimation of the output will recover the original
points’ position with zero error.

3.1.1 Inverse of distance matrices

In the MLM’s training phase, we need to solve a linear system whose coefficient matrix
is given by the distances between the points of the data set and the reference points—
that is, a matrix Dx, such that di,j is given by d(xi, rj), the distance between the i-th
point of the training set and the j-th reference point. If we consider the specific case in
which all points in the data set are reference points, then the coefficient matrix is a square
matrix of order equal to the number of training points N . We rearrange the points so that
xi = ri,∀i ∈ {1, · · · , N}, and the matrix of coefficients is such that each element di,j is
given by d(xi,xj). A matrix with this characteristic is formally called a ”distance matrix.”
To find an exact solution, we must show that every distance matrix admits an inverse.

The invertibility of the distance matrix was first demonstrated by Micchelli (1986); Auer
(1995) offered a simplified proof. The main result is given by the following theorem:

Theorem 1 Given a distance matrix D computed from a set of N distinct points, the
determinant of D is positive if N is odd and negative if N is even; specifically, D is
invertible.

With this result, we can guarantee that, when the distance matrix in the input space is
multiplied by the coefficient matrix obtained in the MLM training, the result is the distance
matrix in the output space—without any error.

3.1.2 Condition for the perfect estimation of the multilateration

The result of the previous subsection is important since it shows that the MLM can recover
the distances in the output space between the reference points and the training data with
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zero errors. However, this result is not sufficient evidence to suggest that the MLM is
capable of interpolating any data set. For that claim, we must prove the model’s ability to
estimate the output—that is, to retrieve the points’ position in the output space from the
perfectly estimated distances.

Solving the LLS accurately is only possible when the coefficient matrix is non-singular.
This condition is not necessarily true of any set of points. Indeed, Theorem 2 below shows
that the matrix is invertible when the reference points, including the BAN, form an inde-
pendent affine set.

Theorem 2 (perfect estimation with the multilateration) Given a linearly indepen-
dent spanning set v1 . . .vR ∈ RS and v ∈ RS. If v is not an affine combination of
{v1, . . . ,vR}, then the set of vectors v1 − v,v2 − v, . . . ,vR − v is linearly independent.

Proof:

Suppose that V = {v1, . . . ,vR} is a linearly independent spanning set, v is not an affine
combination of V , and V ′ = {v1 − v, . . . ,vR − v} is linearly dependent. There then exists
µ1, . . . , µR, not all equal to zero, such that:

R∑
i=1

µi(vi − v) = 0

R∑
i=1

µi(vi −
R∑
j=1

λjvj) = 0

R∑
i=1

µivi −
R∑
i=1

µi

R∑
j=1

λjvj = 0

R∑
i=1

µivi −
R∑
i=1

λivi

R∑
j=1

µj = 0

R∑
i=1

(µivi − λivi
R∑
j=1

µj) = 0

R∑
i=1

(µi − λi
R∑
j=1

µj)︸ ︷︷ ︸
θi

vi = 0

R∑
i=1

θivi = 0. (6)

Since V is LI, Eq. (6) can only be satisfied when all θi are equal to zero, which means
µi = λi

∑
µj , ∀i. If

∑
µj = 0, we have µi = 0,∀i; however, this cannot be true since

we assume that µi are not all zero. Assuming, then, that
∑
µj 6= 0, we have λi = µi∑

µj
;

however, this gives
∑
λi = 1. Since we assume that v is not an affine combination of V ,

we arrive at a contradiction and conclude the proof.
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The above theorem shows that the multilateration results in the point’s exact position
in the output space when we choose S linearly independent points from the training set and
another point (the BAN) that is not an affine combination of the other points. Since the
number of training points is usually much larger than the dimension of the output, this is
usually possible.

3.2 Universal Approximation Property

We will now verify an important theoretical result of the MLM: its universal approximation
capability. This result is divided in two parts: one part is for the distance estimation error
after the linear transformation, and the other part is for the multilateration estimation error
when recovering the output position. This result will clarify that the MLM can be used to
approximate arbitrary functions.

3.2.1 Upper bound for distance estimation error

To show that the distance estimation error computed by the MLM is bounded, we will use
a result presented by Park and Sandberg (1993), who showed that a Radial Basis Function
(RBF) network is a universal approximation. The result is summarized by Theorem 3, as
follows:

Theorem 3 (RBF universal approximation) Let κ : Rr → R be a nonzero integrable
function, such that κ is continuous and radially symmetric with respect to the Euclidean
norm. Then, the family Sκ is dense in the space of continuous R-valued maps defined on
any compact subset of Rr with respect to the norm ||.||∞, where Sκ is the family of RBF
networks with kernel function κ, given by

q(x) =

M∑
i=1

wiκ

(
x− zi
σi

)
.

This theorem shows that an RBF network can approximate a significant set of functions
with an arbitrarily small error. For the MLM, we can resort to this result by considering
that the desired output of the data set is the distance to the reference points in the output
space. With that modification, we must show that the MLM can be described in the RBF
network formalism, which ensures that the MLM can estimate the distances to the reference
points in the output with an arbitrarily small error.

We will first take the centroids of the RBF as the MLM’s reference points. The function
κ then takes the Euclidean norm, given by κ(x−ziσi

) = ||x−ziσi
||. The presented RBF formu-

lation has a parameter σi that does not appear in the MLM. However, if a combination wi,
σi satisfies the property, we can calculate w̄i = wi

σi
and get the same result. Finally, both

the RBF and the MLM apply a linear regression to compute the output, so we can state
that the weights w of the RBF are equivalent to the coefficients of matrix B in Eq. (3).
Thus, we conclude the proof that the error of the MLM-estimated distances in the output
space can be arbitrarily small.
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3.2.2 Upper bound for the multilateration prediction error

In the previous section, we showed that the MLM can provide a good estimate of the
distances in the output space. However, the MLM requires an additional step to compute
the output: the multilateration. This section shows that the multilateration estimation
error is bounded.

As Hu et al. (2016) showed, an upper bound is found for the error of multilateration,
given by the method detailed in Appendix A. This work was conducted in the context of
mobile autonomous robot localization, and it differed from the MLM in some ways. In
summary, Hu et al. (2016) aimed to locate a mobile robot based on estimated distances for
some fixed points of known locations, called ”anchor points.” Both the distance estimates
and the anchor point locations themselves may present noise. Thus, in that context, the
upper bound for the multilateration error is expressed by Theorem 4, as follows:

Theorem 4 (upper bound for the LLS error) An LLS constructed is described in Eq.
(9) in Appendix A and is expressed

Âθ = b̂,

where Â = A + ∆Â is a matrix constructed by the anchors’ positions, A represents the
anchor nodes’ precise position, ∆Â is the anchors’ coordinate errors, b̂ = b + ∆b̂ is a
vector collection of the anchors’ positions and the measurement data, b denotes the noiseless
measurement data, and ∆b̂ represents the noise of the measurement data. The ratio between
the estimated coordinate ŷ and the true coordinate y satisfies

||ŷ||
||y||

≤ ψ(1 + α)(1 + β),

where

ψ = ||Â†||||Â||,

α =
||∆Â||
||Â||

,

β =
1

|||b̂||2/||∆b̂||2 − 1|
.

An MLM analogy can be made with the presented context by considering that the
robot’s location is the desired output and the anchor points’ locations are the locations of
the reference points in the output space. Distance estimates from the robot to the anchor
points are given by the MLM’s output before the multilateration step.

Theorem 4 presents an upper bound for the multilateration error. However, the MLM’s
characteristics allow us to tighten the bound. First, we consider that the reference points’
location is accurate, which means ∆A = 0; thus, α = 0. In addition, we saw in the
previous section that the MLM distance estimate errors can be arbitrarily small. This
means ∆b→ 0, which implies β → 0. Thus, we can present the following corollary:

Corollary 5 The error of the MLM multilateration step is bounded by

||ŷ||
||y||

≤ ψ(1 + β) = U ,
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where

ψ = ||Â†||||Â||,

β =
1

|||b̂||2/||∆b̂||2 − 1|
.

In addition, since we have β → 0, we have U → ψ.

The result of this corollary shows that the ratio between the returned and the desired
output is bounded. We will develop this relation to show that the distance between the
returned and the desired output is also bounded:

d(ŷ,y)2 =(ŷ − y)T (ŷ − y)

d(ŷ,y)2 =||ŷ||2 + ||y||2 − 2yT ŷ

d(ŷ,y)2 =||ŷ||2 + ||y||2 − 2||y||||ŷ|| cosα

d(ŷ,y)2

||y||2
=
||ŷ||2

||y||2
+
||y||2

||y||2
− 2 cosα

||y||||ŷ||
||y||2

d(ŷ,y)2

||y||2
=

(
||ŷ||
||y||

)2

+ 1− 2 cosα
||ŷ||
||y||

d(ŷ,y)2

||y||2
≤(U)2 + 1− 2 cosα(U). (7)

We can, therefore, conclude that if the norm ||y|| of the target output is bounded, the
distance d(ŷ,y) between the desired output and the output estimated by the multilateration
is also bounded.

3.3 Discussion

Corollary 5 indicates that the upper bound of the multilateration error depends on matrix
A, which is itself associated with the reference points used to compute the distances. This
observation indicates that we can tighten the bound for certain choices of reference points,
thereby reducing the output estimation error limit. This idea was previously demonstrated
empirically (Dias et al., 2018; Florêncio et al., 2018; Maia et al., 2018). In the present work,
we have now theoretically motivated a non-random selection for the reference points. We
assess this motivation by performing the comprehensive computational experiments detailed
in the next sections, focusing on clustering-based approaches.

4. Clustering-Based Reference Point Selection

In this section, we evaluate four clustering-based methods in the reference point selection
problem. These methods include two nondeterministic and two deterministic ones. A gen-
eral algorithm for the selection of clustering-based reference points is depicted in Algorithm
2. All the methods are based on a common strategy where the selection of reference points
is performed only in the input space. The corresponding points (indices) are simply selected
as output references. Therefore, below, we consider only the input space when describing
the proposed methods.
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Algorithm 2 Clustering-based selection of reference points

Input: input points X , output points Y, and number of reference points K
Output: reference points R and T
1: Cluster X to K clusters
2: Select cluster prototype from each cluster
3: Select R according to the cluster prototypes from X
4: Select T corresponding to indices of R from Y

Method Based on Deterministic Type Complexity

RS-K-means++ K-means++ initialization No Partitional O(N)
RS-K-medoids++ K-means++ initialization and No Partitional O(N)

K-medoids clustering
RS-UPGMA Aggloremerative clustering Yes Hierarchical O(N2)
RS-maximin Maximin clustering initialization Yes Partitional O(N)

Table 1: Summary of the evaluated reference point selection approaches.

4.1 Methods

The K-means++ initialization method (Arthur and Vassilvitskii, 2007) is among the most
popular methods of K-means initialization. The first method we evaluate is the use of the
K-means++ initialization with the Euclidean distance for reference point selection. See
Hämäläinen et al. (2017) for a description of the algorithm. We will refer to this approach
as reference point selection with K-means++ (RS-K-means++).

The second evaluated approach begins by running the K-means++ initialization with
the Euclidean distance, and then it refines the initial prototypes with Lloyd’s algorithm
(Lloyd, 1982) until convergence. Finally, the closest observation to each final prototype
(medoid) is selected as the reference point. These closest points then establish the set
of selected reference points. This method is referred to as RS-K-medoids++. Both RS-
K-medoids++ and RS-K-means++ are nondeterministic methods because of the random
sampling of the initial prototypes, which are based on the Euclidean distance-constructed
probability distribution (see Hämäläinen et al. 2017 and the articles therein).

The unweighted pair group method with the arithmetic mean (UPGMA; Sokal, 1958)
is an agglomerative clustering algorithm that starts clustering from the initial state, where
each point forms one cluster. Then, in each step, the two clusters with the smallest average
distance between the cluster members are joined together. The third evaluated method
utilizes UPGMA on the data, and then it computes the mean prototypes for each cluster;
finally, it again selects the closest point to the prototype as a reference point. Similar to
RS-K-medoids++, those closest points construct the set of selected reference points. We
refer to this method as RS-UPGMA.

The fourth evaluated method is based on a maximin clustering initialization algorithm
(Gonzalez, 1985). The original method starts with a random initial point and then picks
each new point, similar to the K-means++ method. However, unlike K-means++, the point
with the farthest distance from the closest already selected point is chosen as a new point.
Our modification of the maximin first selects the closest point to the data mean as the
first point, conceiving of the whole algorithm as completely deterministic. This approach
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is referred to as RS-maximin. We emphasize that the latter two approaches, RS-UPGMA
and RS-maximin, are deterministic.

One justification for selecting this specific set of clustering methods is the highly dif-
ferent amounts of separation between the selected reference points (see Figure 2 in Ap-
pendix B). Random selection involves the smallest amount of separation among the ref-
erence points, and the RS-maximin method involves the largest amount; RS-K-means++,
RS-K-medoids++, and RS-UPGMA interpolate between these two extremes. Plenty of
clustering methods are available; the methods evaluated here are straightforward and easy
to implement. Moreover, the MLM has only one hyperparameter, the number of reference
points K to be selected, which the methods keep unchanged.

A summary of the evaluated approaches is shown in Table 1, where the time complex-
ities are also presented with respect to the number of training observations N . RS-K-
means++, RS-K-medoids++, and RS-maximin have linear time complexity. The UPGMA
has quadratic complexity (Gronau and Moran, 2007); therefore, the complexity of RS-
UPGMA is also quadratic, since the post-processing after the UPGMA clustering step has
linear time complexity. Since the MLM training phase has a time complexity of O(K2N)
(de Souza Junior et al., 2015), a reference point selection method with a linear computa-
tional cost (with respect to N ) and an ability to build an accurate model with a small K
is highly desirable.

4.2 Motivation for Reference Point Selection

To illustrate reference point selection’s effects in terms of the MLM’s accuracy, we gener-
ated a nonlinear synthetic data set (6,240 observations, 1 input variable, 1 output variable)
with varying density. Input values are drawn from four highly different density intervals.
Corresponding output values are given by a cubic function with Gaussian noise. The MLM
was trained with the Random and RS-maximin methods when K = 10. In addition, we
trained the full MLM variant. Figure 1 illustrates that the Random method selects refer-
ence points from high-density regions, which causes the MLM to have a very low accuracy
in low-density regions. RS-maximin also selects reference points from the low-density re-
gions, which clearly improves accuracy. Selecting reference points from near the data cloud
boundaries improves the MLM regression model’s extrapolation capability, as also illus-
trated by Hämäläinen (2018). A straightforward approach to also cover low-density regions
is to include all the data points as a reference points; however, this approach can lead to
overfitting and very large MLM models. On the other hand, overfitting seems to rarely be
a problem for multidimensional input spaces, based on this paper’s results and the works
of Florêncio et al. (2020), Hämäläinen and Kärkkäinen (2020), Kärkkäinen (2019), and
Pihlajamäki et al. (2020). Especially in classification problems, small noise on the class
boundaries, as characterized in Figure 1 (right), might not affect classification accuracy.

5. Experiments and Results

In this section, we show empirical evidence with an extensive set of data sets how the MLM’s
generalization accuracy can be improved in regression problems with clustering-based ref-
erence point selection. We used the Random selection as a baseline for the clustering-based
methods.
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Figure 1: Illustration of the effects for different reference point selection strategies. Selected
reference points are marked with crosses with the corresponding color of the fitted
curve.

Data set # Observations # Features

Auto Price (AP) 159 15
Servo (SRV) 167 4
Breast Cancer (BC) 194 32
Computer Hardware (CHA) 209 6
Boston Housing (BH) 506 13
Forest Fires (FF) 517 12
Stocks (STC) 950 9
S1 (S1) 1,000 2
Bank (BNK) 4,499 8
Ailerons (ALR) 7,129 5
Computer Activity (CA) 8,192 12
Elevators (ELV) 9,517 6
Combined Cycle Power Plant (CCP) 9,568 4
California Housing (CH) 20,640 8
Census (CNS) 22,784 8

Table 2: Characteristics of the data sets used in the experiments.

5.1 Experimental Setup

We selected 13 real data sets and two synthetic data sets (S1, BNK) to evaluate the reference
point selection methods. The selected data sets are summarized in Table 2. All data
sets had one-dimensional output values. The S1 data set was modified for a regression
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task. We randomly selected 1,000 observations from the original S1 data, scaled their
values to the range [0, 1] and then computed the output values f(x1, x2) with the function
sin(2πx1) + sin(2πx2). The original S1 data set is available at http://cs.uef.fi/sipu/

datasets/. The remaining data sets are available at http://www.dcc.fc.up.pt/~ltorgo/
Regression/DataSets.html and at http://archive.ics.uci.edu/ml/index.php.

For a more rigorous comparison, we performed model selection and assessment as fol-
lows. We divided the original data sets into train-validation-test sets and performed cross-
validation (see, e.g., Friedman et al., 2001, Chapter 7). More precisely, we used the 3-DOB-
SCV (Moreno-Torres et al., 2012) approach to divide each data set into a training set and
a test set. Therefore, the test set was forced to approximate the same distribution as the
training set, making the comparison more reliable if concept drift is not considered. Because
we focused only on regression tasks, we used DOB-SCV as a one-class case (Hämäläinen,
2018; Hämäläinen and Kärkkäinen, 2016). Moreover, we archived three training sets and
three test sets for each data set, respectively, with sizes of 2/3 and 1/3 of the number of
observations. In training, we used the 10-DOB-SCV approach to select the optimal number
of reference points. Hence, 18/30 of the number of observations were used to train the
model and 2/30 of the number of observations were used to compute the validation error.
Therefore, we have a two-level division of the data sets.

We evaluated the models’ quality using the root mean square error (RMSE). In addition
to the validation error, a test error was also computed for all 10-DOB-SCV training sets,
resulting in 10 test RMSEs for each training set and 30 test RMSEs for the overall data
set. For more interpretable results, we expressed the number of selected reference points
relatively:

Krel = 100
K

N
, (8)

where N is the number of observations in the training data. In training, the number of
reference points Krel varied in the range of [5, 100], with a step size of 5. We used the
LLS method for output prediction (Algorithm 1). To solve the linear system of equations
in the MLM implementation, we utilized MATLAB’s mldivide-function. We scaled all
training observations to the range [0, 1]. All the experiments were conducted in a MATLAB
environment.

5.2 Results for Optimal K

Table 3 shows the median test RMSE and the optimal number of reference points. The
optimal number of reference points was selected based on the smallest mean validation
RMSE. The symbol ∗∗ indicates a statistically significant difference between test RMSEs,
based on a Kruskal-Wallis H test with a significance level of 0.05. The symbols ∗, †, ‡, §,
and ‖ denote that a method has a statistically significantly smaller RMSE in pairwise com-
parison to Random, RS-K-means++, RS-K-medoids++, RS-UPGMA, and RS-maximin,
respectively. In the pairwise comparisons, the significance level was also set to 0.05. The
Kruskal-Wallis H test assumes equal variances for groups; therefore, we tested the equality
of the variances with a Brown-Forsythe test. Based on this test, the variances related to
optimal K results were equal for all data sets. The best median test RMSE and the set of
the smallest number of reference points (with respect to the mean value) are in boldface for
each data set. Note that Table 3 includes three optimal K values for each method, since
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Random RS-K-means++ RS-K-medoids++ RS-UPGMA RS-maximin

Data set RMSE Krel RMSE Krel RMSE Krel RMSE Krel RMSE Krel

AP 0.0640(85) 75, 90, 80 0.0600(77) 65, 80, 95 0.0597(79) 45,100,55 0.0583(68) 90, 95, 100 0.0583(68) 90, 100, 95

SRV 0.0920(77) 90,100,90 0.0910(76) 90, 100, 95 0.0908(76) 95, 100, 95 0.0899(75) 100, 100, 95 0.0913(74) 95, 100, 100

BC 0.2678(78) 10, 20, 30 0.2674(85) 5, 25, 15 0.2664(76) 10,15,10 0.2680(77) 10, 15, 15 0.2647(63) 15, 20, 10

CHA∗∗ 0.0483(93) 80, 15, 80 0.0461(98) 50,15,25 0.0431(66)† 25, 65, 55 0.0403(52)∗† 20, 95, 20 0.0421(68) 65, 55, 15

BH 0.0728(81) 75, 100, 100 0.0717(72) 95, 100, 100 0.0725(75) 95, 85, 100 0.0717(75) 85,85,75 0.0718(75) 85, 95, 100

FF 0.0557(74) 40, 10, 10 0.0564(82) 5, 45, 10 0.0559(75) 30, 10, 55 0.0566(71) 5,5,15 0.0566(76) 5,15,5

STC 0.0227(73) 100, 100, 100 0.0228(77) 95,100,95 0.0228(74) 100, 95, 100 0.0227(75) 100,100,90 0.0228(78) 95,100,95

S1 0.0051(76) 100, 100, 100 0.0053(76) 75, 100, 95 0.0052(78) 80, 90, 70 0.0051(75) 80,90,65 0.0052(74) 85, 100, 95

BNK∗∗ 0.0514(95) 90, 95, 90 0.0515(93) 85, 100, 70 0.0509(81) 100, 55, 60 0.0490(59)∗† 95, 5, 10 0.0481(51)∗† 5,10,10

ALR 0.0417(66) 10, 10, 10 0.0418(71) 5, 10, 15 0.0418(69) 10, 5, 15 0.0420(87) 5, 10, 20 0.0420(85) 5,10,5

CA 0.0288(75) 90, 100, 100 0.0288(75) 90, 75, 75 0.0288(72) 60, 85, 75 0.0289(79) 70,65,60 0.0288(77) 80, 95, 70

ELV 0.0554(76) 5,5,5 0.0553(74) 5,5,5 0.0554(75) 5,5,5 0.0553(75) 5,5,5 0.0553(76) 5, 5, 10

CCP 0.0478(73) 85, 100, 100 0.0476(73) 90, 70, 95 0.0480(77) 70, 85, 95 0.0482(81) 55,80,95 0.0480(74) 75, 80, 95

CH 0.1137(77) 70,85,70 0.1134(75) 80, 80, 95 0.1135(76) 80, 80, 95 0.1135(75) 100, 95, 100 0.1136(74) 100, 100, 90

CNS 0.0605(83) 20, 35, 30 0.0605(80) 15, 20, 20 0.0603(75) 15, 25, 25 0.0599(64) 15, 25, 15 0.0602(76) 10,30,10

Rank / Kavg
rel 5(54) / 64.44 4(48) / 59.56 3(44) / 58.44 2(40) / 55.22 1(39) / 56.33

Table 3: RMSE for the optimal K.

we used the 3-DOV-SCV approach in the experiments. Rounded Kruskal-Wallis scores are
shown inside the brackets, and the best scores are in boldface. Data set—wise ranking of
the methods was calculated from the raw Kruskal-Wallis scores. Based on these rankings,
the final ranking of the methods is shown at the bottom of Table 3. In addition, the average
Krel is also shown at the bottom of Table 3 for each method.

Based on Table 3, RS-UPGMA and RS-maximin performed equally well in the final
ranking, while RS-K-medoids++ and RS-K-means++ performed similarly. In terms of
the final ranking and the model size (Krel), Random had the worst performance and the
deterministic methods RS-UPGMA and RS-maximin performed best. In general, clustering-
based methods give sparser models that reduce computational costs and space requirements.
In addition, the clustering-based models have better generalization ability. Based on the
Kruskal-Wallis test, the methods differ statistically significantly for the CHA and BNK
data sets in favor of the deterministic methods. For the BNK data set, RS-maximin builds
the MLM model with only Krel = {5, 10, 10}, while Random must select almost the entire
data set as reference points (Krel = {90, 95, 90}) and still has a clearly larger RMSE error.
Reducing Krel from 90 to 10 reduces space requirements for the distance regression model
coefficient matrix by 98.77%. For large data sets where N >> P and N >> L, this
coefficient matrix size determines the full MLM model’s (Krel = 100) space complexity.

The best K selection, based on the smallest mean validation RMSE, is dubious for some
of the data sets since the model’s complexity of the model is not taken into account. For
example, for a large data set, if increasing Krel from 50 to 100 leads to only marginal
improvement in the mean validation RMSE, then the model with higher K and smaller
mean validation RMSE is selected. For example, for the S1 data set, RS-maximin already
achieves the fulll MLM error level when Krel = 20 − 40 (see Tables 6 and 7). For future
work, room for improvement remains in this respect.
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Data set Random RS-K-means++ RS-K-medoids++ RS-UPGMA RS-maximin

AP∗∗ 0.1083(89) 0.1082(83) 0.1052(86) 0.0954(66) 0.0829(54)∗‡

SRV∗∗ 0.1921(57)‖ 0.2024(70) 0.2088(86) 0.2011(71) 0.2132(94)
BC 0.2672(68) 0.2684(80) 0.2670(71) 0.2707(86) 0.2671(72)
CHA 0.0697(82) 0.0593(57) 0.0659(80) 0.0682(78) 0.0608(81)
BH 0.1171(70) 0.1194(80) 0.1141(84) 0.1141(80) 0.1099(63)
FF 0.0572(81) 0.0565(76) 0.0568(81) 0.0566(67) 0.0566(73)

STC∗∗ 0.0521(121) 0.0478(87)∗ 0.0457(45)∗†‖ 0.0449(41)∗†‖ 0.0477(84)∗

S1∗∗ 0.0366(128) 0.0285(91)∗ 0.0270(78)∗ 0.0241(56)∗† 0.0199(25)∗†‡§

BNK∗∗ 0.0645(103) 0.0584(87) 0.0670(117) 0.0499(42)∗†‡ 0.0491(30)∗†‡

ALR 0.0417(70) 0.0418(68) 0.0419(77) 0.0420(83) 0.0420(79)
CA∗∗ 0.0341(120) 0.0320(70)∗ 0.0314(54)∗§ 0.0324(85)∗ 0.0314(48)∗§

ELV 0.0554(77) 0.0553(75) 0.0554(76) 0.0553(76) 0.0553(73)
CCP 0.0528(88) 0.0526(79) 0.0526(73) 0.0525(70) 0.0522(67)

CH∗∗ 0.1201(44)‡§‖ 0.1208(58)§‖ 0.1219(75) 0.1230(101) 0.1232(99)
CNS 0.0622(91) 0.0613(77) 0.0614(79) 0.0607(68) 0.0607(62)

Rank 5(55) 2(42) 4(52) 3(43) 1(33)

Table 4: RMSE for Krel = 5.

Data set Random RS-K-means++ RS-K-medoids++ RS-UPGMA RS-maximin

AP 0.0930(83) 0.0916(85) 0.0856(78) 0.0838(70) 0.0762(62)
SRV∗∗ 0.1479(64) 0.1500(60) 0.1651(91) 0.1693(108) 0.1468(54)
BC 0.2674(77) 0.2667(72) 0.2668(77) 0.2692(85) 0.2655(67)
CHA∗∗ 0.0613(105) 0.0542(92) 0.0496(81) 0.0428(43)∗†‡ 0.0448(57)∗†

BH 0.0994(70) 0.1003(76) 0.1017(75) 0.1018(81) 0.1011(75)
FF 0.0568(78) 0.0568(79) 0.0572(80) 0.0567(70) 0.0565(72)
STC∗∗ 0.0395(122) 0.0375(102) 0.0359(59)∗† 0.0353(45)∗† 0.0359(50)∗†

S1∗∗ 0.0188(123) 0.0140(92)∗ 0.0135(81)∗ 0.0109(60)∗† 0.0078(23)∗†‡§

BNK∗∗ 0.0589(103) 0.0570(93) 0.0588(97) 0.0487(47)∗† 0.0481(37)∗†

ALR 0.0417(65) 0.0418(72) 0.0418(63) 0.0420(86) 0.0422(92)
CA∗∗ 0.0316(121) 0.0302(73)∗ 0.0299(61)∗ 0.0305(71)∗ 0.0301(52)∗

ELV 0.0557(85) 0.0555(83) 0.0555(76) 0.0555(76) 0.0554(66)
CCP 0.0516(88) 0.0516(78) 0.0515(72) 0.0515(71) 0.0511(68)

CH∗∗ 0.1177(44)§‖ 0.1185(59)§‖ 0.1193(74) 0.1212(100) 0.1212(101)
CNS 0.0612(89) 0.0605(78) 0.0605(80) 0.0601(67) 0.0602(64)

Rank 5(58) 4(52) 3(46) 2(41) 1(28)

Table 5: RMSE for Krel = 10.

5.3 Results for Fixed K

Tables 4–7 show the test RMSEs. They are similar to Table 3, but with a fixed number
of reference points. Variances for the error distributions are not equal for SRV (Krel =
5, 10, 20), CHA (Krel = 10, 20, 40), BH (Krel = 10, 20), FF (Krel = 10), STC (Krel =
5, 10, 20, 40), S1 (Krel = 5, 10, 20), CA (Krel = 5, 20, 40), or ELV (Krel = 10), based
on the Brown-Forsythe test of group variances. Therefore, the Kruskal-Wallis results are
questionable in these cases. However, the methods’ ordering can still be compared.

As expected, based on the final ranking, all the proposed methods have better RMSE
than Random when the number of reference points is small to moderate (Krel = 5, 10, 20, 40,
Tables 4–7). RS-K-means++ have better RMSEs than RS-K-medoids++ for Krel = 5.
Thus, refinement of the reference points with K-means does not seem beneficial for the small
Krel. In contrast to Krel = 10, 20, accuracy improves with K-means refinement. In general,
the RS-maximin method obtained the best RMSE in the comparison. The RS-UPGMA
results are fairly similar to RS-maximin results for Krel = 20, 40. Therefore, running the
whole clustering (not only the initialization step) seems to work better for higher K values.
For Krel = 20, RS-UPGMA is the best approach, based on the final ranking.
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Data set Random RS-K-means++ RS-K-medoids++ RS-UPGMA RS-maximin

AP 0.0858(87) 0.083(82) 0.0794(72) 0.0775(68) 0.0738(68)
SRV 0.1226(73) 0.1244(71) 0.1213(71) 0.1239(82) 0.1225(80)
BC 0.2671(80) 0.2651(70) 0.2659(80) 0.2655(73) 0.2655(74)
CHA∗∗ 0.0595(111) 0.0475(95) 0.0443(72)∗ 0.0403(45)∗† 0.0430(55)∗†

BH 0.0913(82) 0.0875(79) 0.0890(81) 0.0836(58) 0.0857(78)
FF 0.0565(80) 0.0564(76) 0.0568(82) 0.0560(70) 0.0565(70)
STC∗∗ 0.0324(129) 0.0304(95)∗ 0.0296(83)∗ 0.0283(42)∗†‡ 0.0277(29)∗†‡

S1∗∗ 0.0113(128) 0.0082(88)∗ 0.0083(83)∗ 0.0069(49)∗†‡ 0.0057(31)∗†‡

BNK∗∗ 0.0560(105) 0.0539(89) 0.0531(85) 0.0490(53)∗†‡ 0.0487(46)∗†‡

ALR∗∗ 0.0419(62) 0.0419(69) 0.0420(68) 0.0422(88) 0.0423(91)
CA∗∗ 0.0305(117) 0.0294(70)∗ 0.0293(66)∗ 0.0293(61)∗ 0.0294(64)∗

ELV 0.0561(84) 0.0561(82) 0.0560(79) 0.0558(69) 0.0557(63)
CCP 0.0504(86) 0.0501(78) 0.0501(66) 0.0498(68) 0.0504(79)

CH∗∗ 0.1159(45)§‖ 0.1165(63)§‖ 0.1167(69)‖ 0.1192(99) 0.1194(102)
CNS 0.0609(87) 0.0605(80) 0.0603(77) 0.0599(64) 0.0602(69)

Rank 5(63) 4(49) 3(45) 1(32) 2(36)

Table 6: RMSE for Krel = 20.

Data set Random RS-K-means++ RS-K-medoids++ RS-UPGMA RS-maximin

AP 0.0749(89) 0.0704(79) 0.0701(79) 0.0647(57)∗ 0.0682(73)
SRV 0.1072(79) 0.1072(81) 0.1014(73) 0.1045(72) 0.1058(72)
BC 0.2679(80) 0.2689(80) 0.2682(77) 0.2666(71) 0.2662(62)
CHA 0.0478(94) 0.0411(62)∗ 0.0430(74) 0.0428(70) 0.0436(77)
BH∗∗ 0.0843(97) 0.0818(86) 0.0800(73) 0.0769(61)∗ 0.0769(61)∗

FF 0.0559(80) 0.0566(75) 0.0564(82) 0.0601(79) 0.0545(61)
STC∗∗ 0.0276(131) 0.0260(97)∗ 0.0256(75)∗ 0.0247(35)∗†‡ 0.0248(39)∗†‡

S1∗∗ 0.0073(121) 0.0060(78) 0.0059(72) 0.0054(54) 0.0052(53)
BNK∗∗ 0.0536(105) 0.0527(89) 0.0512(76) 0.0500(58)∗ 0.0495(50)∗†

ALR 0.0423(63) 0.0425(75) 0.0426(79) 0.0426(85) 0.0424(77)
CA∗∗ 0.0291(102) 0.0289(74) 0.0289(69)∗ 0.0288(66)∗ 0.0289(67)∗

ELV 0.0572(78) 0.0570(79) 0.0570(81) 0.0568(71) 0.0568(69)
CCP 0.0491(88) 0.0492(83) 0.0486(67) 0.0484(63) 0.0488(76)

CH∗∗ 0.1144(54)§‖ 0.1144(61)§‖ 0.1145(62)§‖ 0.1167(101) 0.1165(99)
CNS 0.0608(79) 0.0605(73) 0.0603(71) 0.0605(75) 0.0605(78)

Rank 5(63) 4(49) 3(48) 2(34) 1(31)

Table 7: RMSE for Krel = 40.

A drawback of RS-K-medoids++, RS-UPGMA, and RS-maximin is that if the data
contains anomalies, they are prone to selecting them as reference points. This limitation is
probably why Random gets smaller RMSE than RS-UPGMA and RS-maximin for the CH
data set with small-to-moderate Krel, since that data set is known to contain some large
anomalies. Therefore, we combined a simple anomaly detection method (k-nearest neigh-
bors) with RS-UPGMA and tested it with the CH data set. We observed that anomaly
detection improved the test error for RS-UPGMA (Krel = 5, 10, 20, 40). Similar observa-
tions can also be drawn from the results for the S1 data set. S1 is the cleanest data set in our
experiments: all input points are mapped to output points with sine-based function evalua-
tions and without any distortions. Based on Tables 4–7, RS-UPGMA and RS-maximin have
the largest error differences compared to Random for the S1 data set than any other data
set. Therefore, a robust variant of the MLM, combined with RS-UPGMA or RS-maximin,
should be considered for regression tasks with anomalies.
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5.4 Case S1: Method Comparison

To demonstrate the differences among the five approaches we examined, we ran the reference
point selection methods only for the S1 data, considering 100 reference points (10%). In
Figure 2 (Appendix B), the smallest 500 pairwise Euclidean distances for the selected 100
reference points in the S1 data set are plotted in ascending order. Figure 2 also illustrates
the differences between the reference point approaches. Overall, Random selection is the
worst method and RS-maximin is the best method for identifying separate and input space,
covering sets of reference points in a well-balanced manner. Interestingly, the ordering of
the methods’ pairwise distance curves is the same as the ordering of the methods’ RMSE
performance.

As noted in the results of Section 5.3, variances are not equal for several data sets,
based on the Brown-Forsythe test. Clustering-based reference point selection gives smaller
variances than the Random method for a small Krel. In Appendix B, this difference is
illustrated in Figure 3 and Figure 4 for the S1 data set. RMSE variance for the Random
method is eight times larger compared to the RS-maximin method when Krel = 5. When
Krel reaches 40, the variances are equal.

5.5 Discussion

We evaluated four clustering-based methods for reference point selection with the MLM. We
focused on testing the methods against the Random approach in regression tasks with 15
data sets. An extensive experimental evaluation of the methods showed that the clustering-
based methods can improve the MLM’s performance. A good set of reference points is able
to cover the data space well. When an optimal number of reference points is desired, RS-
UPGMA and RS-maximin are valid choices. With respect to accuracy for a fixed number
of reference points K, RS-maximin is the best choice for low K values (Krel = 5, 10).
For higher K values (Krel = 20, 40), RS-UPGMA and RS-maximin are the best choices.
However, RS-maximin is the most efficient approach since the computational cost with
respect to the number of observations N is linear compared to RS-UPGMA, which has a
quadratic time complexity with respect to N . Together with the LLS method for the second
step of the MLM, we obtain, on the whole, a very computationally efficient approach. Note
that it is enough to run deterministic reference point selection method once for each data
set in hyperparameter tuning, while—for example—RS-K-medoids++ must be run for each
hyperparameter value from the start. Moreover, the deterministic reference point selection
methods reduce the MLM model’s space and computational complexity because they can
build the optimal model with smaller sets of reference points.

The conclusion by Pekalska et al. (2006) to favor a deterministic strategy agrees with our
results on the quality of the deterministic RS-maximin. Even though the maximin method
is not recommended to be used for the K-means initialization, based on the extensive study
by Celebi et al. (2013), our study shows it to be a valid method for selecting reference points
in the MLM. This difference highlights that reference point selection has a different aim
than clustering or the initialization of a specific clustering method. For example, based on
the performed experiments, the maximin method selects points such that extreme points are
very valuable if they are not anomalies. Contrarily, in terms of K-means initialization, those
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points are far from the cluster centers. Hence, they are not optimal choices for clustering
initialization.

Finally, the clustering-based methods are less robust for outliers than the Random ap-
proach. Therefore, an integration with outlier detection or the use of a robust approach
for input and output distance matrix mapping should be considered for distorted data sets.
Based on the experiments, reference point selection appears to control the balance between
the regression model’s interpolation and extrapolation. Selecting reference points from the
data clouds’ boundaries improves extrapolation abilities, but this approach might lead (in
rare cases) to worse interpolation in the dense areas, as likely occurred for the CH data set.

6. Conclusion

In this paper, we addressed important open questions related to MLM research. Based on
previous related works, we demonstrated the theory behind the MLM’s interpolation and
universal approximation properties by considering the behavior of its two main components:
the linear mapping between distance matrices and the multilateration for output estimation.
Our results ensure the MLM’s generalization capability and indicate reference points’ role
in the bounded estimation error.

Motivated by our findings, we performed comprehensive computation experiments to
evaluate different clustering-based approaches to reference point selection for the MLM in
regression scenarios. In summary, all the methods performed better than standard random
selection. The RS-maximin approach was the best choice due to its greater generalization
capability, compact model size, simplicity, and more efficient computational implementa-
tion. In general, our experimental results demonstrate how the utilization of a heterogeneous
pool of clustering methods, with respect to the characteristics of an unsupervised problem
as part of a supervised method, can provide useful insights to the underlying problem.

In the future, adapting and evaluating the presented methods for classification tasks
would also be interesting. Moreover, we could also analyze how such methods are affected
when the number of reference points differs for input and output spaces. The latter consid-
eration may modify the reference point selection problem, and it might result in additional
interpretations of the MLM’s generalization capability.
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Appendix A. Localization Linear System

Consider Z, a set of known points in RS . Suppose the existence of w ∈ RS is unknown,
but whose distances for each zi ∈ Z, given by ||w−zi||2 = d2

i , are known. Suppose that we
have another point r ∈ RS , called benchmark-anchor-node (BAN), such that ||w−r||2 = d2

r

and ||zi − r||2 = d2
ir are also known. Thus, we have:

d(zi,w)2 =||w − zi||2

d2
i =

S∑
j=1

(wj − zi,j)2

d2
i =

S∑
j=1

(wj − rj + rj − zi,j)2

d2
i =

S∑
j=1

[(wj − rj) + (rj − zi,j)]2

d2
i =

S∑
j=1

[(wj − rj)− (zi,j − rj)]2

d2
i =

S∑
j=1

[(wj − rj)2 + (zi,j − rj)2 − 2(wj − rj)(zi,j − rj)]

d2
i =

S∑
j=1

(wj − rj)2

︸ ︷︷ ︸
d(w,r)2

+

S∑
j=1

(zi,j − rj)2

︸ ︷︷ ︸
d(r,zi)2

−2

S∑
j=1

(wj − rj)(zi,j − rj)

d2
i − d2

r − d2
ir =− 2

S∑
j=1

(wj − rj)(zi,j − rj)

S∑
j=1

(wj − rj)︸ ︷︷ ︸
θj

(zi,j − rj)︸ ︷︷ ︸
Aij

=
1

2
[d2
r + d2

ir − d2
i ]︸ ︷︷ ︸

bi

Aθ = b (9)

Thus, after solving the system Aθ = b, we compute w = θ + r to recover the position
of w. Note that the BAN r can be selected from Z and thus satisfy all the necessary
conditions for the application of the technique.
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Appendix B. Figures

Figure 2: The smallest 500 pairwise Euclidean distances for the selected 100 reference points
for S1 in ascending order. Clustering-based methods select a set of reference
points that are more separeted each other compared to the random approach.

Figure 3: Variances of the RMSE test errors for the S1 data set.
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Figure 4: Boxplot of the RMSE test errors for the S1 data set.
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