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Abstract
A conventional wisdom in statistical learning is that large models require strong regularization
to prevent overfitting. Here we show that this rule can be violated by linear regression in the
underdetermined n� p situation under realistic conditions. Using simulations and real-life high-
dimensional datasets, we demonstrate that an explicit positive ridge penalty can fail to provide
any improvement over the minimum-norm least squares estimator. Moreover, the optimal value of
ridge penalty in this situation can be negative. This happens when the high-variance directions in
the predictor space can predict the response variable, which is often the case in the real-world high-
dimensional data. In this regime, low-variance directions provide an implicit ridge regularization
and can make any further positive ridge penalty detrimental. We prove that augmenting any linear
model with random covariates and using minimum-norm estimator is asymptotically equivalent to
adding the ridge penalty. We use a spiked covariance model as an analytically tractable example
and prove that the optimal ridge penalty in this case is negative when n� p.
Keywords: High-dimensional, ridge regression, regularization

1. Introduction

In recent years, there has been increasing interest in prediction problems in which the sample size n
is much smaller than the dimensionality of the data p. This situation is known as n� p and often
arises in computational chemistry and biology, e.g. in chemometrics, brain imaging, or genomics
(Hastie et al., 2009). The standard approach to such problems is “to bet on sparsity” (Hastie et al.,
2015) and to use linear models with regularization performing feature selection, such as the lasso
(Tibshirani, 1996), the elastic net (Zou and Hastie, 2005), or the Dantzig selector (Candes and Tao,
2007).

In this paper we study ordinary least squares (OLS) linear regression with loss function

L = ‖y −Xβ‖2, (1)

where X is a n× p matrix of predictors and y is a n× 1 matrix of responses. Assuming n > p and
full-rank X, the unique solution minimizing this loss function is given by

β̂OLS = (X>X)−1X>y. (2)
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This estimator is unbiased and has small variance when n � p. As p grows for a fixed n, X>X
becomes poorly conditioned, increasing the variance and leading to overfitting. The expected error
can be decreased by shrinkage as provided e.g. by the ridge estimator (Hoerl and Kennard, 1970),
a special case of Tikhonov regularization (Tikhonov, 1963),

β̂λ = (X>X + λI)−1X>y, (3)

which minimizes the loss function with an added `2 penalty

Lλ = ‖y −Xβ‖2 + λ‖β‖2. (4)

The closer p is to n, the stronger the overfitting and the more important it is to use regularization.
It seems intuitive that when p becomes larger than n, regularization becomes indispensable and
small values of λ ≈ 0 would yield hopeless overfitting. A popular textbook (James et al., 2013), for
example, claims that “though it is possible to perfectly fit the training data in the high-dimensional
setting, the resulting linear model will perform extremely poorly on an independent test set, and
therefore does not constitute a useful model.” Here we show that this intuition is incomplete.

Specifically, we empirically demonstrate and mathematically prove the following:

(i) when n � p, the λ → 0 limit, corresponding to the minimum-norm OLS solution, can have
good generalization performance;

(ii) explicit ridge regularization with λ > 0 can fail to provide any further improvement;

(iii) moreover, the optimal value of λ in this regime can be negative;

(iv) this happens when the response variable is predicted by the high-variance directions while
the low-variance directions together with the minimum-norm requirement effectively perform
shrinkage and provide implicit ridge regularization.

Our results provide a simple counter-example to the common understanding that large models
with little regularization do not generalize well. This has been pointed out as a puzzling property of
deep neural networks (Zhang et al., 2017), and has been subject to a very active ongoing research
since then, performed independently from our work (the first version of this manuscript was released
as a preprint in May 2018). Several groups reported that very different statistical models can
display \/\-shaped (double descent) risk curves as a function of model complexity, extending the
classical U-shaped risk curves and having small or even the smallest risk in the overparametrized
regime (Advani et al., 2020; Spigler et al., 2019; Belkin et al., 2019a). The same phenomenon was
later demonstrated for modern deep learning architectures (Nakkiran et al., 2020a). In the context
of linear or kernel methods, the high-dimensional regime when the model is rich enough to fit any
training data with zero loss, has been called ridgeless regression or interpolation (Liang and Rakhlin,
2020; Hastie et al., 2019). The fact that such interpolating estimators can have low risk has been
called benign overfitting (Bartlett et al., 2020; Chinot and Lerasle, 2020) and harmless interpolation
(Muthukumar et al., 2020).

Our finding (i) is in line with this body of parallel literature. Findings (ii) and (iii) have not,
to the best of our knowledge, been described anywhere else. Existing studies of high-dimensional
ridge regression found that, under some generic assumptions, the ridge risk at some λ > 0 always
dominates the minimum-norm OLS risk (Dobriban and Wager, 2018; Hastie et al., 2019). Our
results highlight that the optimal value of ridge penalty can be zero or even negative, suggesting
that real-world n� p datasets can have very different statistical structure compared to the common
theoretical models (Dobriban and Wager, 2018). Finding (ii) has been observed for kernel methods
(Liang and Rakhlin, 2020) and for random features regression (Mei and Montanari, 2019); our results
demonstrate that (ii) can happen in a simpler situation of ridge regression with Gaussian features.
We are not aware of any existing work reporting that the optimal ridge penalty can be negative, as
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a b liver.toxicity data set. n = 64, p = 3116

Figure 1: Cross-validation estimate of ridge regression performance for the liver.toxicity dataset. a. Us-
ing p = 50 randomly chosen predictors. b. Using all p = 3116 predictors. Lines correspond to 10 dependent
variables. Dots show minimum values.

per our finding (iii). Finally, finding (iv) is related to the results of Bibas et al. (2019) and Bartlett
et al. (2020); the connection between the minimum-norm OLS and the ridge estimators was also
studied by Dereziński et al. (2019).

The code in Python can be found at http://github.com/dkobak/high-dim-ridge.

2. Results

2.1 A case study of ridge regression in high dimensions

We used the liver.toxicity dataset (Bushel et al., 2007) from the R package mixOmics (Rohart
et al., 2017) as a motivational example to demonstrate the phenomenon. This dataset contains
microarray expression levels of p = 3116 genes and 10 clinical chemistry measurements in liver
tissue of n = 64 rats. We centered and standardized all the variables before the analysis.

We used glmnet library (Friedman et al., 2010) to predict each chemical measurement from the
gene expression data using ridge regression. Glmnet performed 10-fold cross-validation (CV) for
various values of regularization parameter λ. We ran CV separately for each of the 10 dependent
variables. When we used p = 50 random predictors, there was a clear minimum of mean squared
error (MSE) for some λopt > 0, and smaller values of λ yielded much higher MSE, i.e. led to
overfitting (Figure 1a). This is in agreement with Hoerl and Kennard (1970) who proved that when
n < p, the optimal penalty λopt is always larger than zero. The CV curves had a similar shape when
p & n, e.g. p = 75.

However, when we used all p� n predictors, the curves changed dramatically (Figure 1b). For
five dependent variables out of ten, the lowest MSE corresponded to the smallest value of λ that we
tried. Four other dependent variables had a minimum in the middle of the λ range, but the limiting
MSE value at λ → 0 was close to the minimal one. This is counter-intuitive: despite having more
predictors than samples, tiny values of λ ≈ 0 provide optimal or near-optimal estimator.

We observed the same effect in various other genomics datasets with n� p (Kobak et al., 2018).
We believe it is a general phenomenon and not a peculiarity of this particular dataset.

2.2 Minimum-norm OLS estimator

When n < p, the limiting value of the ridge estimator at λ→ 0 is the minimum-norm OLS estimator.
This can be shown using a thin singular value decomposition (SVD) of the predictor matrix X =
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USV> (with S square and all its diagonal values non-zero):

β̂0 = lim
λ→0

β̂λ = lim
λ→0

(X>X + λI)−1X>y = lim
λ→0

V
S

S2 + λ
U>y = VS−1U>y = X†y, (5)

where X† = X>(XX>)−1 denotes pseudo-inverse of X and operations on the diagonal matrix S are
assumed to be element-wise and applied only to the diagonal.

The estimator β̂0 gives one possible solution to the OLS problem and, as any other solution, it
provides a perfect fit on the training set:

‖y −Xβ̂0‖2 = ‖y −XX†y‖2 = ‖y − y‖2 = 0. (6)

The β̂0 solution is the one with the minimum `2 norm:

β̂0 = argmin
{
‖β‖2

∣∣∣ ‖y −Xβ‖2 = 0
}
. (7)

Indeed, any other solution can be written as a sum of β̂0 and a vector from the (p− n)-dimensional
subspace orthogonal to the column space of V. Any such vector yields a valid OLS solution but
increases its norm compared to β̂0 alone.

This allows us to rephrase the observations made in the previous section as follows: when n� p,
the minimum-norm OLS estimator can have lower risk (expected squared error) than any ridge
estimator with λ > 0.

2.3 Simulation using spiked covariance model

We qualitatively replicated this empirically observed phenomenon with a simple model where all
p predictors are positively correlated to each other and all have the same effect on the response
variable.

Let x ∼ N (0,Σ) be a p-dimensional vector of predictors with covariance matrix Σ having all
diagonal values equal to 1 + ρ and all non-diagonal values equal to ρ. This is known as spiked
covariance model : Σ = I + ρ11> deviates from the spherical covariance I in only one dimension.
Let the response variable be y = x>β + ε, where ε ∼ N (0, σ2) and β = (b, b . . . b)> has all identical
elements. We select b = σ

√
α/(p+ p2ρ) in order to achieve signal-to-noise ratio Var[x>β]/Var[ε] =

Var[x>β] = α. In all simulations we fix σ2 = 1, ρ = 0.1 and α = 10.
Using this model with different values of p, we generated many (Nrep = 100) training sets (X,y)

with n = 64 each, as in the liver.toxicity dataset analyzed above. Using each training set, we
computed β̂λ = V S

S2+λU>y for various values of λ and then found MSE (risk) of β̂λ using the
formula

R(β̂λ) = Ex,ε

[(
(x>β + ε)− x>β̂λ

)2]
= (β̂λ − β)>Σ(β̂λ − β) + σ2. (8)

We normalized the MSE by Var[y] = β>Σβ + σ2 = (α + 1)σ2. Then we averaged normalized
MSEs across Nrep training sets to get an estimate of the expected normalized MSE. The results
for p ∈ {50, 75, 150, 1000} (Figure 2a–d) match well to what we previously observed in real data
(Figure 1): when n > p or n . p, the MSE had a clear minimum for some positive value of λ. But
when n� p, the minimum MSE was achieved by the λ = 0 minimum-norm OLS estimator.

Figure 2e shows the expected normalized MSE of the OLS and the minimum-norm OLS esti-
mators for p ∈ [10, 1000]. The true signal-to-noise ratio was always α = 10, so the best attainable
normalized MSE was always 1/(10 + 1) ≈ 0.09. With p = 10, OLS yielded a near-optimal perfor-
mance. As p increased, OLS began to overfit and each additional predictor increased the MSE. Near
p ≈ n = 64 the expected MSE became very large, but as p increased even further, the MSE of the
minimum-norm OLS quickly decreased again.

The risk of the optimal ridge estimator was close to the oracle risk for all dimensionalities
(Figure 2e, dashed line), and did not show any divergence at p = n. However, as p > n grew, the
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Figure 2: a–d. Expected normalized MSE of ridge estimators using a model with correlated predictors.
On all subplots n = 64. Subplots correspond to the number of predictors p taking values 50, 75, 150,
and 1000. Dots mark the points with minimum risk. e. Expected normalized MSE of OLS (for n < p)
and minimum-norm OLS (for p > n) estimators using the same model with p ∈ [10, 1000]. Dots mark the
dimensionalities corresponding to subplots (a–d). Dashed line: the expected normalized MSE of the optimal
ridge estimator. f. The values of λ minimizing the expected risk. For p & 600, the optimal value of ridge
penalty was negative: λopt < 0. g. Expected normalized MSE of ridge estimators for p = 1000 including
negative values of λ. The minimum was attained at λopt = −150.

gain compared to the minimum-norm OLS estimator became smaller and smaller and in the p� n
regime eventually disappeared. Moreover, for sufficiently large values of p, the optimal regularization
value λopt became negative (Figure 2f). We found it to be the case for p & 600. In sufficiently large
dimensionalities, the expected risk as a function of λ had a minimum not at zero (Figure 2d), but
at some negative value of λ (Figure 2g). For p = 1000, the lowest risk was achieved at λopt = −150
(Figure 2g).

To investigate this further, we found the optimal regularization value λopt for different sample
sizes n ∈ [10, 100] and different dimensionalities p ∈ [20, 1000] (Figure 3). For the spherical covari-
ance matrix (ρ = 0), λopt did not depend on the sample sizes and grew linearly with dimensionality
(Figure 3a), in agreement with the analytical formula λopt = pσ2/‖β‖2 = p/α (Nakkiran et al.,
2020b). But in our model with ρ = 0.1, for any given sample size, the optimal value λopt in suffi-
ciently high dimensionality was negative. The smallest dimensionality necessary for this to happen
grew nonlinearly with the sample size (Figure 3b).

This result might appear to contradict the literature; for example, Dobriban and Wager (2018)
and later Hastie et al. (2019) studied high-dimensional asymptotics of ridge regression performance
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Figure 3: a. The optimal regularization parameter λopt as a function of sample size (n) and dimensionality
(p) in the model with uncorrelated predictors (ρ = 0). In this case λopt = pσ2/‖β‖ = p/α. Black line
corresponds to n = p. b. The optimal regularization parameter λopt in the model with correlated predictors
(ρ = 0.1).

for p, n→∞ while p/n = γ and proved, among other things, that the optimal λ is always positive.
Their results hold for an arbitrary covariance matrix Σ when the elements of β are random with
mean zero. The key property of our simulation is that β is not random and does not point in a
random direction; instead, it is aligned with the first principal component (PC1) of Σ.

While such a perfect alignment can never hold exactly in real-world data, it is plausible that
β often points in a direction of sufficiently high predictor variance. Indeed, principal component
regression (PCR) that discards all low-variance PCs and only uses high-variance PCs for prediction
is known to work well for many real-world n� p datasets (Hastie et al., 2009). In the next section
we show that the low-variance PCs can provide an implicit ridge regularization.

2.4 Implicit ridge regularization provided by random low-variance predictors

Here we prove that augmenting a model with randomly generated low-variance predictors is asymp-
totically equivalent to the ridge shrinkage.

Theorem 1 Let β̂λ be a ridge estimator of β ∈ Rp in a linear model y = x>β + ε, given some
training data (X,y) and some value of λ. We construct a new estimator β̂q by augmenting X with
q columns Xq with i.i.d. elements, randomly generated with mean 0 and variance λ/q, fitting the
model with minimum-norm OLS, and taking only the first p elements. Then

β̂q
a.s.−−−→
q→∞

β̂λ.

In addition, for any given x, let ŷλ = x>β̂λ be the response predicted by the ridge estimator, and
ŷaugm be the response predicted by the augmented model including the additional q parameters using
x extended with q random elements (as above). Then:

ŷaugm
a.s.−−−→
q→∞

ŷλ.

Proof Let us write Xaugm =
[
X Xq

]
. The minimum-norm OLS estimator can be written as

β̂augm = X†augmy = X>augm(XaugmX>augm)
−1y. (9)

By the strong law of large numbers,

XaugmX>augm = XX> + XqX
>
q → XX> + λIn. (10)
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The first p components of β̂augm are

β̂q = X>(XaugmX>augm)
−1y→ X>(XX> + λIn)

−1y. (11)

Note that (X>X + λIp)X
> = X>(XX> + λIn). Multiplying this equality by (X>X + λIp)

−1 on
the left and (XX> + λIn)

−1 on the right, we obtain the following standard identity:

X>(XX> + λIn)
−1 = (X>X + λIp)

−1X>. (12)

Finally:
β̂q → (X>X + λIp)

−1X>y = β̂λ. (13)

To prove the second statement of the Theorem, let us write xaugm =

[
x
xq

]
. The predicted value

using the augmented model is:

ŷaugm = x>augmβ̂augm = x>augmX>augm(XaugmX>augm)
−1y (14)

=

[
x
xq

]> [
X Xq

]>
(XX> + XqX

>
q )
−1y (15)

= x>X>(XX> + XqX
>
q )
−1y + x>q X>q (XX> + XqX

>
q )
−1y (16)

→ x>β̂λ + 01×n(XX> + λIn)
−1y (17)

= x>β̂λ = ŷλ. (18)

Note that the Theorem requires the random predictors to be independent from each other, but does
not require them to be independent from the existing predictors or from the response variable.

From the first statement of the Theorem it follows that the expected MSE of the truncated
estimator β̂q converges to the expected MSE of the ridge estimator β̂λ. From the second statement
it follows that the expected MSE of the augmented estimator on the augmented data also converges
to the expected MSE of the ridge estimator.

We extended the simulation from Section 2.3 to confirm this experimentally. We considered the
same toy model as above with n = 64 and p = 50. Figure 4a (identical to Figure 2a) shows the
expected MSE of ridge estimators for different values of λ. The optimal λ in this case happened to
be λopt = 31. Figure 4b demonstrates that extending the model with q → ∞ random predictors
with variances λopt/q, using the minimum-norm OLS estimator, and truncating it at p dimensions is
asymptotically equivalent to the ridge estimator with λopt. As the total number of predictors p+ q
approached n, MSE of the extended model increased. When p+ q became larger than n, minimum-
norm shrinkage kicked in and MSE started to decrease. As q grew even further, MSE approached
the limiting value. In this case, q ≈ 200 already got very close to the limiting performance.

As demonstrated in the proof, it is not necessary to truncate the minimum-norm estimator. The
dashed line in Figure 4b shows the expected MSE of the full (p+ q)-dimensional vector of regression
coefficients. It converges slightly slower but to the same asymptotic value.

What if one does not know the value of λopt and uses random predictors with some fixed arbitrary
variance to augment the model? Figure 4c shows what happens when variance is set to 1. In this
case the MSE curve has a minimum at a particular qopt value. This means that adding random
predictors with some fixed small variance could in principle be used as an arguably bizarre but
viable regularization strategy similar to ridge regression, and cross-validation could be employed to
select the optimal number of random predictors.

If using random predictors as a regularization tool, one would truncate β̂augm at p dimensions
(solid line in Figures 4c). The MSE values of non-truncated β̂augm (dashed line) are interesting
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Figure 4: a. Expected MSE as a function of ridge penalty in the toy model with p = 50 weakly correlated
predictors that are all weakly correlated with the response (n = 64). This is the same plot as in Figure 2a.
The dot denotes minimal risk and the square denotes the MSE of the OLS estimator (λ = 0). The horizontal
line shows the optimal risk corresponding to λopt. b. Augmenting the model with up to q = 400 random
predictors with variance λopt/q. Solid line corresponds to β̂q (i.e. β̂augm truncated to p predictors); dashed
line corresponds to the full β̂augm. c. Augmenting the model with up to q = 400 random predictors with
variance equal to 1. d. The optimal ridge penalty λopt in the model augmented with random predictors
with adaptive variance, as in panel (b). e. The optimal ridge penalty λopt in the model augemented with
random predictors with variance 1, as in panel (c).

because this corresponds to real-life n � p situations such as in the liver.toxicity dataset dis-
cussed above. Our interpretation is that a small subset of high-variance PCs is actually predicting
the dependent variable, while the large pool of low-variance PCs acts as an implicit regularizer.

In the simulations shown in Figure 4c, the parameter q controls regularization strength and there
is some optimal value qopt yielding minimum expected risk. If q < qopt, this regularization is too
weak and some additional ridge shrinkage with λ > 0 could be beneficial. But if q > qopt, then the
regularization is too strong and no additional ridge penalty can improve the expected risk. In this
situation the expected MSE as a function of log(λ) will be monotonically increasing on the real line,
in agreement with what we saw in Figure 2d and Figure 1b. Moreover, in this regime the expected
MSE as a function of λ has a minimum at a negative value λopt < 0, as we saw in Figure 2f.

We used ridge estimators on the augmented model to demonstrate this directly. Figure 4e shows
the optimal ridge penalty value λopt for each q. It crosses zero around the same value of q that yields
the minimum risk with λ = 0 (Figure 4c). For larger values of q, the optimal ridge penalty λopt is
negative. This shows that negative λopt is due to the over-shrinkage provided by the implicit ridge
regularization arising from low-variance random predictors. It is due to implicit over-regularization.

2.5 Mathematical analysis for the spiked covariance model

It would be interesting to derive some sufficient conditions on (Σ,β, σ2, n, p) that would lead to
λopt ≤ 0. One possible approach is to compute the derivative of E(X,y)R(β̂λ) with respect to λ at
λ→ 0+. If the derivative is positive, then λopt ≤ 0.

The derivative of the risk (Equation 8) can be computed as follows:

∂

∂λ
R(β̂λ) =

∂

∂λ
(β̂λ − β)>Σ(β̂λ − β) = 2(β̂λ − β)>Σ

∂β̂λ
∂λ

. (19)
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Using the standard identity dA−1 = −A−1(dA)A−1, we get that

∂β̂λ
∂λ

= −(X>X + λI)−2X>y. (20)

Plugging this into the derivative of the risk and setting λ = 0, we obtain

∂

∂λ
R(β̂λ)

∣∣∣
λ=0

= 2β>Σ(X>X)†2X>y − 2y>X(X>X)†Σ(X>X)†2X>y, (21)

where we denote (X>X)†k = VS−2kV>. Remembering that y = Xβ+η and taking the expectation,
we get

∂

∂λ
E(X,y)R(β̂λ)

∣∣∣
λ=0

= 2β>ΣEX(X>X)†β − 2β>EX(X>X)†0Σ(X>X)†β

− 2σ2EX Tr
[
(X>X)†0Σ(X>X)†2

]
,

(22)

where we used that Eη[a
>η] = 0 and Eη[η

>Aη] = σ2 Tr[A] for any vector a and any matrix A that
are independent of η.

We now apply this to the spiked covariance model studied above. For convenience, we write
Σ = I + cβ>β. Plugging this in, and denoting

Pk = EX

[
β>(X>X)†kβ

]
= E(V,S)

[
β>VS−2kV>β

]
, (23)

we obtain

∂

∂λ
E(X,y)R(β̂λ)

∣∣∣
λ=0

= 2c‖β‖2P1 − 2cP0P1 − 2σ2EX Tr(S−4)− 2cσ2P2. (24)

For the spherical covariance matrix, c = 0, and hence the derivative is always negative, in agreement
with the fact that λopt > 0 for all β, n, and p (Nakkiran et al., 2020b). When c > 0, the derivative
can be positive or negative, depending on which term dominates.

We are interested in understanding the p� n behaviour. In simulations shown above (Figures 2–
4), we had ‖β‖2 = ασ2/(1+ ρp) = O(1/p) and c = ρp/‖β‖2 = O(p2). For p� n and 0 < ρ� 1, all
n singular values of X are close to√p. This makes contribution of the third term, which is the largest
when n ≈ p due to near-zero singular values in X, asymptotically negligible because it behaves as
O(1/p2). The β aligns with the leading singular vector in V and is approximately orthogonal to the
others, meaning that Pk = ‖β‖2O(1/pk) = O(1/pk+1). Putting everything together, we see that the
first, the second, and the fourth term, all behave as O(1/p).

The fourth term is roughly α/ρ times smaller than the first two. In our simulations α/ρ = 100,
making the fourth term asymptotically negligible. The first two terms have identical asymptotic
behaviour, however the first one is always larger because P0 < ‖β‖2. This makes the overall sum
asymptotically positive, proving that λopt ≤ 0 in the p→∞ limit.

We numerically computed the derivative using Equation 24 and averaging over Nrep = 100
random training set matrices X to approximate the expectation values (Figure 5). This confirmed
that the derivative was negative and hence λopt ≤ 0 for p & 600, in agreement with Figure 2f.

The above results were obtained in the p→∞ limit, while holding n constant. We hypothesize
that for any given value of c in the spiked covariance model, there is some n/p ratio for which λopt = 0
when both n, p→∞. This remains a question for future work. [Two manuscripts investigating this
question in a more general setting (Richards et al., 2020; Wu and Xu, 2020) appeared while our
paper was in press.]
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Figure 5: a. The derivative of the expected risk as a function of ridge penalty λ at λ = 0, in the model
with p weakly correlated predictors (Eq. 24). Sample size n = 64. b. Zoom-in into panel (a). The derivative
becomes positive for p & 600, implying that λopt ≤ 0.

2.6 Implicit over-regularization using random Fourier features on MNIST

For our final example, we used the setup from Nakkiran et al. (2020a,b), and asked whether the
same phenomenon (λopt < 0) can be observed using random Fourier features on MNIST.

We normalized all pixel intensity values to lie between −1 and 1, and transformed the 28 ×
28 = 784 pixel features into 2000 random Fourier features by drawing a random matrix W ∈
R784×1000 with all elements i.i.d. from N (0, σ = 0.1), computing exp(−iXW), and taking its real
and imaginary parts as separate features. This procedure approximates kernel regression with the
Gaussian kernel, and standard deviation of the W elements corresponds to the standard deviation
of the kernel (Rahimi and Recht, 2008). We used n = 64 randomly selected images as a training
set, and used the MNIST test set with 10 000 images to compute the risk. We used the digit value
(from 0 to 9) as the response variable y, with squared error loss function. The model included
the intercept which was not penalized. To estimate the expected risk, we averaged the risks over
Nrep = 100 random draws of training sets.

We found that the expected risk was minimized at λopt ≈ −80, when the expectation was
computed across all 80/100 training sets that had the smallest singular value s2min > 100 (Figure 6).
For any given training set, the risk diverged at λ = smin, and the smallest singular value that we
observed across 100 draws was s2min = 40. The average risk across 20 samples with s2min < 100 had
multiple diverging peaks for λ ∈ [−100, 0] (Figure 6b, dashed line).

The derivative of risk with respect to λ at λ = 0 that we computed in the previous section can be
formally understood as the derivative at λ→ 0+. Negative derivative implies that λ = 0 yields better
expected risk than any positive value. However, if the generative process allows singular values of
X to become arbitrarily small, then λ < 0 can possibly yield diverging expected risk. That said, for
any given training set, the risk will not diverge for λ ∈ (−s2min,∞) and the minimal conditional risk
(conditioned on the training set) can be attained at λopt < 0. Indeed, in our MNIST example, the
average across all 100 training sets was monotonically decreasing until λ ≈ −35 (Figure 6b).

3. Discussion

Summary and related work

We have demonstrated that the minimum-norm OLS interpolating estimator tends to work well in
the n� p situation and that a positive ridge penalty can fail to provide any further improvement.
This is because the large pool of low-variance predictors (or principal components of predictors),
together with the minimum-norm requirement, can perform sufficient shrinkage on its own. This
phenomenon goes against the conventional wisdom (see Introduction) but is in line with the large
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Figure 6: a. Expected risk of ridge regression on MNIST data using random Fourier features as predictors
and digit value as the response. Sample size n = 64, number of Fourier features p = 2000. When λ ∈ R+,
the risk is minimized at λ = 0. b. When λ is allowed to take negative values, the risk is minimized at
λ ≈ −80, across all training sets with s2min > 100 (solid line; the average over 80/100 cases). Training sets
with s2min < 100 had diverging risk around λ = −s2min (dashed line; the average over 20/100 cases).

body of ongoing research kindled by Zhang et al. (2017) and mostly done in parallel to our work
(Advani et al., 2020; Spigler et al., 2019; Belkin et al., 2018a,b, 2019a,b,c; Nakkiran, 2019; Nakkiran
et al., 2020a,b; Liang and Rakhlin, 2020; Hastie et al., 2019; Bartlett et al., 2020; Chinot and Lerasle,
2020; Muthukumar et al., 2020; Mei and Montanari, 2019; Bibas et al., 2019; Dereziński et al., 2019;
Negrea et al., 2019). See Introduction for more context.

We stress that the minimum-norm OLS estimator β̂0 = X†y is not an exotic concept. It is given
by exactly the same formula as the standard OLS estimator when the latter is written in terms
of the pseudoinverse of the design matrix: β̂OLS = X†y. When dealing with an under-determined
problem, statistical software will often output the minimum-norm OLS estimator by default.

That positive ridge penalty can fail to improve the estimator risk has been observed for kernel
regression (Liang and Rakhlin, 2020) and for random features linear regression (Mei and Montanari,
2019). Our results show that this can also happen in a simpler situation of ridge regression with
Gaussian features. Our contribution is to use the spiked covariance model to demonstrate and
analyze this phenomenon. Moreover, we showed that the optimal ridge penalty in this situation can
be negative.

In their seminal paper on ridge regression, Hoerl and Kennard (1970) proved that there always
exists some λopt > 0 that yields a lower MSE than λ = 0. However, their proof was based on the
assumption that X>X is full rank, i.e. n > p. When the predictor covariance Σ is spherical, λopt is
also always positive, for any n and p (Nakkiran et al., 2020a). Similarly, Dobriban and Wager (2018)
and later Hastie et al. (2019) proved that λopt > 0 for any Σ in the asymptotic p, n→∞ case while
p/n = γ, based on the assumption that β is randomly oriented. Here we argue that real-world n� p
problems can demonstrate qualitatively different behaviour with λopt ≤ 0. This happens when Σ is
not spherical and β is pointing in its high-variance direction. This interpretation is related to the
findings of Bibas et al. (2019) and Bartlett et al. (2020).

Augmenting the samples vs. augmenting the predictors

It is well-known that ridge estimator can be obtained as an OLS estimator on the augmented data:

Lλ = ‖y −Xβ‖2 + λ‖β‖2 =

∥∥∥∥ [ y
0p×1

]
−
[

X√
λIp×p

]
β

∥∥∥∥2. (25)

While for this standard trick, both X and y are augmented with p additional rows, in this manuscript
we considered augmenting X alone with q additional columns.

11
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At the same time, from the above formula and from the proof of Theorem 1, we can see that if y
is augmented with q additional zeros and X is augmented with q additional rows with all elements
having zero mean and variance λ/q, then the resulting estimator will converge to β̂λ when q →∞.
This means that augmenting X with q random samples and using OLS is very similar to augmenting
it with q random predictors and using minimum-norm OLS.

More generally, it is known that corrupting X with noise in various ways [e.g. additive noise
(Bishop, 1995) or multiplicative noise (Srivastava et al., 2014)] can be equivalent to adding the ridge
penalty. Augmenting X with random predictors can also be seen as a way to corrupt X with noise.

Minimum-norm estimators in other statistical methods

Several statistical learning methods use optimization problems similar to the minimum-norm OLS:

min‖β‖2 subject to y = Xβ. (26)

One is the linear support vector machine classifier for linearly separable data, known to be maximum
margin classifier (here yi ∈ {−1, 1}) (Vapnik, 1996):

min‖β‖2 subject to yi(β>xi + β0) ≥ 1 for all i. (27)

Another is basis pursuit (Chen et al., 2001):

min‖β‖1 subject to y = Xβ. (28)

Both of them are more well-known and more widely applied in soft versions where the constraint
is relaxed to hold only approximately. In case of support vector classifiers, this corresponds to the
soft-margin version applicable to non-separable datasets. In case of basis pursuit, this corresponds
to basis pursuit denoising (Chen et al., 2001), which is equivalent to lasso (Tibshirani, 1996). The
Dantzig selector (Candes and Tao, 2007) also minimizes ‖β‖1 subject to y ≈ Xβ, but uses `∞-
norm approximation instead of the `2-norm. In contrast, our manuscript considers the case where
constraint y = Xβ is satisfied exactly.

In the classification literature, it has for a long time been a common understanding that the
maximum margin linear classifier is a good choice for linearly separable problems (which is the case
when n < p). When using the hinge loss as in Equation 27, maximum margin is equivalent to
minimum norm, so from this point of view good performance of the minimum-norm OLS estimator
is not unreasonable. However, when using quadratic loss as we do in this manuscript, minimum
norm (for a binary y) is not equivalent to maximum margin; and for a continuous y the concept
of margin does not apply at all. Still, the intuition remains the same: minimum norm requirement
performs implicit regularization.

Minimum-norm estimator with kernel trick

Minimum-norm OLS estimator can be easily kernelized. Indeed, if xtest is some test point, then

ŷtest = x>testβ̂0 = x>testX
>(XX>)−1y = k>K−1y, (29)

where K = XX> is a n× n matrix of scalar products between all training points and k = Xxtest is
a vector of scalar products between all training points and the test point. The kernel trick consists
of replacing all scalar products with arbitrary kernel functions. As an example, Gaussian kernel
corresponds to the effective dimensionality p =∞ and so trivially n� p for any n. How exactly our
results extend to such p = ∞ situations is an interesting question beyond the scope of this paper.
It has been shown that Gaussian kernel can achieve impressive accuracy on MNIST and CIFAR10
data without any explicit regularization (Zhang et al., 2017; Belkin et al., 2018b; Liang and Rakhlin,
2020) and that positive ridge regularization decreases the performance (Liang and Rakhlin, 2020).
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Minimum-norm estimator via gradient descent

In the n < p situation, if gradient descent is initialized at β = 0 then it will converge to the
minimum-norm OLS solution (Zhang et al., 2017; Wilson et al., 2017) [see also Soudry et al. (2018)
and Poggio et al. (2017) for the case of logistic loss]. Indeed, each update step is proportional to
∇βL = X>(y −Xβ) and so lies in the row space of X, meaning that the final solution also has to
lie in the row space of X and hence must be equal to β̂0 = X†y = X>(XX>)−1y. If initial value
of β is not exactly 0 but sufficiently close, then the gradient descent limit might be close enough to
β̂0 to work well.

Zhang et al. (2017) hypothesized that this property of gradient descent can shed some light on
the remarkable generalization capabilities of deep neural networks. They are routinely trained with
the number of model parameters p greatly exceeding n, meaning that such a network can be capable
of perfectly fitting any training data; nevertheless, test-set performance can be very high. Moreover,
increasing network size p can improve test-set performance even after p is large enough to ensure
zero training error (Neyshabur, 2017; Nakkiran et al., 2020a), which is qualitatively similar to what
we observed here. It has also been shown that in the p � n regime, the ridge (or early stopping)
regularization does not noticeably improve the generalization performance (Nakkiran et al., 2020b).

Our work focused on why the minimum-norm OLS estimator performs well. We confirmed its
generalization ability and clarified the situations in which it can arise. Our results do not explain
the case of highly nonlinear under-determined models such as deep neural networks, but perhaps
can provide an inspiration for future work in that direction.
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