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Abstract
We study the learnability of Probabilistic Deterministic Finite State Automata under a modified

PAC-learning criterion. We argue that it is necessary to add additional parameters to the sample
complexity polynomial, namely a bound on the expected length of strings generated from any state,
and a bound on the distinguishability between states. With this, we demonstrate that the class of
PDFAs is PAC-learnable using a variant of a standard state-merging algorithm and the Kullback-
Leibler divergence as error function.
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1. Introduction

Probabilistic Deterministic Finite State Automata (PDFAs) are widely used in a number of differ-
ent fields, including Natural Language Processing (NLP), Speech Recognition (Mohri, 1997) and
Bio-informatics (Durbin et al., 1999). The deterministic property here means that at any point in
producing a string they are in a single state, which allows for very efficient implementations and
accounts for much of their appeal. Efficient algorithms for inducing the models from data are thus
important. We are interested primarily in algorithms which learn from positive data under stochas-
tic presentation, where the data are drawn from the distribution defined by the target automaton.
In addition we are concerned with automata that generate finite strings of unbounded length. This
is necessary in many problem classes, particularly in NLP, where the sequences can be words or
sentences with particular global structures.

Here we provide a proof that a particular algorithm Probably Approximately Correctly (PAC)
learns the class of PDFAs, using the Kullback-Leibler divergence as the error function, when we
allow the algorithm to have amounts of data polynomial in three quantities associated with the
complexity of the problem: first, the number of states of the target, secondly the distinguishability
of the automata — a lower bound on the L∞ norm between the suffix distributions of any pair of
states of the target — and thirdly a bound on the expected length of strings generated from any
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state of the target, a quantity that can be used to bound the variance of the length of the strings
generated by the target. The algorithm uses polynomial amounts of computation. We will motivate
these additional parameters to the sample complexity polynomial with reference to specific counter-
examples.

The algorithm we present here is a state-merging algorithm of a fairly standard type (Carrasco
and Oncina, 1994; Ron et al., 1995; Thollard et al., 2000; Kermorvant and Dupont, 2002). The
convergence properties of this class of algorithm have been studied before, but proofs have been
restricted either to the subclass of acyclic automata (Ron et al., 1995, 1998), or using only the
identification in the limit with probability one paradigm (de la Higuera et al., 1996; Carrasco and
Oncina, 1999; de la Higuera and Thollard, 2000), which is generally considered less interesting as
a guide to their practical usefulness. We wish to note here that we shall follow closely the notation
and techniques of Ron et al. (1995). Unfortunately, our technique is too different to merely present
modifications to their algorithm, but in points we shall adopt wholesale their methods of proof. We
shall also use notation as close as possible to the notation used in their paper.

1.1 Learning Paradigm

We are interested in learning in the Probably Approximately Correct (PAC) framework (Valiant,
1984), more specifically in cases where the amount of data and the amount of computation required
can be bounded by polynomials in the various parameters, including some characterisation of the
complexity of the target.

We will use, as is standard, the Kullback-Leibler Divergence (KLD) (Cover and Thomas, 1991)
between the target and the hypothesis to measure the error. Intuitively, this is the hardest measure
to use since it is unbounded, and bounds other plausible distance measures (quadratic, variational
etc.) (Cover and Thomas, 1991; Abe et al., 2001).

The problem class C is a subset of the set of all distributions over Σ∗, where Σ is a finite alphabet.
The algorithm is presented with a sequence Sm of m strings from Σ∗ that are drawn identically and
independently from the target distribution c. Such a sequence is called a sample. Given this sample,
the algorithm returns a hypothesis H(Sm).

Definition 1 (KL-PAC) Given a class of stochastic languages or distributions C over Σ∗, an algo-
rithm A KL-Probably Approximately Correctly (KL-PAC)-learns C if there is a polynomial q such
that for all c in C , all ε > 0 and δ > 0, A is given a sample Sm and produces a hypothesis H, such
that Pr[D(c||H) > ε] < δ whenever m > q(1/ε,1/δ, |c|), where |c| is some measure of the complex-
ity of the target, with running time bounded by a polynomial in m plus the total length of the strings
in Sm.

Note here two points: first, the examples are drawn from the target distribution so this approach
is very different from the normal distribution-free approach. Indeed here we are interested in learn-
ing the distribution itself, so the approach is closely related to the traditional problems of density
estimation, and also to the field of language modelling in speech recognition and NLP. It can also
be viewed as a way of learning languages from positive samples under a restricted class of distri-
butions, which is in line with other research which has found that the requirement to learn under
all distributions is too stringent. Secondly, we are concerned with distributions over Σ∗ not over Σn,
for some fixed n, which form a finite set, which distinguishes us from Ron et al. (1995). Note that
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though Ron et al. (1995) study distributions over Σ∗ since they study acyclic automata of bounded
size and depth, the distributions are, as a result, limited to distributions over Σn.

1.2 Negative Results

For PAC-learning stochastic languages there are some negative results that place quite strict lim-
its on how far we can hope to go. First, let us recall that the stochastic languages generated by
PDFAs are a proper subclass of the class of all stochastic regular languages. The results in Abe
and Warmuth (1992) establish that robust learning of general (non-deterministic) finite state au-
tomata is hard. This strongly suggests that we cannot hope to learn all of this class, though the
class of Probabilistic Residual Finite State Automata (Esposito et al., 2002) is a promising inter-
mediate class between stochastic deterministic regular languages and stochastic regular languages.
Secondly, Kearns et al. (1994) show that under certain cryptographic assumptions it is impossible
to efficiently learn PDFAs defining distributions over two letters. They define a correspondence
between noisy parity functions and a certain subclass of automata. Since the complexity results
they rely upon are generally considered to be true, this establishes that the class of all PDFAs is not
PAC-learnable using polynomial computation. These results apply to distributions over Σn for some
fixed n, and thus also to our more general case of distributions over Σ∗. However, Ron et al. (1995)
show that if one restricts one’s attention to a class of automata that have a certain distinguishability
criterion between the states, that we shall define later, it is possible to PAC-learn acyclic PDFAs.
Formally, there are two ways to define this: either one defines a subclass of the problem class where
the distinguishability is bounded by some inverse polynomial of the number of states or we allow
the sample complexity polynomial to have another parameter. We follow Ron et al. (1995) in using
the latter approach.

However the extension from acyclic PDFAs to all PDFAs produces an additional problem. As
we shall see, the KLD between the target and the hypothesis can be decomposed into terms based on
the contributions of particular states. The contribution of each state is related to the expected number
of times the target automaton visits the state and not the probability that the target automaton will
visit this state. Therefore there is a potential problem with states that are both rare (have a low
probability of being reached) and yet have a high expected number of visits, a combination of
properties that can happen, for example, when a state is very rare but has a transition to itself with
probability very close to one. If the state is very rare we cannot guarantee that our sample will
contain any strings which visit the state, but yet this state can make a non-negligible contribution to
the error.

In particular, as we show in Appendix A, it is possible to construct families of automata, with
bounded expected length, that will with high probability produce the same samples, but where some
targets must have large KLD from any hypothesis. We refer the reader to the appendix for further
details. This is only a concern with the use of the KLD as error function; with other distance
measures the error on a set of strings with low aggregate probability is also low. In particular with
the variation distance, while it is straightforward to prove a similar result with a bound on the overall
expected length, we conjecture that it is also possible with no length bound at all – i.e. with a sample
complexity that depends only on the number of states, the distinguishability and the alphabet size.

Accordingly, we argue that, in the case of learning with the KLD, it is necessary to accept an
upper bound on the expected length of the strings from any state of the target automaton, or a bound
on the expected length of strings from the start state and a bound on the variance. It also seems
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reasonable that in most real-world applications of the algorithm, the expectation and variance of the
length will be close to the mean observed length and sample variance.

1.3 Positive Results

Carrasco and Oncina (1999) proposed a proof of the identification in the limit with probability
one of the structure of the automaton. In de la Higuera and Thollard (2000), the proof of the
identification of the probabilities was added achieving the complete identification of the class of
the PDFA with rational probabilities. With regard to the more interesting PAC-learnability criterion
with respect to the KLD (KL-PAC), Ron et al. proposed an algorithm that can KL-PAC-learn the
class of distinguishable acyclic automata. The distinguishability is a guarantee that the distributions
generated from any state differ by at least µ in the L∞ norm. This is sufficent to immunise the
algorithm against the counterexample discussed by Kearns et al. (1994).

Our aim is to extend the work of Ron et al. (1995) to the full class of PDFAs. This requires us
to deal with cycles, and with the ensuing problems caused by allowing strings of unbounded length,
since with acyclic automata a bound on the number of states is also a bound on the expected length.
These are of three types: first, the support of the distribution can be infinite, which rules out the
direct application of Hoeffding bounds at a particular point in the proof; secondly, the automaton
can be in a particular state more than once in the generation of a particular string, which requires a
different decomposition of the KLD, and thirdly deriving the bound on the KLD requires slightly
different constraints. Additionally, we simplify the algorithm somewhat by drawing new samples at
each step of the algorithm, which avoids the use of “reference classes” in Ron et al. (1995), which
are necessary to ensure the independence of different samples.

The article is organized as follow: we first start with the definitions and notations we will use
(Section 2). The algorithm is then presented in Section 3 and its correctness is proved in Section 4.
We then conclude with a discussion of the relevance of this result. The reader will find on Page 481
a glossary for the notation.

2. Preliminaries

We start by defining some basic notation regarding languages, distributions over languages and
finite state automata of the type we study in this paper.

2.1 Languages

We have a finite alphabet Σ, and Σ∗ is the free monoid generated by Σ, i.e. the set of all words with
letters from Σ, with λ the empty string (identity). For s ∈ Σ∗ we define |s| to be the length of s. The
subset of Σ∗ of strings of length d is denoted by Σd . A distribution or stochastic language D over Σ∗

is a function D : Σ∗ → [0,1] such that ∑s∈Σ∗ D(s) = 1. The Kullback-Leibler Divergence (KLD) is
denoted by DKL(D1||D2) and defined as

DKL(D1||D2) = ∑
s

D1(s) log

(

D1(s)
D2(s)

)

. (1)

The L∞ norm between two distributions is defined as

L∞(D1,D2) = max
s∈Σ∗

|D1(s)−D2(s)|.
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We will use σ for letters and s for strings.
If S is a multiset of strings from Σ∗ for any s ∈ Σ∗ we write S(s) for the multiplicity of s in S and

define |S| = ∑s∈Σ∗ S(s), and for every σ ∈ Σ define S(σ) = ∑s∈Σ∗ S(σs). We also write S(ζ) = S(λ).
We will write Ŝ for the empirical distribution of a non-empty multiset S which gives to the string s
the probability S(s)/|S|. This notation is slightly ambiguous for strings of length one; we will rely
on the use of lower-case Greek letters to signify elements of Σ to resolve this ambiguity.

2.2 PDFA

A probabilistic deterministic finite state automaton is a mathematical object that stochastically gen-
erates strings of symbols. It has a finite number of states one of which is a distinguished start state.
Parsing or generating starts in the start state, and at any given moment makes a transition with a cer-
tain probability to another state and emits a symbol. We have a particular symbol and state which
correspond to finishing.

Definition 2 A PDFA A is a tuple (Q,Σ,q0,q f ,ζ,τ,γ) , where

• Q is a finite set of states,

• Σ is the alphabet, a finite set of symbols,

• q0 ∈ Q is the single initial state,

• q f 6∈ Q is the final state,

• ζ 6∈ Σ is the final symbol,

• τ : Q×Σ∪{ζ}→ Q∪{q f } is the transition function and

• γ : Q×Σ∪{ζ}→ [0,1] is the next symbol probability function. γ(q,σ) = 0 when τ(q,σ) is not
defined.

We will sometimes refer to automata by the set of states. All transitions that emit ζ go to the
final state. In the following τ and γ will be extended to strings recursively as follows:

τ(q,σ1σ2 . . .σk) = τ(τ(q,σ1),σ2 . . .σk),

γ(q,σ1σ2 . . .σk) = γ(q,σ1)× γ(τ(q,σ1),σ2 . . .σk).

Also we define τ(q,λ) = q and γ(q,λ) = 1. If τ(q0,s) = q we say that s reaches q.
The sum of the output probabilities from each states must be one, so for all q ∈ Q,

∑
σ∈Σ∪{ζ}

γ(q,σ) = 1.

Assuming further that there is a non-zero probability of reaching the final state from each state, i.e.

∀q ∈ Q ∃s ∈ Σ∗ : τ(q,sζ) = q f ∧ γ(q,sζ) > 0,

the PDFA then defines a probability distribution over Σ∗, where the probability of generating a string
s ∈ Σ∗ is
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PA(s) = γ(q0,sζ). (2)

We will also use PA
q (s) = γ(q,sζ) which we call the suffix distribution of the state q. We will

omit the automaton symbol when there is no risk of ambiguity. Note that γ(q0,s) where s ∈ Σ∗ is
the prefix probability of the string s, i.e. the probability that the automaton will generate a string
that starts with s.

Definition 3 (Distinguishability) For µ > 0 two states q1,q2 ∈ Q are µ-distinguishable if there
exists a string s such that |γ(q1,sζ)− γ(q2,sζ)| ≥ µ. A PDFA A is µ-distinguishable if every pair of
states in it is µ-distinguishable.

Note that any PDFA has an equivalent form in which indistinguishable states have been merged,
and thus µ > 0.

3. Algorithm

We will now describe the algorithm we use here to learn PDFAs. It is formally described in pseu-
docode starting at Page 481.

We are given the following parameters

• an alphabet Σ, or strictly speaking an upper bound on the size of the alphabet,

• an upper bound on the expected length of strings generated from any state of the target L,

• an upper bound on the number of states of the target n,

• a lower bound µ for the distinguishability,

• a confidence δ, and

• a precision ε.

We start by computing the following quantities. First, we compute m0, which is a threshold on
the size of a multiset. When we have a multiset whose size is larger than m0, which will be a sample
drawn from a particular distribution, then with high probability the empirical estimates derived from
that sample will be sufficiently close to the true values. Secondly, we compute N, which is the size
of the sample we draw at each step of the algorithm. Finally, we compute γmin, which is a small
smoothing constant. These are defined as follows, using some intermediate variables to simplify the
expressions slightly:

γmin =
ε

4(L+1)(|Σ|+1)
, (3)

δ′ =
δ

2(n|Σ|+2)
, (4)

ε1 =
ε2

16(|Σ|+1)(L+1)2 , (5)
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m0 = max

(

8
µ2 log

(

96n|Σ|
δ′µ

)

,
1

2ε2
1

log

(

12n|Σ||Σ+1|
δ′

))

, (6)

ε3 =
ε

2(n+1) log(4(L+1)(|Σ|+1)/ε)
, (7)

N =
4n|Σ|L2(L+1)3

ε2
3

max

(

2n|Σ|m0,4log
1
δ′

)

. (8)

The basic data structure of the algorithm represents a digraph G = (V,E) with labelled edges,
V being a set of vertices (or nodes) and E ⊆V ×Σ×V a set of edges. The graph holds our current
hypothesis about the structure of the target automaton. We have a particular vertex in the graph,
v0 ∈ V that corresponds to the initial state of the hypothesis. Each arc in the graph is labelled with
a letter from the alphabet, and there is at most one edge labelled with a particular letter leading
from any node. Indeed, the graph can be thought of as a (non-probabilistic) deterministic finite
automaton, but we will not use this terminology to avoid confusion. We will use τG(v,σ) as a
transition function in this graph to refer to the node reached by the arc labelled with σ that leads
from v, if such a node exists, and we will extend it to strings as above. At each node v ∈ V we
associate a multiset of strings Sv that represents the suffix distribution of the state that the node
represents. At any given moment in the algorithm we wish the graph to be isomorphic to a subgraph
of the target automaton. Initially we have a single node that represents the initial state of the target
automaton, together with a multiset that is just a sample of strings from the automaton.

At each step we are given a multiset of N data points (i.e. strings from Σ∗) generated indepen-
dently by a target PDFA T . For each node u in the graph, and each letter σ in the alphabet that
does not yet label an arc out of u, we hypothesize a candidate node. We can refer to this node by
the pair (u,σ). The first step is to compute the multiset of suffixes of that node. For each string in
the sample, we trace its path through the graph, deleting symbols from the front of the string as we
proceed, until we arrive at the node u, or the string is empty, in which case we discard it. If the string
then starts with σ we delete this letter and then add the resulting string to the multiset associated
with (u,σ). Intuitively, this should be a sample from the suffix distribution of the relevant state.
More formally, for any input string s, if τG(v0,s) is defined then we discard the string. Otherwise
we take the longest prefix r such that there is a node u such that τG(v0,r) = u and s = rσt and add
the string t to the multiset of the candidate node (u,σ). If this multiset is sufficiently large (at least
m0), then we compare it with each of the nodes in the graph. The comparison operator computes the
L∞-norm between the empirical distributions defined by the multisets. When we first add a node to
the graph we keep with it the multiset of strings it has at that step, and it remains with this multiset
for the rest of the algorithm.

Definition 4 (Candidate node) A candidate node is a pair (u,σ) where u is a node in the graph and
σ ∈ Σ where τG(u,σ) is undefined. It will have an associated multiset Su,σ. A candidate node (u,σ)
and a node v in a hypothesis graph G are similar if and only if, for all strings s∈Σ∗, |Su,σ(s)/|Su,σ|−
Sv(s)/|Sv|| ≤ µ/2, i.e. if and only if L∞(Ŝu,σ, Ŝv) ≤ µ/2.

We will later see that the value of µ/2, given that any two states in the target are at least µ apart
in the L∞-norm, allows us to ensure that the nodes are similar if and only if they are representatives
of the same state. We will define this notion of representation more precisely below. If the candidate
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node (u,σ) is similar to one of the nodes in the graph, say v then we add an arc labelled with σ from
u to v. If it is not similar to any node, then we create a new node in the graph, and add an arc labelled
with σ from u to the new node. We attach the multiset to it at this point. We then delete all of the
candidate nodes, sample some more data and continue the process, until we draw a sample where
no candidate node has sufficiently large a multiset.

Completing the Graph If the graph is incomplete, i.e. if there are strings not accepted by the
graph, we add a new node called the ground node which represents all the low frequency states.
We then complete the graph by adding all possible arcs from all states leading to the ground node,
including from the ground node to itself. Since the hypothesis automaton must accept every string,
every state must have an arc leading out of it for each letter in the alphabet. We then define for each
node in the graph a state in the automaton. We add a final state q̂ f , together with a transition labelled
with ζ from each state to q̂ f . The transition function τ is defined by the structure of this graph.

Estimating Probabilities The transition probabilities are then estimated using a simple additive
smoothing scheme (identical to that used by Ron et al., 1995). For a state u, σ ∈ Σ∪{ζ},

γ̂(q̂,σ) = (Su(σ)/|Su|)× (1− (|Σ|+1)γmin)+ γmin. (9)

This is also used for the ground node where of course the multiset is empty.

4. Analysis of the Algorithm

We now proceed to a proof that this algorithm will learn the class of PDFAs. We first state our main
result.

Theorem 5 For every PDFA A with n states, with distinguishability µ > 0, such that the expected
length of the string generated from every state is less than L, for every δ > 0 and ε > 0, Algo-
rithm LearnPDFA outputs a hypothesis PDFA Â, such that with probability greater than 1 − δ,
DKL(A, Â) < ε.

We start by giving a high-level overview of our proof. In order to bound the KLD we will use a
decomposition of the KLD between two automata presented in Carrasco (1997). This requires us to
define various expectations relating the number of times that the two automata are in various states.

• We define the notion of a good sample – this means that certain quantities are close to their
expected values. We show that a sample is likely to be good if it is large enough.

• We show that if all of the samples we draw are good, then at each step the hypothesis graph
will be isomorphic to a subgraph of the target.

• We show that when we stop drawing samples, there will be in the hypothesis graph a state
representing each frequent state in the target. In addition we show that all frequent transitions
will also have a representative edge in the graph.

• We show that the estimates of all the transition probabilities will be close to the target values.

• Using these bounds we derive a bound for the KLD between the target and the hypothesis.

We shall use a number of quantities calculated from the parameters input to the algorithm to
bound the various quantities we are estimating. Table 1 summarises these.
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Symbol Description Definition

ε Precision input
δ Confidence input
L Bound on the expected length of strings input
µ Distinguishability of states input
n Bound on the number of states of the target automaton input
Φ Function from states of the target to nodes in graph Definition 8
Wd(q) Probability to reach state q after d letters Equation 10
W (q) Expected number of times state q is reached Equation 12
Wd(q, q̂) Expected number of times a path is in q and q̂ Equation 14
P(q) Probability that a state q is reached Equation 4.1
P(s),PA(s) Probability that a string is generated Equation 2

Pq(s) Probability that a string is generated from q γ(q,sζ)
Su Multiset of node u Page 477
Ŝu Empirical distribution of multiset of node u Page 477
|Su| Size of multiset of node u Page 477
Su(s) Count of string s in multiset Page 477
Su(σ) Count of letter σ in multiset Page 477
N One step sample size Equations 8
m0 Threshold for size of multiset of candidate node Equation 6
γmin Smoothing constant for transition probabilities Equation 9
ε1 Bound on transition counts ε2

4/4(|Σ|+1)
ε2 Threshold for weight of frequent states ε3/2nL(L+1)
ε3 Bound on difference between weights in target and hypothesis Equation 7
ε4 Bound on smoothed estimates of transition probabilities ε/2(L+1)
ε5 Threshold for frequent transitions ε3/2|Σ|L(L+1)
ε6 Bound on exit probability ε2ε5/(L+1)
δ′ Fraction of confidence Equation 4

Table 1: Glossary for notation
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4.1 Weights of States

We will use a particular decomposition of the KLD, that allows us to represent the divergence as a
weighted sum of the divergences between the distributions of the transition probabilities between
states in the target and states in the hypothesis. This requires us to define a number of quantities
which relate to the expected number of times the automaton will be in various states.

We will define below the weight of a state. Informally, this is the expected number of times
the automaton will reach, or pass through, that state. Here we encounter one of the differences that
cyclicity introduces. With acyclic automata, the automaton can reach each state at most once. Thus
the expectation is equal to the probability – and thus we can operate with sets of strings, and simply
add up the probabilities. With cyclic automata, the automata can repeatedly be in a particular state
while generating a single string. We start by defining

Wd(q) = ∑
s∈Σd :τ(q0,s)=q

γ(q0,s). (10)

Informally, Wd(q) is the probability that it will generate at least d characters and be in the state q
after having generated the first d. This is an important difference in notation to that of Ron et al.
(1995), who use W to refer to a set of strings.

Since s does not end in ζ, we are not summing over the probability of strings but rather the
probability of prefixes. Note that W0(q0) is by definition 1 and that we can also calculate this
quantity recursively as

Wd(q) = ∑
p∈Q

Wd−1(p) ∑
σ:τ(p,σ)=q

γ(p,σ). (11)

We now define the probability that the automaton will generate a string of length at least d as
Wd :

Wd = ∑
q∈Q

Wd(q).

Note that the probability that it will be of length exactly d is Wd −Wd+1, and that W0 = 1. We also
define here the expected number of times the automaton will be in the state q as

W (q) =
∞

∑
d=0

Wd(q) = ∑
s∈Σ∗: τ(q0,s)=q

γ(q0,s). (12)

We shall refer to this quantity as the weight of the state q. Therefore the expectation of the length of
strings is

E[|s|] =
∞

∑
d=0

d(Wd −Wd+1) =
∞

∑
d=1

Wd =

(

∞

∑
d=0

Wd

)

−W0 =

(

∞

∑
d=0

Wd

)

−1 = ∑
s∈Σ∗

γ(q0,s)−1.

The expected length of strings generated from any state can be defined likewise. We will be
given a bound on the expected length of strings generated from any state, denoted by L. Formally,
for all q we shall require that

∑
s∈Σ∗

γ(q,s) ≤ L+1.

Using this bound we can establish that for any length k,
∞

∑
d>k

Wd = ∑
q

Wk(q) ∑
d>0

∑
s∈Σd

γ(q,s) ≤ LWk.
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We will later need to bound the quantity ∑d dWd(q), which we can do in the following way:

∞

∑
d=0

dWd(q) ≤
∞

∑
d=0

dWd =
∞

∑
d=0

∑
k>d

Wk ≤
∞

∑
d=0

LWd ≤ L(L+1). (13)

In addition to these expected values, we will also need to lower bound the probability of the
automaton being in a state at least once in terms of the expected number of times it will be in that
state. The probability of it being in a state at some point can be defined in terms of the set of strings
that have a prefix that reaches the state,

S(q) = {s ∈ Σ∗ : ∃r, t ∈ Σ∗ s.t.s = rt ∧ τ(q0,r) = q},

or in terms of the set of strings that reach q for the first time (i.e. have no proper prefix that also
reaches q):

R(q) = {s ∈ Σ∗ : τ(q0,s) = q∧ (6 ∃u,v ∈ Σ∗ s.t.v 6= λ∧uv = s∧ τ(q0,u) = q)}.

The probability of it being in the state at least once can therefore be written in two ways

P(q) = ∑
s∈S(q)

γ(q0,sζ) = ∑
s∈R(q)

γ(q0,s).

Note that in the absence of a bound on the expected length of strings, a state can have arbitrarily
small probability of being visited but have large weight.

Lemma 6 For any automaton such that the expected length from any state is less than L, for all
states q, P(q) ≥W (q)/(L+1).

Proof Intuitively, after we reach the state q, the expected number of times we reach the state q
again will be at most the expected number of times we reach any state after this, which is bounded
by L. Formally,

W (q) = ∑
s∈S(q): τ(q0,s)=q

γ(q0,s)

= ∑
r∈R(q)

∑
s∈Σ∗: τ(q0,rs)=q

γ(q0,rs)

= ∑
r∈R(q)

∑
s∈Σ∗: τ(q0,rs)=q

γ(q0,r)γ(q,s)

= ∑
r∈R(q)

γ(q0,r) ∑
s∈Σ∗: τ(q0,rs)=q

γ(q,s)

= P(q) ∑
s∈Σ∗: τ(q0,rs)=q

γ(q,s)

≤ P(q) ∑
s∈Σ∗

γ(q,s)

≤ P(q)(L+1). �

We also define here a related quantity given two automata. Given two automata A, Â with sets
of states Q, Q̂, the joint weight W (q, q̂) is defined to be the expected number of times the automata
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are simultaneously in the states q ∈ Q and q̂ ∈ Q̂, when strings are being generated by A, and parsed
by Â.

Define
Wd(q, q̂) = ∑

s:τ(q0,s)=q
τ̂(q̂0,s)=q̂
|s|=d

γ(q0,s). (14)

We can also define this recursively with W0(q0, q̂0) = 1 and

Wd(q, q̂) = ∑
p∈Q

∑
p̂∈Q̂

Wd−1(p, p̂) ∑
σ:τ(p,σ)=q
τ̂(p̂,σ)=q̂

γ(p,σ).

We now define the expected number of times the first automaton will be in state q and the second
in state q̂ thus

W (q, q̂) = ∑
d

Wd(q, q̂).

Note also that
W (q) = ∑

q̂∈Q̂

W (q, q̂). (15)

Given these quantities we can now use the following decomposition of the KLD (Carrasco, 1997)
to bound the error:

DKL(T ||H) = ∑
q∈QT

∑
q̂∈QH

∑
σ∈Σ∪{ζ}

W (q, q̂)γ(q,σ) log
γ(q,σ)

γ̂(q̂,σ)
. (16)

4.2 Probably Correct

We define a notion of goodness of a multiset which is satisfied if certain properties of the multiset
are close to their expected values.

Definition 7 (Good multiset) We say that a multiset S is µ-ε1-good for a state q iff L∞(Ŝ,Pq) < µ/4
and for every σ ∈ Σ∪{ζ}, |S(σ)/|S|− γ(q,σ)| < ε1.

The algorithm produces a sequence of graphs G0,G1, . . . ,Gk, with multisets attached to each
node. We will first show that all of these graphs have the right structure, and then we will show that
the final graph will have all of the important structure and finally we will bound the KLD.

Definition 8 (Good hypothesis graph) We say that a hypothesis graph G for an automaton A is
good if there is a bijective function Φ from a subset of states of A to all the nodes of G such that
Φ(q0) = v0, and if τG(u,σ) = v then τ(Φ−1(u),σ) = Φ−1(v), and for every node u in the graph, the
multiset attached to u is µ-ε1-good for the state Φ−1(u).

Note that if there is such an isomorphism then it is unique. When Φ(q) = u we shall call u
a representative of the state q. When we have a candidate node (u,σ) we shall call this also a
representative of the state τ(q,σ). We will extend the use of Φ to a mapping from the states of the
target to the states of the final hypothesis automaton. In this case it will no longer be bijective since
in general more than one state can be mapped to the ground state.
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Lemma 9 If a graph Gi is good and we draw a sample of size N such that for every candidate node
with multiset S such that |S| > m0 is µ-ε1-good for the state τ(Φ−1(u),σ) , and there is at least one
such candidate node, then the graph Gi+1 is also good.

Consider a candidate node (u,σ) and a node v Suppose these are both representatives of the same
state q in which case Φ−1(v) = τ(Φ−1(u),σ). Then as L∞(Ŝu,σ,Pq) < µ/4 and L∞(Ŝv,Pq) < µ/4 (by
the goodness of the multisets), the triangle inequality shows that L∞(Ŝu,σ, Ŝv) < µ/2, and therefore
the comparison will return true. On the other hand, let us suppose that they are representatives of
different states q and qv. We know that L∞(Ŝu,σ,Pq) < µ/4 and L∞(Ŝv,Pqv) < µ/4 (by the goodness
of the multisets), and L∞(Pq,Pqv) ≥ µ (by the µ-distinguishability of the target). By the triangle
inequality L∞(Pq,Pqv) ≤ L∞(Ŝu,σ,Pq)+ L∞(Ŝu,σ, Ŝv)+ L∞(Ŝv,Pqv), therefore L∞(Ŝu,σ, Ŝv) > µ/2 and
the comparison will return false. If there is a node in the graph that is similar to the candidate
node, then this is because there is the relevant transition in the target automaton, which means the
new graph will also be good. If there is no such node, then that is because there is no node v
such that Φ−1(v) = τ(Φ−1(u),σ) in which case we can define a new node v and define Φ−1(v) =
τ(Φ−1(u),σ), and thereby show that the new graph is good. Additionally since the candidate node
multisets are µ-ε1-good, the multiset of this node will also be good. �

Since G0 is good if the initial sample is good, using this we can prove by induction on i that the
final hypothesis graph will be µ-ε1-good if all the samples satisfy the criteria defined above.

Definition 10 (exiting the graph) A string exits a graph G if there is no node v such that τG(v0,s) =
v. The exit probability of a graph G (with respect to an automaton A) which we write Pexit(G) is
defined as

Pexit(G) = ∑
s:s exits G

γ(q0,sζ).

Definition 11 (Good sample) We say that a sample of size N is good given a good graph G if for
every candidate node (u,σ), such that |Su,σ| > m0, Su,σ is µ-ε1-good for the state τ(Φ−1(u),σ) and
that if Pexit(G) > ε6 then the number of strings that exit the graph is more than 1

2 NPexit(G).

Note that if there are no candidate nodes with multisets larger than m0, then the total number
of strings that exited the graph must be less than n|Σ|m0 (since there are at most n nodes in a good
graph, and therefore at most n|Σ| candidate nodes). Therefore in this circumstance, if the samples
are good, we can conclude that either Pexit(G) ≤ ε6 or Pexit(G) < 2n|Σ|m0/N.

We then prove that the hypothesis graph will probably contain a node representing each state
with non-negligible weight, and an edge representing each transition from a state with non-negligible
weight that has a non-negligible transition probability. We define two intermediate quantities: ε2, a
bound on the weight of states, and ε5, a bound on transition weights. We have

ε2 =
ε3

2nL(L+1)
and ε5 =

ε3

2|Σ|L(L+1)
. (17)

Lemma 12 For any state q in the target such that W (q) > ε2, if all the samples are good, then there
will be a node u in the final hypothesis graph such that Φ(q) = u. Furthermore, for such a state for
any σ ∈ Σ, such that γ(q,σ) > ε5, then τG(u,σ) is defined and is equal to Φ(τ(q,σ)).
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Proof Since W (q) > ε2, we know by Lemma 6 that P(q) > ε2/(L+1).
From the definitions of N and ε6

2n|Σ|m0

N
< ε6 =

ε2ε5

(L+1)
< P(q)ε5 < P(q).

Clearly if there were no representative node u for state q, then all strings that reached the state
would exit the graph, and thus Pexit(G) ≥ P(q). Similarly, if there were no edge labelled σ from
the node, then Pexit(G) ≥ P(q)ε5. By the goodness of the sample we know that either Pexit(G) ≤ ε6

or Pexit(G) < 2n|Σ|m0/N, in both cases Pexit(G) < P(q)ε5. Therefore there is a suitable state u and
edge in the graph, and since the final hypothesis graph is µ-ε1-good, τG will have the correct value.
�

4.3 Close Transition Probabilities

Assuming that all the samples are good, we now want to show that the final smoothed transition
probabilities will be close to the correct values. More precisely, we want to show that for all transi-
tions, the ratio of the true value to the estimate is not much greater than unity.

For every state q with W (q) > ε2, with u = Φ(q) and for every symbol σ ∈ Σ∪{ζ}, we will
have, by the goodness of the multisets

∣

∣

∣

∣

γ(q,σ)−
Su(σ)

|Su|

∣

∣

∣

∣

≤ ε1. (18)

Define
ε4 =

ε
2(L+1)

,

γmin =
ε4

2(|Σ|+1)
and ε1 =

ε2
4

4(|Σ|+1)
.

We use exactly the argument in Lemma 5.3 of Ron et al. (1995): if γ(q,σ) is small (at most γmin +ε1)
then the estimate will anyway be at least γmin and thus the ratio will be not much larger than the true
value, and if it is large then it will be close to the true value. We can verify that

γ(q,σ)

γ̂(q,σ)
≤ 1+ ε4. (19)

4.4 Close Weights

We now come to the most complex part of the proof. We want to show for every frequent state q in
the target, which will have a corresponding state in the hypothesis q̂ = Φ(q), that (again under the
assumption that all the samples are good)

W (q)−W (q, q̂) ≤ ε3. (20)

As a consequence of this and Equation 15, we will have

∑
q̂:Φ(q)6=q̂

W (q, q̂) ≤ ε3. (21)
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So we will do this by showing that for any d

Wd(q)−Wd(q, q̂) <
ε3dWd(q)

L(L+1)
.

Then, since we know that ∑d dWd(q) < L(L+1) by Equation 13, we can sum with respect to d and
derive the result.

Lemma 13 For all states q ∈ Q such that W (q) > ε2, there is a state q̂ in the hypothesis such that
Φ(q) = q̂ and for all d ≥ 0

Wd(q)−Wd(q, q̂) ≤
ε3dWd(q)

L(L+1)
.

Proof We will prove the lemma by induction on d. For d = 0 this is clearly true. For the inductive
step, we assume that it is true for d −1.

We can rewrite the joint weight as

Wd(q, q̂) = ∑
p∈Q

∑
p̂∈Q̂

Wd−1(p, p̂) ∑
σ:τ(p,σ)=q
τ̂(p̂,σ)=q̂

γ(p,σ). (22)

If we consider only the cases where W (p) > ε2 and Φ(p) = p̂ we can see that

Wd(q, q̂) ≥ ∑
p∈Q:W (p)>ε2

Wd−1(p,Φ(p)) ∑
σ:τ(p,σ)=q

τ̂(Φ(p),σ)=q̂

γ(p,σ). (23)

And then by the inductive hypothesis, for these frequent states

Wd(q, q̂) ≥ ∑
p∈Q:W (p)>ε2

Wd−1(p)

(

1−
ε3(d −1)

L(L+1)

)

∑
σ:τ(p,σ)=q

τ̂(Φ(p),σ)=q̂

γ(p,σ). (24)

Using the fact that Wd ≤ 1 for all d, and using the recursive definition of Wd we can write this as

Wd(q, q̂) ≥ ∑
p∈Q:W (p)>ε2

Wd−1(p) ∑
σ:τ(p,σ)=q

τ̂(Φ(p),σ)=q̂

γ(p,σ)−
ε3(d −1)Wd−1

L(L+1)
(25)

≥ ∑
p∈Q:W (p)>ε2

Wd−1(p) ∑
σ:τ(p,σ)=q

γ(p,σ)

− ∑
p∈Q:W (p)>ε2

Wd−1(p) ∑
σ:τ(p,σ)=q

τ̂(Φ(p),σ)6=q̂

γ(p,σ)

−
ε3(d −1)

L(L+1)
. (26)

So we need to show that most of the weight from Wd−1 must be from states p with W (p) > ε2. Then
we can change from Wd−1(p) to Wd(q).
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Using Equation 11 we can see that

Wd(q) = ∑
p∈Q:W (p)≤ε2

Wd−1(p) ∑
σ:τ(p,σ)=q

γ(p,σ)+ ∑
p∈Q:W (p)>ε2

Wd−1(p) ∑
σ:τ(p,σ)=q

γ(p,σ)

≤ nε2 + ∑
p∈Q:W (p)>ε2

Wd−1(p) ∑
σ:τ(p,σ)=q

γ(p,σ).

Using this to replace the first term on the right hand side of Equation 26 we get

Wd(q, q̂) ≥Wd(q)−nε2 −
ε3(d −1)

L(L+1)
− ∑

p∈Q:W (p)>ε2

Wd−1(p) ∑
σ:τ(p,σ)=q

τ̂(Φ(p),σ)6=q̂

γ(p,σ).

Since by Lemma 12 all of the transitions from frequent states with probability greater than ε5 must
go to the correct states, we know that the values of γ(p,σ) in the final term must be less than ε5.

Wd(q, q̂) ≥ Wd(q)−nε2 −
ε3(d −1)

L(L+1)
− ∑

p∈Q:W (p)>ε2

Wd−1(p)∑
σ

ε5

≥ Wd(q)−nε2 −
ε3(d −1)

L(L+1)
−|Σ|ε5.

By our definitions of ε2 and ε5

nε2 + |Σ|ε5 ≤
ε3

L(L+1)
,

and therefore the lemma will hold. �

5. Proof that the Divergence is Small

We are now in a position to show that the KLD between the target and the hypothesis is small. We
use Carrasco’s decomposition of the KLD (Carrasco, 1997) to bound the error:

DKL(T ||H) = ∑
q∈QT

∑
q̂∈QH

∑
σ∈Σ∪{ζ}

W (q, q̂)γ(q,σ) log
γ(q,σ)

γ̂(q̂,σ)
.

We are going to divide the summands into three parts. We define

D(q, q̂) = W (q, q̂) ∑
σ∈Σ∪{ζ}

γ(q,σ) log
γ(q,σ)

γ̂(q̂,σ)
,

D1 = ∑
q∈QT :W (q)>ε2

∑
q̂∈QH :Φ(q)=q̂

D(q, q̂),

D2 = ∑
q∈QT :W (q)>ε2

∑
q̂∈QH :Φ(q)6=q̂

D(q, q̂),

D3 = ∑
q∈QT :W (q)≤ε2

∑
q̂∈QH

D(q, q̂).
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Note that for the frequent states with W (q) > ε2, Φ will be well-defined.

DKL(T ||H) = D1 +D2 +D3

We will bound these separately. We bound D1 by showing that for these matching pairs of states q,
Φ(q), all of the transition probabilities are close to each other. We can bound D2 by showing that
W (q, q̂) is small when q̂ 6= Φ(q), and D3 since W (q) is small.

Using Equation 19 and recalling that W (q) ≥W (q, q̂) we bound D1.

D1 ≤ ∑
q∈QT :W (q)>ε2

W (q) log(1+ ε4) ≤ (L+1) log(1+ ε4) ≤ (L+1)ε4.

Bounding D2 is done using Equation 21, the fact that γ(q,σ) ≤ 1 and that γ̂(q̂,σ) ≥ γmin by the
smoothing technique.

D2 ≤ ∑
q∈QT ,W (q)>ε2

∑
q̂∈QH :Φ(q)6=q̂

W (q, q̂) ∑
σ∈Σ∪{ζ}

γ(q,σ) log
1

γmin

≤ ∑
q∈QT ,W (q)>ε2

ε3 log
1

γmin
≤ nε3 log

1
γmin

.

With regard to D3, using Equation 15 and the bound on W (q) we can see that

D3 ≤ ∑
q∈QT ,W (q)≤ε2

∑
q̂∈QH

W (q, q̂) ∑
σ∈Σ∪{ζ}

γ(q,σ) log
1

γmin
≤ nε2 log

1
γmin

.

Substituting in Equation 17, and assuming that L > 1,

DKL(T ||H) < (L+1)ε4 +

(

nε3 +
ε3

2nL(L+1)

)

log
1

γmin

< (L+1)ε4 +(n+1)ε3 log
1

γmin
.

Substituting in the values of γmin, ε3 and ε4 gives us DKL(T ||H) < ε as desired. �

We have thus shown that if all of the samples are good at each step, the resulting hypothesis
will be approximately correct. We must now show that all of the samples will be good with high
probability, by showing that N and m0 are large enough.

6. Bounding the Probability of an Error

We need to show that with high probability a sample of size N will be good for a given good graph
G. We assume that the graph is good at each step. Each step of the algorithm will increase the
number of transitions in the graph by at least 1. There are at most n|Σ| transitions in the target; so
there are at most n|Σ|+2 steps in the algorithm since we need an initial step to get the multiset for
u0 and another at the end when we terminate. So we want to show that a sample will be good with
probability at least 1−δ/(n|Σ|+2) = 1−2δ′.
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There are two sorts of errors that can make the sample bad. First, one of the multisets could be
bad, and secondly too few strings might exit the graph. There are at most n|Σ| candidate nodes, so
we ensure that the probability of getting a bad multiset at a particular candidate node is less than
δ′/n|Σ|, and we will ensure that the probability of the second sort of error is less than δ′.

6.1 Good Multisets

First we bound the probability of getting a bad multiset. Recall from Definition 7 that we have two
requirements. First, for every string we must have the empirical probability within µ/4 of its true
value. Secondly, for each σ ∈ Σ∪{ζ} the empirical probability must be within ε1 of the true value.

A difficulty here is that in the first case we will be comparing over an infinite number of strings.
Clearly only finitely many strings will have non-zero counts, but nonetheless, we need to show that
for every string in Σ∗ the empirical probability is close to the true probability. This will be true if all
of the strings with probability less than µ/8 have empirical probability less than µ/4 and all of the
strings with probability greater than this have empirical probability within µ/4 of their true values.

Consider the strings of probability greater than µ/8. There are at most 8/µ of these. Therefore
for a given string s, by Hoeffding bounds (Hoeffding, 1963):

Pr

[∣

∣

∣

∣

Su(s)
|Su|

− γ(q,sζ)

∣

∣

∣

∣

> µ/4

]

< 2e−muµ2/8 < 2e−m0µ2/8. (27)

The probability of making an error on one of these frequent strings is less than 16
µ e−m0µ2/8. We also

need to bound the probability of all of the rare strings–those with γ(q,sζ) ≤ µ/8.
Consider all of the strings whose probability is in [µ2−(k+1),µ2−k).

Sk = {s ∈ Σ∗ : γ(q,sζ) ∈ [µ2−(k+1),µ2−k)}.

Define Srare =
⋃∞

k=3 Sk. We bound each of the Sk separately, using the binomial Chernoff bound
where n = |Su|µ/4 > |Su|p (which is true since p < µ/4):

Pr

[

Su(s)
|Su|

≥
µ
4

]

≤

(

|Su|p
n

)n

en−|Su|p.

This bound decreases with p, so we can replace this for all strings in Sk with the upper bound for
the probability, and we can replace |Su| with m0. We write µ′ = µ/4 to reduce clutter.

Pr

[

Su(s)
|Su|

≥ µ′
]

≤

(

m0µ′2−k

m0µ′

)m0µ′

em0µ′−m0µ′2−k
(28)

≤
(

2−ke1−2−k
)m0µ′

< 2−km0µ′ . (29)

Assuming that m0µ′ > 3 we can see that

Pr

[

Su(s)
|Su|

≥ µ′
]

< 2−2k2k(2−m0µ′) ≤ 2−2k22−m0µ′ (30)

Pr

[

∃s ∈ Sk :
Su(s)
|Su|

≥ µ′
]

≤ |Sk|2
−2k22−m0µ′ ≤

1
µ

2−k+122−m0µ′ . (31)
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The 2−k factor allows us to sum over all of the k to calculate the probability that there will be an
error with any rare string:

Pr

[

∃s ∈ Srare :
Su(s)
|Su|

≥ µ′
]

<
1
µ

∞

∑
k=3

2−k+122−m0µ′ <
2
µ

2−m0µ′ . (32)

The next step is to show that for every σ ∈ Σ∪{ζ},

∣

∣

∣

∣

γ(q,σ)−
Su(σ)

|Su|

∣

∣

∣

∣

≤ ε1.

We can use Chernoff bounds to show that the probability of an error will be less than e−2m0ε2
1 . Putting

these together we can show that the probability of a single multiset being bad can be bounded as in
the equation below, and that this is satisfied by the value of m0 defined above in Equation 6:

16
µ

e−m0µ2/8 +
2
µ

2−m0µ/4 +(|Σ|+1)e−2m0ε2
1 <

δ′

n|Σ|
. (33)

6.2 Exit Probability Errors

We next need to show that roughly the expected number of strings exit the graph, if the exit probabil-
ity is greater than ε6 = ε2ε5/(L+1). Again we can use Chernoff bounds to show that the probability
of this sort of error will be less than e−NPexit(G)/4 < e−Nε6/4. It is easy to verify that for our chosen
value of N,

e−Nε6/4 < δ′. (34)

6.3 Complexity

Since when the algorithm runs correctly there are at most n|Σ|+2 steps, the sample complexity will
be Ntotal = N(n|Σ|+2) which is polynomial by inspection.

As the strings can be of unbounded length the computational complexity has to be bounded
in terms of the total lengths of the strings as well. If Stotal is the multiset representing the overall
sample of size at most N(n|Σ|+2), then define

Nl = ∑
s∈Σ∗

|s|S(s).

We denote the maximum observed length Lmax (clearly Lmax ≤ Nl).
Since there are at most n nodes in the graph at any time, and at most n|Σ| candidate nodes, the

number of comparisons will be at most n2|Σ| at each step and thus n2|Σ|(n|Σ|+ 2) in all. For each
multiset we only need to store at most m0 so there will be at most m0 distinct strings in each multiset,
so the comparison will need to compare at most 2m0 strings, and each comparison will take at most
Lmax. The construction of the candidate nodes can be done in less than Nl time. These observations
suffice to show that the algorithm is polynomial in Nl and Ntotal . We have assumed here that |Σ| is
sufficiently small that two characters can be compared in constant time.
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7. Conclusion

We have presented an algorithm and a proof that it KL-PAC-learns the class of PDFAs given certain
reasonable additional parameters for the sample complexity. We argue that these additional parame-
ters or some substitutes are necessary given the counter-examples previously studied and presented
here. Furthermore the classes we present here cover the whole space of distributions defined by
PDFAs. Convergence properties of these sorts of state merging algorithms have been studied be-
fore in the identification in the limit paradigm (Carrasco and Oncina, 1999), but not in the KL-PAC
framework.

The work presented here can be compared to traditional types of PAC learning. Distribution
free learning of regular languages has been shown to be hard under some standard cryptographic
assumptions (Kearns and Valiant, 1994), but learnability under limited classes of distributions is still
an open question. We can view the algorithm presented here, if the graph completion and smooth-
ing is removed, as learning regular languages from positive samples only, where the distributions
are restricted to be generated by PDFAs which define the target language. We can compare the
result presented in Parekh and Honavar (2001), where it is shown that DFAs can be PAC-learned
from positive and negative samples, using a simple distribution. This means a distribution where
examples of low Kolmogorov complexity, given a representation of the target, have a high probabil-
ity. Indeed, Denis (2001) shows that using this approach they can also be probably exactly learned
from positive examples only. Since the Solomonoff-Levin distribution dominates every other com-
putable distribution, up to a constant factor, this is in some sense the easiest distribution to learn
under. Moreover, the use of simple distributions has a number of flaws: first, there are some very
large non-computable constants that appear in the sample complexity polynomial. Secondly, rep-
resentations of the target will also have low complexity with respect to the target, and thus will
almost certainly occur in polynomial samples (what is sometimes called “collusion”), which does
allow trivial learning algorithms in the case of the positive and negative samples. This may also
be the case with positive samples alone. This is an open question, and beyond the scope of this
paper, but certainly if the support of the language is large enough, collusive learning becomes pos-
sible. Thirdly, the examples provided will be those that are comparatively predictable – i.e. carry
little information; in many realistic situations, the strings are used to carry information and thus
generally will have high complexity. Thus we feel that though mathematically quite correct, as a
characterisation of the convergence properties of algorithms, these approaches are too abstract.

One further extension we intend to study is to the class of the probabilistic residual automata
(Esposito et al., 2002) which should be tractable with matrix perturbation theory.
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PSfrag replacements

ζ : 1

q0

q1

q2 q3 q4

q5b : 1

b : 1
a : 1

q f
ζ : q

b : q

a : p

a : p

Figure 1: Example automaton with k = 4 and s = aabb. The arcs are labelled with the symbol and
then the probability. p will be very close to 1 and q = 1− p.

Appendix A.

In this appendix we establish our counter-example that justifies our addition of a bound on the
expected length of the strings generated from every state. Our basic argument is as follows: we
construct a countable family of automata such that given any sample size N, even exponentially
large, all but finitely many automata in the family will give the same sample set with probability
greater than 0.5. Given this sample set, the algorithm will produce a particular hypothesis. We show
that whatever hypothesis, H, a learning algorithm produces must have D(H||T ) > 0.05 for some of
the targets in the subset that will generate this same set. Thus arguing by contradiction, we see that
it is not possible to have a PAC-learning algorithm unless we allow it to have a sample complexity
polynomial that includes some additional parameter relating in some way to the expected length.
We neglect the possibility that the algorithm might be randomised, but it is easy to deal with that
eventuality.

It is quite straightforward to construct such a family of automata if we merely want to demon-
strate the necessity of a bound on the overall expected length of the strings generated by the au-
tomaton. Consider a state of the target that is reached with prob n−1, but that generates strings of
length n2 through a transition to itself of probability 1− n−2. For such a state q, the weight W (q)
will be n. Thus any small differences in the transitions can cause unbounded increases in the KLD.
Here we want to establish a slightly sharper result, which applies even when we have a bound on
the overall expected length.

We define a family of automata Fk for some k > 0, over a two letter alphabet Σ = {a,b}, Fk =
{As

p|s ∈ Σk, p ∈ (0,1)}. Each of these automata A = As
p defines a distribution as follows:

PA(t) = p when t = a;

PA(t) = (1− p)2 pi when t = bsi for i ≥ 0 ;

PA(t) = 0 otherwise .

The automata will have k + 2 states, and the expected length of the strings generated by these
automata will be k +1. Figure 7 shows a simple example for k = 4.

Suppose we have an algorithm H that can learn a superset of F . Set ε = 1
8 log(3/2) and δ = 1

2 .
Since we have a polynomial algorithm there must be a polynomial bound on the number of states
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of the target q(ε,δ, |Σ|,k + 2,L), when there is an upper bound on the length of the strings in the
sample, L. This additional caveat is necessary because the strings in the sample in general can be
of unbounded length. Here we will be considering a sample where all the strings are of length 1.
Fixing these values of ε,δ, |Σ| and L we will have a polynomial in k, so we can find a value of k such
that 2k > q(ε,δ, |Σ|,k + 2). Denote the smallest such k by k0. Let N be the sample complexity of
the algorithm H for these values. We can set p to be so close to 1 that pN > 0.5, which means that
with probability greater than 0.5 the sample generated by the target will consist of N repetitions of
the string a. Let AH = (Q̂, γ̂, τ̂) be the hypothesis automaton produced by the algorithm H on such a
data set. By construction 2k > |Q̂|.

It is not enough just to show that for some string s the hypothesis will give a low probability
to strings of the form bsi. We must also show that this probability decreases exponentially as i
increases. We must therefore show, using a pumping argument, that there is a low probability
transition in the cycles in the hypothesis automaton traced by the strings for large values of i. We
can assume, without loss of generality, that the hypothesis assigns a non-zero probability to all the
strings bsi, or the KLD will be infinite. For each string s ∈ Σk0 , consider the states in Q̂ defined
by τ̂(q̂0,bsi). There must be two distinct values i < j ≤ |Q̂| such that τ̂(q̂0,bsi) = τ̂(q̂0,bs j), by the
pigeonhole principle. Select the smallest i such that this is true, denote these values of i and j by
si and s j, and let qs denote the state τ̂(q̂0,bssi). By construction 0 < s j − si ≤ |Q̂|. The state qs will
therefore be in a suitable cycle since

qs = τ̂(q̂0,bssi) = τ̂(q̂0,bss j) = τ̂(q̂0,bssi+k(s j−si))

for all k ≥ 0.
We now want to show that for some string s there is transition in the cycle with a probability at

most 1
2 . Since the number of strings is larger than |Q̂| there must be two distinct strings, s,s′, such

that qs = qs′ .
We can write s = uσv and s′ = uσ′v′, where u,v,v′ ∈ Σ∗,σ,σ′ ∈ Σ. and σ 6= σ′, u here being

the longest common prefix of s and s′. Consider the transitions from the state τ̂(qs,u). At least one
of the two values γ̂(τ̂(qs,u),σ), γ̂(τ̂(qs,u),σ′) must be less than or equal to 0.5. Without loss of
generality we can say it is σ, which means that γ̂(qs,s) ≤ 1/2.

This means that we can say the probability of a string of the form bsk|Q̂|+l for any k, l ≥ 0 must be
less than or equal to 2−k. For k = 0 this is trivially true. For k > 0 define n = k(|Q̂|+si−s j)+ l−si ≥
0 we can write the probability as

γ̂(q̂0,bsk|Q̂|+lζ) = γ̂(q0,bssi)γ̂(qs,s
s j−si)kγ̂(qs,s

n)γ̂(τ̂(bsk|Q̂|+l),ζ)

≤ γ̂(qs,s
s j−si)k

≤ γ̂(qs,s)
(s j−si)k

≤ 2−k.

We can now use this upper bound on the probability that the hypothesis gives the strings to lower
bound the divergence with respect to the target.

Expanding out the definition of the KLD and the target automaton, we have

DKL(A
s
p,AH) = p log

p
γ̂(q̂0,aζ)

+
∞

∑
i=0

|Q̂|−1

∑
j=0

(1− p)2 pi|Q̂|+ j log
(1− p)2 pi|Q̂|+ j

γ̂(q̂0,bsi|Q̂|+ jζ)
.
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Substituting in the bound above, and the fact that γ̂(q̂0,aζ) ≤ 1 yields

DKL(A
s
p,AH) ≥ p log p+

∞

∑
i=0

|Q̂|−1

∑
j=0

(1− p)2 pi|Q̂|+ j log(1− p)2 pi|Q̂|+ j2i

≥ p log p+ |Q̂|
∞

∑
i=0

(1− p)2 pi|Q̂|+|Q̂| log(1− p)2 pi|Q̂|+|Q̂|2i

≥ p log p+ |Q̂|(1− p)2 p|Q̂|

(

log(1− p)2 p|Q̂|
∞

∑
i=0

pi|Q̂| + log2p|Q̂|
∞

∑
i=0

ipi|Q̂|

)

.

Recall that ∑∞
i=0 ipi = p(1− p)−2 and ∑∞

i=0 pi = (1− p)−1, so that

DKL(A
s
p,AH) ≥ p log p+ |Q̂|(1− p)2 p|Q̂|

(

log(1− p)2 p|Q̂|(1− p|Q̂|)−1 + log2p|Q̂|p|Q̂|(1− p|Q̂|)−2
)

.

We can take p to be large enough that p|Q̂| > 3/4, giving

DKL(A
s
p,AH) ≥ p log p+ |Q̂|

(1− p)2

(1− p|Q̂|)
p2|Q̂|

(

log(1− p)2 +(1− p|Q̂|)−1 log3/2
)

.

Now if we write p = (1−1/n),

DKL(A
s
p,AH) ≥ log p+ |Q̂|

(1− p)2

(1− p|Q̂|)
p2|Q̂|

(

n

|Q̂|
log

3
2
−2logn

)

.

Now using a simple linear bound on the logarithm it can be shown that for any β > 1 if n >
2β log2β then logn < n/β. If we set β = 4|Q̂|/ log(3/2) and n > 8|Q̂| log |Q̂|, and p|Q̂| > (1−|Q̂|/n)
and assuming that p > (2/3)1/8 we have

DKL(A
s
p,AH) ≥ log p+ |Q̂|

(1− p)2

(1− p|Q̂|)
p2|Q̂| n

2|Q̂|
log

3
2

≥ log p+
(1− p)

(1− p|Q̂|)
p2|Q̂| 1

2
log

3
2

≥ log p+

(

3
4

)2 1
2

log
3
2
≥

1
8

log
3
2
.

Thus for sufficiently large values of n, and thus for values of p sufficiently close to 1, there must
be an automaton As

p such that the algorithm will with probability at least 0.5 produce a hypothesis
with an error of at least 1

8 log 3
2 . �
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