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Abstract
Ensembles are a widely used and effective technique in machine learning—their success is com-
monly attributed to the degree of disagreement, or ‘diversity’, within the ensemble. For ensembles
where the individual estimators output crisp class labels,this ‘diversity’ is not well understood and
remains an open research issue. For ensembles of regressionestimators, the diversity can be exactly
formulated in terms of the covariance between individual estimator outputs, and the optimum level
is expressed in terms of abias-variance-covariancetrade-off. Despite this, most approaches to
learning ensembles use heuristics to encourage the right degree of diversity. In this work we show
how to explicitly control diversity through the error function. The first contribution of this paper is
to show thatby taking the combination mechanism for the ensemble into account we can derive an
error function for each individual that balances ensemble diversity with individual accuracy. We
show the relationship between this error function and an existing algorithm callednegative corre-
lation learning, which uses a heuristic penalty term added to the mean squared error function. It is
demonstrated that these methods control the bias-variance-covariance trade-off systematically, and
can be utilised with any estimator capable of minimising a quadratic error function, for example
MLPs, or RBF networks. As a second contribution, we derive a strict upper bound on the coef-
ficient of the penalty term, which holds for any estimator that can be cast in a generalised linear
regression framework, with mild assumptions on the basis functions. Finally we present the re-
sults of an empirical study, showing significant improvements over simple ensemble learning, and
finding that this technique is competitive with a variety of methods, including boosting, bagging,
mixtures of experts, and Gaussian processes, on a number of tasks.
Keywords: ensemble, diversity, regression estimators, neural networks, hessian matrix, negative
correlation learning

1. Introduction

The last decade has seen a frenzy of work in so-calledensemble learning systems. These are groups
of machine learning systems where each learner provides an estimate of a target variable; these
estimates are combined in some fashion, hopefully reducing the generalisationerror compared to
a single learner. The target can be categorical (classification ensembles) or continuous (regression
ensembles). The multiple estimates are integrated via a combination function, commonly majority
voting for classification and alinear combinationfor regression. It is well appreciated in both
cases that the individual estimators should exhibit different patterns of generalisation—the very
simple intuitive explanation is that a million identical estimators are obviously no betterthan a single
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estimator of the same form. Much research has gone into how to encourage this error “diversity”—
most commonly manipulating the training data, providing each learner with a different subset of
patterns or features (see Brown et al. (2005a) for a recent survey). The main point to note here is that
when our estimators output crisp class labels, there is no agreed definition of diversity, and it remains
an open research question (Kuncheva and Whitaker (2003)). The problem is somewhat easier if we
have estimators that give posterior probabilities, in which case the effect of estimator correlations
on classification error rate has been investigated by Tumer and Ghosh (1995) and Fumera and Roli
(2003), though there remain several open questions on this topic.

A commonly overlooked point for regression ensembles is that this “diversity” can be explic-
itly quantified and measured. Thebias-variance-covariancedecomposition from Ueda and Nakano
(1996) breaks the mean squared error (MSE) into three components. Quite simply, whereas in a sin-
gle regression estimator we have the well known bias-variancetwo-waytrade-off, in an ensemble
of regressors we have the bias-variance-covariancethree-waytrade-off. The optimum “diversity” is
that which optimally balances the components to reduce the overall MSE. In thisarticle we focus
on negative correlation (NC) learning, a successful neural network ensemble learning technique
developed in the evolutionary computation literature (Liu (1998)). In a statistical framework, we
show that NC uses a penalty coefficient toexplicitly alter the emphasis on the variance and co-
variance portions of the MSE. Setting a zero coefficient corresponds toindependently training the
estimators; a higher coefficient introduces more emphasis on covariance,and at a particular value it
corresponds to treating the entire ensemble as a single learning unit. This is anexplicit management
of the ensemble diversity. We will describe how the ensemble error gradient can be broken into a
number of individually understandable components, and that NC exploits thisto blend smoothly be-
tween a group of independent learners and a single large learner, finding the optimal pointbetween
the two. We will prove an upper bound on the penalty coefficient, provide guidance on how to set it
optimally, and show empirical support that this guidance is useful. The NC framework isapplicable
to any nonlinear regression estimatorminimising the MSE; we show examples using multi-layer
perceptrons and radial basis function networks as the base estimators.

The structure of this article is as follows. We begin in Section 2 with a summary of the un-
derlying theory of regression ensemble learning, describing why there exists a trade-off between
ensemble diversity and individual estimator accuracy. We then consider inSection 3 how we might
derive an error function that is capable of optimising this trade-offexplicitly. We do this and note
that it can be shown as equivalent to an existing heuristic technique,negative correlation (NC)
learning. We continue in Section 4 with an introduction to NC learning, summarising the assump-
tions and properties as published in the original work. Here we provide a statistical interpretation of
NC, and derive a strict upper bound on its penalty coefficient—we empirically validate this bound
in Sections 5 and 6. Finally in Section 7 we summarise the implications of this work in a broad
context.

2. Ensemble Learning for Regression

In this section we review the bias-variance decomposition (Geman et al. (1992)), using it as a
vehicle to introduce our notation; we then show how this decomposition naturallyextends to a
bias-variance-covariancedecomposition (Ueda and Nakano (1996)) when using an ensemble of
regression estimators.
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2.1 The Bias-Variance Decomposition

We have a data set of input vectors and output scalars,z= {(x1, t1), ...,(xN, tN)}, with each element
drawn from a random variableZ defined over an unknown distributionp(x, t). It should be noted
that for brevity, and without loss of generality, we have assumed a noise level of zero in the data.1

The learning problem is to use the setz to approximate the correct mapping from input to output.
For this purpose we use a parameterized estimatorf , whose set of parametersw determine how
well it approximates the mapping. We would like to find the set of parametersw that minimise the
expected mean squared error,

e( f ) =
Z

( f (x;w)− t)2p(x, t)d(x, t). (1)

Unfortunately we do not have access to the true distributionp(x, t), so we approximate this
integral with a summation over the data setz,

e( f ) ≈
1
N

N

∑
n=1

( f (xn;w)− tn)
2

, (xn, tn) ∈ z. (2)

We do not necessarily want a set of parametersw that give us zero error onz; this is becausez
is only asamplefrom the true distribution, and if we tunew precisely toz then the estimatorf may
not perform well on future data (we overfitted). However, if we do nottunew just enough, then
we may again not perform well in the future (we underfitted). This is explicitlyformulated in the
bias-variancedecomposition (Geman et al. (1992)). Note that from this point forward, inplace of
the integral notation in Equation (1), we use the shorthand expectation operatorE{·}; additionally
we will omit the input and parameter vectors, so where it is unambiguous, instead of f (x;w), we
write simply f . The bias-variance decomposition is

E{( f − t)2} = (E{ f}− t)2 +E{( f −E{ f})2}

= bias( f )2 +variance( f ). (3)

The decomposition is a property of thegeneralisationerror; these two components have to
be balanced against each other for best performance. Now let us imagine that instead of a single
estimatorf , we have a collection of them:f1, ..., fM, eachfi has its own parameter vectorwi , and
M is the total number of estimators. We then train each individualfi separately, using Equation (2)
as the error function; once this is accomplished, the outputs of the individuals arecombinedto give
theensemble outputfor any new datapointx. The simplest possible combination mechanism is to
take a uniformly weighted average, so the output of the ensemble is

f̄ (x;w1, ...,wM) =
1
M

M

∑
i=1

fi(x;wi). (4)

The ensemblēf can obviously be seen as an estimator in its own right; it will therefore have a bias-
variance decomposition; However it transpires that, for this class of estimator, it can be extended to
a bias-variance-covariancedecomposition.

1. In the case of a non-zero noise component,t in the decomposition would be replaced by its expected valueET{t},
and a constant (irreducible) termσ2 would be added, representing the variance of the noise.
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2.2 The Bias-Variance-Covariance Decomposition

Treating the ensemble as a single learning unit, its bias-variance decompositioncan be formulated
as

E{( f̄ − t)2} = (E{ f̄}− t)2 +E{( f̄ −E{ f̄})2}

= bias( f̄ )2 +variance( f̄ ). (5)

We will now consider how the bias-variance decomposition for an ensemble can be extended (Ueda
and Nakano (1996)).2 From this point forward, it should be noted that the expectation operator is
subtly different to that in the decomposition for a single estimator. We redefineour random variable
Z as a setZ = (Z1, ...,ZM), so theith estimator is trained with a training setzi drawn from its own
random variableZi . It should be noted thatZi potentially may be identical for alli, or not. If the
training data is identical for two machinesi and j, it does not imply that the expected valuesE{ fi}
andE{ f j} are equal, since other differences may be present between machinesi and j, i.e. in the
training procedures, or the models. Finally, we note that although the decomposition presented
below does hold for non-uniformly weighted ensembles, we restrict our analysis to the uniform
case, as it corresponds to the simple average combination technique used commonly in practice. To
aid our exposition now, we define three concepts. The first concept isbias, the averaged bias of the
ensemble members,

bias =
1
M ∑

i

(E{ fi}− t). (6)

The second isvar, the averaged variance of the ensemble members,

var =
1
M ∑

i

E{( fi −E{ fi})
2}. (7)

The third iscovar, the averaged covariance of the ensemble members,

covar =
1

M(M−1) ∑
i

∑
j 6=i

E{( fi −E{ fi})( f j −E{ f j})}. (8)

We then have

E{( f̄ − t)2} = bias
2
+

1
M

var+

(

1−
1
M

)

covar. (9)

What does this decomposition tell us? It illustrates that in addition to the bias and variance of
the individual estimators, the generalisation error of an ensemble also depends on thecovariance
between the individuals. This raises the interesting issue of why we should ever train ensemble
members separately; why shouldn’t we try to find some way to capture the effect of the covariance
in the error function? Given the decomposition (9), it is not immediately obviouswhat form this
should take—this will be our next topic for consideration.

2. It is interesting to note that this was the first appearance of the decomposition only for the ML literature—in fact an
equivalent decomposition can be found in Markowitz (1952), which wasinstrumental for modern financial portfolio
theory, and subsequently won the 1990 Nobel Prize for Economics.
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3. How Can We Optimise Diversity with an Error Function?

For a single regression estimator, generalisation error is determined by a two-way bias-variance
trade-off; for an ensemble of regression estimators, the ‘diversity’ issue is simply athree-waybias-
variance-covariancetrade-off. We know how to quantify diversity, but we have not yet considered
how to achieve it and balance it against individual accuracy—the fundamental issue of ensemble
learning. The decompositions we have considered so far consist of integrals overall possible data
setsof a fixed size—we require a computable approximation to these in order to minimisean error
function on a limited data set. It turns out that another decomposition in the literature, significantly
more well-known, provides the missing link. We will review this decomposition andits relation
to the ones we have already considered, then show how we can use it to train an ensemble whilst
controlling the bias-variance-covariance trade-off.

3.1 The Ambiguity Decompositon

Krogh and Vedelsby (1995) showed thatat a single arbitrary datapoint, the quadratic error of the
ensemble estimator is guaranteed to be less than or equal to the weighted average quadratic error
of the component estimators,

( fens− t)2 = ∑
i

ci( fi − t)2−∑
i

ci( fi − fens)
2
. (10)

wheret is the target value of an arbitrary datapoint,∑i ci = 1, ci ≥ 0, and fens is the convex com-
bination of theM component estimatorsfens= ∑M

i=1ci fi . Preceding the bias-variance-covariance
decomposition, this was a very encouraging result for ensemble research, providing a very simple
expression for the effect of error correlations in an ensemble. The decomposition is made up of
two terms. The first,∑i ci( fi − t)2, is the weighted average error of the individuals. The second,
∑i ci( fi − fens)

2 is referred to as theAmbiguity, measuring the amount of variability among the en-
semble member answers for this particular(x, t) pair. The trade-off between these two determines
how well the ensemble performs at this datapoint.

We have now seen two decompositions, Equation (9) and Equation (10), expressing the effect
of correlations on ensemble error in two different ways. It is thereforesensible to ask what the
relationship is between these two. The very similar structure of the two decompositions (5) and (10)
is no coincidence; the proofs are virtually identical (Brown et al. (2005a)); see also Hansen (2000)
for an alternative treatment of this relationship. Assuming a uniform weighting, we substitute the
right hand side of equation (10) into the left hand side of equation (9), giving us

E{
1
M ∑

i

( fi − t)2−
1
M ∑

i

( fi − f̄ )2} = bias
2
+

1
M

var+

(

1−
1
M

)

covar. (11)

What portions of the bias-variance-covariance decomposition correspond to the Ambiguity term?
After some manipulations (see Appendix B for details) we can show

E{
1
M ∑

i

( fi − t)2} = bias
2
+Ω (12)

E{
1
M ∑

i

( fi − f̄ )2} = Ω−

[

1
M

var+

(

1−
1
M

)

covar

]

. (13)
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whereΩ is the interaction between the two sides,

Ω = var+
1
M ∑

i

(E{ fi}−E{ f̄})2
. (14)

Since theΩ is present in both sides, when we combine them by subtracting the Ambiguity in equa-
tion (13), from the average MSE in equation (12), theΩs cancel out, and we get the original bias-
variance-covariance decomposition back, as in the RHS of equation (11). ThisΩ term is the average
variance of the estimators, plus the average squared deviation of the expectations of the individuals
from the expectation of the ensemble. The fact that theΩ term exists illustrates again that we cannot
simply maximise diversity without affecting the other parts of the error—in effect, this interaction
quantifiesthe diversity trade-off for regression ensembles.

3.2 Using the Decompositions to Optimise Diversity

In a simple ensemble, the norm is to train learners separately—theith member of the ensemble
would have the error function3

ei =
1
2
( fi − t)2

. (15)

In light of the decompositions we have seen, this is rather odd. Why wouldn’t we want to directly
minimise thefull ensemble error?

eens=
1
2
( f̄ − t)2 =

1
M ∑

i

1
2
( fi − t)2−

1
M ∑

i

1
2
( fi − f̄ )2

. (16)

One easy answer to this is that we are adopting the “division of labor” approach, simplifying the
learning problem by breaking it intoM smaller problems. However, according to Equation (11),
this error function should account for the bias, the variance, and critically also the covariance of
the ensemble. The point to remember is that these components should bebalancedagainst each
another. Given the relationship shown in Equation (12) and Equation (13), we could imagine a
“diversity-encouraging” error function of the form

ediv
i =

1
M ∑

i

1
2
( fi − t)2−κ

1
M ∑

i

1
2
( fi − f̄ )2

. (17)

whereκ is a scaling coefficient in[0,1] and allows us to vary the emphasis on the covariance com-
ponent. If we adopt a gradient descent procedure for training, we note

∂ediv
i

∂ fi
=

1
M

[

( fi − t)−κ( fi − f̄ )
]

. (18)

Whenκ = 0 here, the gradient of our error function is proportional to the gradient of the error of a
single learner, Equation (15). At the other extreme, whenκ = 1, the fi terms in Equation (18) cancel
out, and we have the gradient of the entire ensemble as a single unit,

κ = 0 ,
∂ediv

i

∂ fi
=

1
M

[

( fi − t)
]

=
1
M

∂ei

∂ fi
(19)

κ = 1 ,
∂ediv

i

∂ fi
=

1
M

[

( f̄ − t)
]

=
∂eens

∂ fi
. (20)

3. As we will shortly be using a gradient descent procedure, by convention with the existing literature we multiply by
1
2 .
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By scaling theκ term we would be able to vary smoothly between the two extremes of training
learners separately and training the ensemble as a single unit. Further analysis of these gradi-
ent components is provided in Appendix C. Using this scaling parameter corresponds to explicitly
varying our emphasis on minimising the covariance term within the ensemble MSE, balancing it
against our emphasis on the bias and variance terms; hence we are explicitlymanagingthe bias-
variance-covariance trade-off. The reader may now justifiably expect an empirical investigation of
this error function; however, it conveniently transpires that an existing heuristic method in the liter-
ature (derived independently of the observations above) can be shown to be equivalent to this, and
has undergone extensive empirical tests showing its utility in a number of domains. The theoret-
ical results we have derived in this section form a solid foundation to explainthe success of this
technique and link it to others in the literature. We will now consider this,Negative Correlation
Learning, and show precisely how it relates to the derivations we have provided in this section.

4. Negative Correlation Learning

Negative correlation (NC) learning (Liu (1998)) is a neural network ensemble learning technique
developed in the Evolutionary Computation literature. NC has shown a number of empirical suc-
cesses and varied applications, including regression problems (Yao et al. (2001)), classification
problems (McKay and Abbass (2001)), and time-series prediction (Liu (1998)). It has consistently
demonstrated significant performance improvements over a simple ensemble system, showing very
competitive results with other techniques like mixtures of experts, bagging, and boosting (Liu and
Yao (1997); McKay and Abbass (2001)). Though empirical successes have been found with classi-
fication problems, it should be noted that the discussion here concerns only the regression case.

4.1 The History

The fact that correlations between ensemble members affects performancehas been known for a
long time. The first such reference to appear in the machine learning literature was Perrone (1993),
showing that we obtain a1M variance reduction if correlation between learners is zero. The first
reference in the literature to explicitly use this idea in a learning algorithm was Rosen (1996), who
trained networks sequentially using a penalty and scaling coefficientλ added to the error term,

ei =
1
2
( fi − t)2 +λpi (21)

pi = ( fi − t)
i−1

∑
j=1

( f j − t). (22)

Attempting to extend this work, Liu and Yao (1997) trained the networks in parallel, and used a
number of alternative penalty terms4 including one where thet is replaced byf̄ ,

pi = ( fi − t)∑
j 6=i

( f j − t) (23)

pi = ( fi − f̄ )∑
j 6=i

( f j − f̄ ). (24)

4. A companion work to this article, Brown et al. (2005b), gives a similar analysis to penalty (23).
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Theλ parameter is problem-dependent, controlling the trade-off between the objective and penalty
terms during the gradient descent training procedure. Figure 1 shows NC using backpropaga-
tion to update the network weights. A point to note here is that the authors calculate the gradi-
ent using the assumption“that the output of the ensemblēf has constant value with respect to
fi” (Liu, 1998, p.29)., i.e.

∂ f̄
∂ fi

= 0. (25)

Using this, and the penalty Equation (24), the following gradient was derived,

ei =
1
2
( fi − t)2 +λ( fi − f̄ )∑

j 6=i

( f j − f̄ ) (26)

∂ei

∂ fi
= ( fi − t)+λ∑

j 6=i

( f j − f̄ ). (27)

This is clearly an incorrect assumption—in the next section we will examine the reasoning behind it,

1. LetM be the final number of predictors required.

2. Take a training setz= {(x1, t1), ...,(xN, tN)}.

3. For each training pattern inz from n = 1 toN do :

(a) Calculatef̄ = 1
M ∑i fi(xn)

(b) For each network fromi = 1 toM do:

• Perform asingleupdate for each weightw in networki, using a
learning rateα (set as 0.1 in our experiments), and:

∆w = −α
[

( fi(xn)− tn)−λ( fi(xn)− f̄ )
]

· ∂ fi
∂w

4. Repeat from step 3 for a desired number of iterations.

For any new testing patternx, the ensemble output is given by:

f̄ =
1
M ∑

i

fi(x)

Figure 1: Pseudocode for negative correlation learning. Note the relationship between theλ term
and theγ term in Equation (30).

the implications it brings, and show how NC relates to the error decompositions we have discussed
so far.
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4.2 A Theoretical Grounding for NC Learning

We would like to provide a rigorous foundation for the NC method, so it seems sensible to observe
what happens when weremovethe assumption of constant̄f . We now introduce a termγ in place of
λ, to indicate when we perform the gradient calculationswithout the assumption. Re-deriving the
gradient, we have

ei =
1
2
( fi − t)2 + γ( fi − f̄ )∑

j 6=i

( f j − f̄ ) (28)

∂ei

∂ fi
= ( fi − t)− γ

[

2(1−
1
M

)( fi − f̄ )
]

. (29)

We understand now thatλ in fact has the deterministic component 2(1− 1
M ); to avoid confusion we

now refer to the parameters in the following context,

λ = 2γ(1−
1
M

). (30)

whereγ is still a problem-dependent scaling parameter. According to communications with the
original authors, the assumption was introduced for two reasons. Firstly because the term 2(1− 1

M )
is a constant for any fixed ensemble of sizeM, so can be precalculated for efficiency. Secondly, it
allowed the appealing property that whenλ = 1, the gradient in Equation (27) reduces

∂ei

∂ fi
= ( fi − t)+λ∑

j 6=i

( f j − f̄ )

= ( fi − t)−λ( fi − f̄ )

= ( f̄ − t)

= M ·
∂eens

∂ fi
. (31)

Here it can be seen that the identity∑ j 6=i( f j − f̄ ) = −( fi − f̄ ) was used—the sum of deviations
around a mean is equal to zero. However, for this to hold we have to nowviolate the constantf̄
assumption, as the sum of deviations around a constant isnot equal to zero. The reader will see an
immediate similarity in (31) to the observations we have made in the previous section,specifically
equations (18), (19), and (20). It emerges that by introducing the assumption, and subsequently
violating it, the NC gradient becomes proportional to the gradient of the “diversity-encouraging”
error function (18) suggested earlier, where we useλ in place ofκ,

∂ei

∂ fi
= ( fi − t)−λ( fi − f̄ ) = M ·

∂ediv
i

∂ fi
. (32)

¿From the observations we have made here, the connection between NC and the Bias-Variance-
Covariance decomposition should be apparent. By introducing the assumption (25), NC was in-
advertently provided with the missing gradient components that correspondto the variance and
covariance terms within the ensemble MSE. It can therefore be concluded that NC succeeds be-
cause it trains the individual networks with error functions which more closely approximate the
individual’s contribution to ensemble error, than that used by simple ensemblelearning. Using the
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penalty coefficient, we then balance the trade-off between those individual errors and the ensemble
covariance. The relationship to the Ambiguity decomposition is made even more apparent by noting
that the penalty term can be rearranged,

pi = ( fi − f̄ )∑
j 6=i

( f j − f̄ ) = −( fi − f̄ )2
. (33)

This leads us to a restatement of the NC error function,

ei =
1
2
( fi − t)2− γ( fi − f̄ )2

. (34)

Remembering the breakdown of the ensemble error from earlier,

eens=
1
M ∑

i

[
1
2
( fi − t)2−

1
2
( fi − f̄ )2

]

, (35)

we see that the MSE of an ensemble can be decomposed into a weighted summation, where the
ith term is the backpropagation error function plus the NC-learning penalty function, with theγ
parameter set at 0.5. Here we note an important point, that there are additional effects thatfi has
on Equation (35), that arenot containedin Equation (34). This is via thēf term, which obviously
depends onfi , and can be found in each component of the summation in Equation (35). Therefore,
simply settingγ = 0.5 would mean we are not taking account of these effects, and settingγ > 0.5 al-
lows us to include them and find the appropriate problem-dependent balance for best generalisation.
These observations are supported by further gradient analysis in Appendix C.

To summarise, in this section we have shown that there exist two quite different error functions,
which yield gradients (18) and (29) differing only in a scalar constant. Each incorporates sufficient
information to allow the individual learners to optimise the bias-variance-covariance trade-off. We
now understand how NC balances accuracy against diversity; however, we do not yet understand
what thecorrectbalance is, i.e. how do we set the penalty coefficient? We consider this problem in
the next section.

4.3 Understanding and Defining Bounds on the Penalty Coefficient

The original work on NC (Liu and Yao (1997)) showed that aλ value greater than zero can encour-
age a decrease in covariance, however it is also observed that too higha value can cause a rapid
increase in the variance component, causing overall error to be higher.No theoretical explanation
was given for this behaviour, and as such we do not yet have a clear picture of the exact dynamics of
the parameter. It was stated that the bounds ofλ should be[0,1], based on the following calculation,

∂ei

∂ fi
= fi − t +λ∑

j 6=i

( f j − f̄ )

= fi − t −λ( fi − f̄ )

= fi − t −λ( fi − f̄ )+λt −λt

= (1−λ)( fi − t)+λ( f̄ − t).

It is stated:“the value of parameterλ lies inside the range0≤ λ ≤ 1 so that both(1−λ) andλ have
non-negative values”(Liu, 1998, p.29). In practice this bound seemed to be applicable; however,
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the justification is questionable, and again here we see the assumption of constant f̄ is violated—if
constantf̄ is assumed, then the deviations aroundf̄ result cannot be used. In this section we provide
more concrete theoretical evidence for an upper bound.

The NC penalty term ‘warps’ the error landscape of the network, making the global minimum
hopefully easier to locate. However, if the landscape is warpedtoo much, it could eliminate any
useful gradient information. This state is indicated by the positive-definiteness (PD) of the Hessian
matrix. If the Hessian matrix, evaluated at a given point, is non-PD, then the error gradient consists
of either a local maximum or a point of inflexion, and we have lost any useful gradient information
from our original objective function. We acknowledge an important pointhere, that the state of the
Hessian during training saysnothingabout thegeneralisation error. We simply note that if we have
a non-PD Hessian during the training, there will be no minimum to converge toon the datapoint
at which it was evaluated, in which case training can only cause weight divergence. We would
therefore like to know conditions under which the Hessian will be non-PD.

If the Hessian matrix is positive definite, then all elements on the leading diagonal are positive-
valued; therefore if any element on that diagonal is zero or less, the entire matrixcannotbe positive
definite. Assume we have an estimator that is a linear combination of a number of nonlinear func-
tionsφ, so

fi =
K

∑
k=1

wkiφki. (36)

Examples of estimators in this class are Multi-Layer Perceptrons using linear output nodes, Polyno-
mial Neural Networks, and Radial Basis Functions. Now, for an arbitrary Hessian diagonal element
corresponding to theqth weight in the output layer of theith network,wqi, we can show (derivation
given in Appendix A) that

∂2ei

∂wqi
2 =

[

1−λ(1−
1
M

)
]

φqi
2
. (37)

where in the case of RBF networks,φqi
2 is the squared output of theqth basis function in the

ith network. If this element, Equation (37), equates to zero or less, the entireHessian matrixis
guaranteed to be non-positive definite. Therefore we would like the following inequality to hold,

0 <

[

1−λ(1−
1
M

)
]

φqi
2

0 < φqi
2−λφqi

2(
M−1

M
)

λφqi
2(

M−1
M

) < φqi
2

λ <
φqi

2

φqi
2(M−1

M )

λ <
M

M−1
. (38)

Since the effect ofφqi cancels out,5 we find that this inequality isindependentof all other
network parameters, so it isa constant for any ensemble architecture using estimators of this form

5. We note that we assume a basis functionφqi 6= 0, to avoid divide by zero problems—this does not always hold, for
example when using hyperbolic tangent activations; however here we assume either sigmoid activation or a Gaussian
RBF.
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and a simple average combination function. This defines an upper bound forλ and, since we know
the relationship between the two strength parameters from Equation (30), wecan also show a bound
for γ,

λupper=
M

M−1
γupper=

M2

2(M−1)2 . (39)

Whenλ or γ is varied beyond these upper bounds, the Hessian matrix is guaranteed tobe
non-positive definite.Figure 2 plotsλupper and the equivalentγupper for different ensemble sizes.
We see that as the size increases,λupper asymptotes to 1, andγupper to 0.5. For larger ensembles,
e.g. M > 10, this therefore lends concrete theoretical evidence to Liu’s proposed bound ofλ = 1.
However, for smallM, the bound shows values larger thanλ = 1 may still retain a positive definite
Hessian matrix.
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Figure 2: The Upper bound onγ andλ.

Our bound was determined on the premise that the leading diagonal containingnegative el-
ements implies a non-PD Hessian matrix. However, it could easily be the case that the leading
diagonal is all positive, yet the entire matrix is still non-PD. This implies that the matrix could be-
come non-PDbeforeour upper bound is reached. Our bound is therefore a conservativeone, and it
may be possible to define a tighter bound. The question of whether a tighter bound can be defined
can be phrased as“Are there any general conditions for the off-diagonal elements of the Hessian,
that will force non-positive definiteness, in spite of all leading diagonal elements being positive?”.
Any such analytical conditions based on the Hessian will almost certainly be input-dependent—the
advantage of our bound is that it is a constant for a given ensemble, dependent only on the number
of ensemble members. However, the utility of the bound depends entirely on how tight it is—using
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a neural network ensemble it would be pointless if the weights diverged significantly beforethe
bound is reached. To validate this hypothesis we now engage in empirical testing.

5. Empirically Validating the Proposed Bound

The purpose of this section is to determine how useful our theoretical upper bound can be in practice.
We remind the reader again that our bound is not computed in reference to generalisation error, and
we now wish to evaluate whether it can be practically useful in this context. When varyingγ, if the
network weights diverge significantly before the upper bound is reached, then the bound is not tight
and therefore of little use. Alternatively, it could simply be that certain ensemble configurations
do not show any benefit from using NC, in which case NCitself is of no use, and neither is our
parameter bound. We now investigate these issues.

5.1 Data Sets

We use the Boston Housing data set, where the problem is to predict the medianhouse price given
a number of demographic features. There are 506 examples, each containing 13 input variables (12
continuous, 1 binary), and 1 continuous output variable in the range 0 to 50. All input variables
were linearly rescaled, independently of each other, to be in the range[0,1], and the output variable
was linearly rescaled to[−1,1]. A five-fold cross validation procedure was used, so keeping 20% of
the data as a holdout set, and using the remaining 80% for training and validation. With the Boston
data set this equates to 304 for training, 101 for validation, and 101 for testing. The validation data
was used to perform early stopping by the following procedure: train whilenoting the validation
error every 50 epochs; if the validation error has risen in comparison to 500 epochs ago, terminate
training and reset the weights to the best point within that 500 epoch window (at a resolution of 50
epochs) according to the validation data.

The second data set was generated (Friedman (1991)) by the function

h(x) = 10sin(πx1x2)+20

(

x3−
1
2

)2

+10x4 +5x5 +η, (40)

wherex = [x1, ..,x10] is an input vector whose components are drawn uniformly at random from
[0,1], andη is a noise component drawn fromN(0,1), i.e. mean zero and variance 1.0. Totally
there are 10 continuous valued attributes, but only the first 5 are used in the function, leaving the
last 5 as irrelevant characteristics that the algorithm has to learn to ignore.We used a data set of
size 1000, using the same five-fold cross validation procedure as described above.

The third data set used was theLogPdata, recently used in (Tino et al. (2004)). This is a highly
nonlinear pharmaceutical data set, where the task is to predict thepartition coefficientof a chemical
compound, allowing one to determine certain uptake properties of the molecule.The data set has
14 continuous input variables, and 1 continuous output variable in the range [−4.2,+9.9]. There
are 6912 examples, which we used in the same cross-validation procedureas above.

For all three data sets, each ensemble was evaluated over the 5 data folds and over 30 trials of
random weights, giving 150 trials for each run.
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5.2 When Does the NC Technique Work Well?

Empirical analyses of NC have been shown on several other occasionsand on several other data sets
(Liu et al. (2000); Liu and Yao (1997); Brown (2004)). The point ofthis section is to characterise
some general conditions of ensemble architecture under which NC seems to succeed in comparison
to a simple ensemble.

We train several different ensemble architectures using a range ofγ values (at a resolution of
0.05), the optimumγ value was located according to the validation data, and finally evaluated on
the testing data. This was compared to usingγ = 0, where it should be remembered thatγ = 0
is exactly equivalent to simple ensemble learning, i.e. training each network independently of the
otherswithoutNC learning. We first varied the number of networks in the ensemble, using afixed
individual network size of 6 hidden nodes. Figure 3 shows results for the Friedman data, figure 4
for Boston, and figure 5 for LogP; 95% confidence intervals are indicated. With the Friedman and
Boston data sets, a general trend that can be noted is that larger relativegains seem to be made with
larger ensemble sizes.
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Figure 3: Friedman,γ = 0 versus optimalγ, 6
hidden nodes per network
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Figure 4: Boston,γ = 0 versus optimalγ, 6 hid-
den nodes per network

However, with the LogP data, relative performance does not seem to increase with the size of the
ensemble. If we make the component networks much simpler, 2 hidden nodes as in figure 6, we see
the same recognisable trends as in the other data sets. The general rule here, supported by previous
empirical work on NC, seems to be to use very simple networks—in this case we can see that an
ensemble of 16 networks, each with 2 hidden nodes, has equalled the performance of a similarly
sized ensemble, using 6 hidden nodes per network.

Figures 7 and 8 show the gains as we vary thecomplexity(i.e. number of hidden nodes per net-
work) of the individual ensemble members. We can note here that the gain from using NCdecreases
as we increase the complexity of the networks. Regarding again figures 3 to6 these results indi-
cate that NC is of most use when we have large ensembles of relatively low complexity ensemble
members. This is emphasized further looking at figure 10, where we see that an ensemble of 6 net-
works using 2 hidden nodes, and using NC, can equal the performanceof the same ensemble using
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Figure 5: LogP,γ = 0 versus optimalγ, 6 hid-
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Figure 6: LogP,γ = 0 versus optimalγ, 2 hid-
den nodes per network

far more complex networks. Additionally, in these situations, whenγ is set optimally, significantly
faster convergence and lower generalisation error for a fixed numberof epochs were observed.

5.3 How Tight is the Bound?

We now turn to examining the behaviour of thegeneralization erroras we moveγ toward its upper
bound. Figures 11, 13 and 15 show the performance asγ is changed, with several different sizes of
ensemble—each network has fixed complexity at 6 hidden nodes. A distinctive pattern is observed:
a virtually monotonic decrease in error as we increaseγ, up to a particular “threshold”, beyond which
the error rises rapidly. On closer examination of the networks trained with these highγ values, it
was observed that the network weights had diverged to excessively large values. The point at which
divergence occurs seems to move downward as we increase the size of the ensemble. Figures 12, 14
and 16 show the behaviour with a fixed ensemble size,M = 6, as we vary the individual complexity
between 2 and 12 hidden nodes. Here we see a distinction from the results varying ensemble size:
the divergence point seems largely unaffected by the complexity of the networks.

Using these results as a guide, we searched the range ofγ at the finer resolution of 0.01 to locate
the divergence point. Figure 18 shows this, illustrating that divergence seems extremelyinvariant
to the choice of data set. We superimpose the predicted upper bound and note that as the number
of networks increases, the divergence point and the upper bound both asymptote to 0.5, confirming
that our bound is tight. We have also superimposedγ = M

2(M−1) , corresponding to whenλ = 1.
Zooming in on part of the plot allows us to see that theλ = 1 original bound is obeyed in most
instances, but not all. We acknowledge of course that theexactlocation of the divergence point is
of little consequence; the real point we wish to locate is theoptimumγ value, and see if it provides
significant improvements relative to other ensemble techniques; we will explore this in the next
section.

In conclusion to the ‘upper bound’ issue, we note that we have providedtheoretical evidence
that supports thatλ = 1 bound in the case of largeM, but the bound remains loose for smallM, and

1635



BROWN, WYATT AND TI N̆O

2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

9

Number of Hidden nodes per network

T
e

st
in

g
 M

S
E

Simple ensemble
NC (Optimal Gamma)
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6 networks
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Figure 8: Boston,γ = 0 versus optimalγ for 6
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λ = 1 (or equivalentlyγ = M
2(M−1) ) seems to be a useful heuristic bound. A possible justification for

this is to remember that as we approachλ = 1, we treat the ensemble more and more as a single
learning unit—beyond this we would be introducing a greater emphasis on covariance than is in
the overall ensemble objective function; whether this bound can be strictly proved remains an open
question.
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Figure 11: Friedman, varyingγ with 6 hidden
nodes per network
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Figure 13: Boston, varyingγ with 6 hidden
nodes per network
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Figure 14: Boston, varyingγ with 6 networks
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Figure 15: LogP, varyingγ with 6 hidden nodes
per network
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Figure 16: LogP, varyingγ with 6 networks
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Figure 17:γ-value at which divergence of weights was observed for the data sets.
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6. Further Empirical Comparisons

In this section we will compare the NC framework to other competitive ensemble approaches, using
MLPs as the base estimator. Additionally we will illustrate that the NC framework is indeed general,
by using RBF regressors, and showing that very similar empirical patternsemerge, obeying our
upper bound for theγ parameter.

6.1 Comparing NC to Other Popular Ensemble Approaches

Performing valid empirical comparisons with existing works in the literature is a notoriously diffi-
cult task; slight differences in experimental setup can easily invalidate the procedure. In particular,
training/testing data must be exactly the same between two systems to be compared.The LogP data
has been used in previous work (Tino et al. (2004)) by one of the current authors—we obtained the
exact data split used in that work to test NC against their results. Of the 6912 examples, 5530 were
used for training, 691 for validation and 691 for testing. We used 12 networks, each with 6 hidden
nodes. Using the validation data, the optimumγ = 0.5 was determined. Results in table 2 show how
NC compares with other state-of-the-art techniques; 95% confidence intervals are indicated where
available. As an additional useful statistic, Tino et al. (2004) computed the ION (Improvement over
Naive) value. This is the percentage improvement relative to a naive predictor (with an MSE of
2.69) which predicts a constant for any input, equal to the mean target value in the training data.
The best achieveable improvement in their experiments was 77.7%, the Gaussian Process learner,
while here we see NC achieves 78.2%.

System Testing MSE (conf) ION %

NC, 12 MLPs,γ = 0.5 0.5866(±0.0168) 78.2%

Gaussian Processes 0.601 77.7%

Hierarchical Mixture of Experts 0.658 75.5%

Simple ensemble, 12 MLPs 0.7692(±0.0154) 71.4%

Table 1: Comparing NC to other state-of-the-art learning techniques on theLogPdata.

To further empirically verify NC, we now compare it to two other popular ensemble techniques,
Adaboost.R2 and bagging. Figures 19 to 22 show results, again following the empirical procedures
described in section 5 - all Boosted and Bagged networks were trained withearly stopping. We note
that on the Friedman data, NC significantly outperforms both boosting and bagging, increasing its
lead as the ensemble size is increased. The Boston data shows that NC is obviously not a panacea
technique - boosting and bagging significantly outperform it in this situation. From this and previous
experiments with NC, we hypothesize that the noisy nature of the Friedman datais ideally suited to
the flexibility allowed by NC’sγ parameter, explicitly varying thefit of the ensemble modelto the
data as needed, whereas boosting and bagging do not have this extra free parameter. We note that a
full empirical benchmarking of NC and its behaviour with noisy data is underway, but outside the
scope of this article.
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Figure 21: Boston, varying number of net-
works (6 hidden nodes in each)
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6.2 Using NC with an Ensemble of RBF Networks

We now briefly illustrate that NC can be applied to regression estimators of other types, not just
multi-layer perceptrons. We use an ensemble of Radial Basis Function networks, using Gaussian
basis functions. Centres and widths are initialised randomly, then a full gradient descent is per-
formed on all parameters, using the NC penalty framework as previously described. Table 2 shows
that an ensemble of RBF networks each with 50 centres can outperform anMLP ensemble each
with 50 sigmoidal hidden nodes, and applying NC to the RBF ensemble allows further gain. Finally
in figure 23 we see the effect of varyingγ on both the MLP and RBF ensemble. As previously
observed, with very complex individuals NC cannot provide further error reduction. Here we note
two points. Firstly, though an MLP ensemble cannot benefit, an RBF ensembleof the same sizecan
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benefitfrom NC. Secondly, and most importantly, we see it again obeys our predicted upper bound
on γ.

System Testing MSE (conf)

RBF: 5 x 50 basis functions, NCγ = 0.5 0.0229(±0.001)

RBF: 5 x 50 basis functions 0.0263(±0.001)

MLP: 5 x 50 hidden nodes, NCγ = 0.5 0.0313(±0.001)

MLP: 5 x 50 hidden nodes 0.0319(±0.001)

Table 2: Using NC with an ensemble of RBF networks on the Boston data set
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Figure 23: LogP data: The effect of varying the NCγ parameter on
an RBF and MLP ensemble of sizeM = 5, noting that
our predicted upper boundγupper = 0.78125 holds for
the RBF ensemble.

7. Conclusions

We have investigated the issue of how to explicitlymanagethe correlations in an ensemble of re-
gression estimators. We made important observations on the relationships between the Ambiguity
decomposition (Krogh and Vedelsby (1995)) and the bias-variance-covariance decomposition (Ueda
and Nakano (1996)). From this base, we provided a thorough critique of negative correlation (NC)
learning (Liu (1998)), a technique that extended from Rosen (1996),and developed in the evolu-
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tionary computation literature. We showed that using a penalty term and coefficient, NCexplicitly
includes the covariance portion of the ensemble MSE in its error function. This article has served
to illustrate that NC is not merely a heuristic technique, butfundamentallytied to the dynamics of
training an ensemble system with the mean squared error function. The observations we made are
in fact all properties of the mean squared error function. NC is therefore best viewed as aframe-
work rather than as an algorithm. The NC framework can be applied to ensembles ofany nonlinear
regression estimatorcombined in an ensemblēf of the form

f̄ (x) =
1
M

M

∑
i=1

fi(x). (41)

In addition, an upper bound on the strength parameter was shown to apply when each estimatorfi
is of the form

fi(x) =
K

∑
k=1

wkiφki(x). (42)

Examples of estimators in this class are multi-layer perceptrons with linear outputnodes, and
Radial Basis Function networks, indeed any estimator that can be cast in a generalised linear regres-
sion framework. To derive the bound, we observed that positive definiteness of the Hessian matrix
can be determined by checking just the firstK leading diagonal elements. We verified this bound
empirically, and although the bound is tight for larger ensembles, it remains loose for sizeM < 10,
and a useful empirical bound ofγ = M

2(M−1) seems to apply. These results seem to suggest a general
set of guidelines for application of the NC framework. The common trend wasto see increasing
utility of NC with larger ensembles of relatively low individual complexity, with optimum γ tend-
ing to 0.5. We therefore recommend a starting point as: ensemble sizeM ≥ 10, number of hidden
nodes between 2 and 5, and a penalty strength parameter ofγ = 0.5. This will of course be problem
dependent, most significantly the number of hidden nodes—what is ’low complexity’ for one task
will not be for another—but we believe it does provide good general guidance. In addition, it seems
sensible from our investigations that some sort of annealing of the parameter during the learning
process, from zero up towards the bound, may show further performance benefits.

We then engaged in a detailed study of the error gradient and how it changes when using NC
learning. We showed that the error of an NC learning ensemble can be broken down into four
components, each with its own interpretation with respect to the current state of the ensemble.
Further to this we noted that NC allows a smooth transition of the error gradientsbetween that of a
fully parallel ensemble system and a single estimator. This raises a point on thenature ofoverfitting
in ensembles. It is well known that overfitting of the individual estimators canbe beneficial in an
ensemble system (Sollich and Krogh (1996)), but obviously overfitting theentire ensemble as a unit
is an undesirable prospect. With this new information about NC,whatshould we overfit?

Appendix A. Calculations Supporting the Strength Parameter Bound

We now present additional calculations supporting the work on the upper bound for theλ and
γ parameters, as in Section 4.3. Assuming an estimator which is a linear combination of other
functionsφ, we wish to derive one of the entries in the leading diagonal of the Hessian matrix. The
diagonal element corresponding to theqth weight in theith estimator is∂2ei

∂wqi
2 . If this is zero or less,

then the Hessian is guaranteed to be non-positive definite, an undesirableprospect. Making use of
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the product rule, we have

∂ei

∂wqi
=

∂ei

∂ fi

∂ fi
∂wqi

∂2ei

∂wqi
2 =

[ ∂
∂wqi

∂ei

∂ fi

] ∂ fi
∂wqi

+
[ ∂

∂wqi

∂ fi
∂wqi

]∂ei

∂ fi
. (43)

Taking the first term on the right hand side,

∂ei

∂ fi
= ( fi − t)−λ( fi − f̄ )

∂
∂wqi

∂ei

∂ fi
= φqi −λ(φqi −

1
M

φqi)

=
(

1−λ(1−
1
M

)
)

φqi. (44)

Now for the second term, remembering eq (42), we have

∂ fi
∂wqi

= φqi (45)

∂
∂wqi

∂ fi
∂wqi

=
∂2 fi

∂wqi
2 = 0. (46)

Therefore we simply have

∂2ei

∂wqi
2 =

[(

1−λ(1−
1
M

)
)

φqi

]

φqi +
[

0
]∂ei

∂ fi
(47)

=
(

1−λ(1−
1
M

)
)

φqi
2
. (48)

It is interesting to observe that since we have

∂ei

∂ fi
= ( fi − t)−λ( fi − f̄ ) (49)

∂2ei

∂ fi2
= 1−λ(1−

1
M

). (50)

then we can see

∂2ei

∂wqi
2 =

∂2ei

∂ fi2
φqi

2
. (51)

This demonstrates that, sinceφqi
2 is positive, the sign of the leading diagonal entry∂2ei

∂wqi
2 in the

Hessian is decided by the sign of∂2ei

∂ fi 2
.
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Appendix B. The Relationship between Ambiguity and Covariance

We now show the exact link between the Ambiguity decomposition and the bias-variance-covariance
decomposition. The bias-variance-covariance decomposition gives us

E{( f̄ − t)2} = bias
2
+

1
M

var+

(

1−
1
M

)

covar. (52)

Now using the Ambiguity decomposition, we have the result

E{
1
M ∑

i

( fi − t)2−
1
M ∑

i

( fi − f̄ )2} = bias
2
+

1
M

var+

(

1−
1
M

)

covar. (53)

It would be interesting to understand what portions of the bias-variance-covariance decomposi-
tion correspond to the ambiguity term. We place anα in front of the Ambiguity term, then derive
the relationship between the left and right sides of equation (53). Wherever theα appears in the
derivation will indicate how the Ambiguity term plays a role in the bias-variance-covariance de-
composition. We have

eens = E
{ 1

M ∑
i

[
( fi − t)2−α( fi − f̄ )2]

}

=
1
M ∑

i

[

E
{

( fi −E{ f̄}+E{ f̄}− t)2−α( fi −E{ f̄}+E{ f̄}− f̄ )2
}]

.

now multiply out the brackets, thus

eens =
1
M ∑

i

[

E
{

( fi −E{ f̄})2 +(E{ f̄}− t)2 +2( fi −E{ f̄})(E{ f̄}− t)

−α( fi −E{ f̄})2−α(E{ f̄}− f̄ )2−2α( fi −E{ f̄})(E{ f̄}− f̄ )
}]

.

and evaluate the expectation and summation, giving us

eens =
1
M ∑

i

E
{

( fi −E{ f̄})2
}

+(E{ f̄}− t)2

−α
1
M ∑

i

E
{

( fi −E{ f̄})2
}

−αE
{

( f̄ −E{ f̄})2
}

−2αE
{

( f̄ −E{ f̄})(E{ f̄}− f̄ )
}

.

and finally by rearranging the last term we obtain

eens =
1
M ∑

i

E
{

( fi −E{ f̄})2
}

+(E{ f̄}− t)2

−α
1
M ∑

i

E
{

( fi −E{ f̄})2
}

+αE
{

( f̄ −E{ f̄})2
}

.

Obviously now if we remove theα term that we have been using, this would simplify to give
us the squared bias of̄f , plus the variance of̄f : which we could then break down further using the
bias-variance-covariance decomposition as we showed earlier. The interesting part here though, is
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the term that would cancel out. The expected value of the Ambiguity term is equal to whatever parts
of this that contain theα term. Therefore,

E{
1
M ∑

i

( fi − f̄ )2} =
1
M ∑

i

E{( fi −E{ f̄})2}−E{( f̄ −E{ f̄})2}

= Ω−var( f̄ ).

And the other side of the Ambiguity decomposition, the expected value of the average individual
error is whatever partsdo notcontainα, this is

E{
1
M ∑

i

( fi − t)2} =
1
M ∑

i

E
{

( fi −E{ f̄})2
}

+(E{ f̄}− t)2

= Ω+bias( f̄ )2
.

This interaction term,Ω, is present in both sides, and cancels out to allow the normal bias-
variance decomposition of ensemble error. But what does itmean? If we examine it a little further,
we see

1
M ∑

i

E{( fi −E{ f̄})2} =
1
M ∑

i

E{( fi −E{ fi}+E{ fi}−E{ f̄})2}

=
1
M ∑

i

E{( fi −E{ fi})
2}+

1
M ∑

i

(E{ fi}−E{ f̄})2
.

where we have used thatE{ fiE{ fi}} = E{ fi}2 and alsoE{ fiE{ f̄}} = E{ fi}E{ f̄}. This shows
that the interaction term,Ω, is the average variance of the estimators, plus the average squared
deviation of the expectations of the individuals from the expectation of the ensemble.

Appendix C. Further Gradient Analysis of NC Learning

We have seen that the MSE of an ensemble system can be interpreted in two ways: firstly with
the Ambiguity decomposition, and secondly with the bias-variance-covariance decomposition. We
now present a third way to understand the dynamics of a regression ensemble, in reference to the
gradient of the error function. Regard the architecture in figure 24. This is an ensemble of three

h

f

f

w

i

qi

q

input

Figure 24: A typical ensemble architecture
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MLPs, with three inputs and three hidden nodes each, using a uniformly weighted combination as
the ensemble output. We desire to update the weight,wqi, marked in bold—this is one of the output
layer weights for theith network (connected to theqth hidden node). If we consider the ensemble
as a single entity, then the error of this system at a single point is defined as

eens=
1
2
( f̄ − t)2

. (54)

In this case, an update to the weightwqi would involve the gradient

∂eens

∂wqi
=

∂eens

∂ fi

∂ fi
∂wqi

=
1
M

( f̄ −d)
∂ fi

∂wqi
. (55)

Note that we are assuming an ensemble of networks with linear output functions—if this is the case,
the second term in the above error gradient,∂ fi

∂wqi
evaluates to simply the output of the relevant hidden

node. The error gradient is therefore proportional to∂eens
∂ fi

, and we can simplify our calculations
below by omitting the reference to the hidden node since it just acts as a scalingcomponent.

We calculated (55) in one simple step using the chain rule, treating the ensemble as a single
unit—if we perform this instead starting from the decomposed form of the ensemble error, it high-
lights more interesting results. We use the Ambiguity decomposition, and additionallybreak the
error into two components, where the first term concerns estimatori, and the second concerns all
the other estimatorsj 6= i,

1
2
( f̄ − t)2 =

1
M ∑

i

[
1
2
( fi − t)2−

1
2
( fi − f̄ )2

]

=
1
M

[
1
2
( fi − t)2−

1
2
( fi − f̄ )2

]

+
1
M ∑

j 6=i

[
1
2
( f j − t)2−

1
2
( f j − f̄ )2

]

. (56)

If we do this we discover that the gradient of the ensemble error function isa sum of four distinct
components, shown and described in table 3. Each of these components contributes to the gradient
of the ensemble error in eq. (55). If we take the1

M on the outside and label the components, we can
make an interesting observation.

∂eens
∂ fi

= 1
M

[

( fi − t)
︸ ︷︷ ︸

−( fi − f̄ )
︸ ︷︷ ︸

+
1
M

( fi − f̄ )
︸ ︷︷ ︸

+
1
M ∑

j 6=i

( f j − f̄ )

︸ ︷︷ ︸

]

A B C D

(57)

We now see that the gradient of the individual, and the gradient of the ensemble as a single unit, can
be expressed as combinations of these components; thus we have

∂ei

∂ fi
= ( fi − t) = A (58)
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Component Interpretation

1
M ( fi − t) This is the component of the error gradient due to the difference

between the ith network output and the desired output (due to the
fact that fi is changing.)

− 1
M ( fi − f̄ ) This is the component of the error gradient due to the difference

betweenfi and f̄ (due to the fact thatfi is changing.)

1
M2 ( fi − f̄ ) This is the component of the error gradient due to the difference

between fi and f̄ (due to the fact thatf̄ changes, becausefi is
changing.)

1
M2 ∑ j 6=i( f j − f̄ ) This is the component of the error gradient due to the differences

between thef js and f̄ (due to the fact that̄f changes, becausefi is
changing.)

Table 3: Ensemble gradient components

∂eens

∂ fi
=

1
M

( f̄ − t) =
1
M

(A−B). (59)

Furthermore, a simple rearrangement now shows the error gradient forfi in an ensemble using NC
is

∂
∂ fi

[1
2
( fi − t)2− γ( fi − f̄ )2

]

= ( fi − t)−2γ(1−
1
M

)( fi − f̄ ) (60)

= ( fi − t)−2γ
[

( fi − f̄ )−
1
M

( fi − f̄ )
]

= A−2γ(B−C).

Alternatively, because we knowλ = 2γ(1− 1
M ), this can also be expressed asA−λB. From all this

we can understand, a single framework, the relationships between minimising the simple ensemble
error, the NC ensemble error, and a single network, described in table 4.

If we setλ = 1, or equivalentlyγ = M
2(M−1) , we see that the gradient of the individual error with

NC is directly proportional to the gradient for the ensemble seen as a single entity, i.e.

∂eens

∂wqi
=

1
M

∂ei

∂wqi
. (61)

An alternative way of thinking about this is that all the minima are in the same locations, but the
landscape isM times shallower—the effect of which could be duplicated with a smaller learning
rate in the update rule. When we changeγ within a certain range, we scale smoothly between the
gradient of a single large entity, and that of a set of independently trainednetworks. The choice
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Algorithm Components in error gradient for network
i

Simple Ensemble A

Ensemble with NC A−2γ(B−C) or (A−λB)

Ensemble with NC,λ = 1 A−B
or equivalentlyγ = M

2(M−1)

Single large network 1
M (A−B)

(with fixed output layer weights)

Table 4: Components of the Ensemble Error Gradient under different Algorithms

Figure 25: An regression example to illustrate how NC affects the error gradient.

of γ is problem-dependent, and it emerges that we can also understand theoptimal setting of the
parameter in this gradient-based context—consider the scenario in figure 25.

On a single datapoint, the networkfi is estimating too high at 8.0, which is right of the target
t = 4. We have an ensemble ofM = 5 networks, but for clarity the outputs of the other ensemble
members are not shown; the resulting ensemble output isf̄ = 3, too low, left of the target. When
updating the value offi , a simple ensemble will use the gradient measurement( fi − t) = 4, resulting
in fi being shifted left, towards the target. However, this will cause the ensemble output f̄ to
also shift left, moving away from the target. An ensemble using NC will include three gradient
components,

A−2γ(B−C) = ( fi − t)−2γ
[

( fi − f̄ )−
1
M

( fi − f̄ )
]

(62)

= 4−2γ(5−
1
5

5)

= 4− γ8.

If we chooseγ = 0.4, this sum evaluates to 0.8, still a positive gradient forfi , meaning the
ensemble output will still be moved away from the target. If however we chooseγ = 0.6, it evaluates
to −0.8, giving a pressure for the networkfi to moveawayfrom the target, causing the ensemble
output to movecloserto the target. The setting of theγ value provides a way of finding a trade-off
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between these gradient components that will cause the ensemble outputf̄ to move toward the target
valuet. This is obviously a purely hypothetical situation, and finding the optimalγ that allows this
correct trade-off will be more difficult.
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