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Abstract

When applying aggregating strategies to Prediction witheixpdvice (PEA), the learning rate
must be adaptively tuned. The natural choiceg omplexity/current loss renders the analysis of
Weighted Majority (WM) derivatives quite complicated. Inrfyeular, for arbitrary weights there
have been no results proven so far. The analysis of the atieenFollow the Perturbed Leader
(FPL) algorithm from Kalai and Vempala (2003) based on Harmalgorithm is easier. We derive
loss bounds for adaptive learning rate and both finite exgesses with uniform weights and
countable expert classes with arbitrary weights. For theéo setup, our loss bounds match the
best known results so far, while for the latter our resulésraaw.

Keywords: prediction with expert advice, follow the perturbed leadgneral weights, adap-
tive learning rate, adaptive adversary, hierarchy of aspexpected and high probability bounds,
general alphabet and loss, online sequential prediction

1. Introduction

In Prediction with Expert Advice (PEA) one considers an ensemble afesgipl predictors (ex-
perts). A master algorithm is constructed based on the historical perfoerwdrihe predictors.
The goal of the master algorithm is to perform nearly as well as the besttexpthe class, on
any sequence of outcomes. This is achieved by making (randomizedtjmesl close to the better
experts.

PEA theory has rapidly developed in the recent past. Starting with the Weilgtatirity (WM)
algorithm of Littlestone and Warmuth (1989, 1994) and the aggregatinggstratd/ovk (1990), a
vast variety of different algorithms and variants have been publishdayAarameter in all these
algorithms is thdearning rate While this parameter had to be fixed in the early algorithms such
as WM, Cesa-Bianchi et al. (1997) established the so-called doublihgtérimake the learning
rate coarsely adaptive. A little later, incrementally adaptive algorithms werelaped by Auer
and Gentile (2000); Auer et al. (2002); Yaroshinsky et al. (200€nte (2003), and others. In
Section 10, we will compare our results with these works more in detail. Umiately, the loss
bound proofs for the incrementally adaptive WM variants are quite compléxexchnical, despite
the typically simple and elegant proofs for a static learning rate.

The complex growing proof techniques also had another consequéftdte for the original
WM algorithm, assertions are proven for countable classes of expertaxhitinary weights, the
modern variants usually restrict to finite classes with uniform weights (agption being Gentile
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(2003); see the discussion section therein.) This might be sufficient foy practical purposes
but it prevents the application to more general classes of predictors. esame extrapolating
(=predicting) data points with the help of a polynomial (=expert) of degreel, 2, 3,... —or— the
(from a computational point of view largest) class of all computable predicteurthermore, most
authors have concentrated on predictimgary sequences, often with the 0/1 loss {é, 1}-valued
and the absolute loss f@0, 1]-valued predictions. Arbitrary losses are less common. Nevertheless,
it is easy to abstract completely from the predictions and consider the rgdokses only. Instead
of predicting according to a “weighted majority” in each time step, one chamsesingleexpert
with a probability depending on his past cumulated loss. This is done e.g. bpd-eed Schapire
(1997), where an elegant WM variant, the Hedge algorithm, is analyzed.

A different, general approach to achieve similar results is Follow the Pedureader (FPL).
The principle dates back to as early as 1957, now called Hannan’s atgdiitannan, 1957). In
2003, Kalai and Vempala published a simpler proof of the main result of &taand also succeeded
to improve the bound by modifying the distribution of the perturbation. Theltiegualgorithm
(which they call FPL*) has the same performance guarantees as the Yévilyorithms for fixed
learning rate, save for a factor @f2. A major advantage we will discover in this work is that its
analysis remains easy for an adaptive learning rate, in contrast to theaiitives. Moreover, it
generalizes to online decision problems other than PEA.

In this work! we study the FPL algorithm for PEA. The problems of WM algorithms men-
tioned above are addressed. Bounds on the cumulative regret of tiogustdorm+/kL (wherek
is the complexity and. is the cumulative loss of the best expert in hindsight) are shown for count-
able expert classes with arbitrary weights, adaptive learning rate,rbitithey losses. Regarding
the adaptive learning rate, we obtain proofs that are simpler and moranethga for the corre-
sponding WM algorithms. (In particular, the proof for a self-confiddrgice of the learning rate,
Theorem 7, is less than half a page.) Further, we prove the first losglbdaorarbitrary weights
and adaptive learning rate. In order to obtain the optigdkL bound in this case, we will need
to introduce a hierarchical version of FPL, while without hierarchy wash worse bounéy/L.
(For self-confident learning rate together with uniform weights and aryifosses, one can prove
corresponding results for a variant of WM by adapting an argumentuwgy At al. 2002.)

PEA usually refers to aanline worst caseetting:n experts that deliver sequential predictions
over atimerangé=1,...,T are given. At each timg we know the actual predictions and the
pastlosses. The goal is to give a prediction such that the overall lossBfséeps is “not much
worse” than the best expert’s losa any sequence of outcomésthe prediction is deterministic,
then an adversary could choose a sequence which provokes maximédowe have teandomize
our predictions. Consequently, we ask for a prediction strategy sutththexpectedoss on any
sequence is small.

This paper is structured as follows. In Section 2 we give the basic defigitigvhile Kalai
and Vempala consider general online decision problems in finite-dimensipae¢s, we focus on
online prediction tasks based on a countable number of experts. Likedtalafempala (2003) we
exploit the infeasible FPL predictor (IFPL) in our analysis. Sections Jatative the main analysis
tools. In Section 3 we generalize (and marginally improve) the upper bd{aldi(and Vempala,
2003, Lem.3) on IFPL to arbitrary weights. The main difficulty we faced waappropriately
distribute the weights to the various terms. For the corresponding lowerdb@ecttion 7) this

1. A shorter version appeared in the proceedings of the ALT 2004&pemée (Hutter and Poland, 2004).
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is an open problem. In Section 4 we exploit our restricted setup to significampisove (Kalai
and Vempala, 2003, Eq.(3)) allowing for bounds logarithmic rather thanrlimehe number of
experts. The upper and lower bounds on IFPL are combined to dexi@us regret bounds on
FPL in Section 5. Bounds for static and dynamic learning rate in terms of theeseg length
follow straight-forwardly. The proof of our main bound in terms of the los:iisch more elegant
than the analysis of previous comparable results. Section 6 proposesléisvarchical procedure
to improve the bounds for non-uniform weights. In Section 7, a lower dasirestablished. In
Section 8, we consider the case of independent randomization moresberitu particular, we
show that the derived bounds also hold for an adaptive adversacyioB 9 treats some additional
issues, including bounds with high probability, computational aspectsdieistic predictors, and
the absolute loss. Finally, in Section 10 we discuss our results, comparddheferences, and
state some open problems.

2. Setup and Notation

Setup. Prediction with expert advice proceeds as follows. We are asked torpegequential
predictionsy; € 9 at timest = 1,2,.... At each time step, we have access to the predictions
(W) 1<i<n Of n experts{ey, ..., e}, where the size of the expert poolriss N U {}. It is convenient

to use the same notation for finite € N) and countably infiniter{ = o) expert pool. After having
made a prediction, we make some observatioa X, and a Loss is revealed for our and each
expert’'s prediction. (E.g. the loss might be 1 if the expert made an emwsnaediction and O
otherwise. This is the 0/1 loss.) Our goal is to achieve a total loss “not mucdetvihan the best
expert, aftet time steps.

We admitn € NU{} experts, each of which is assigned a known complekity0. Usually we
requirey; e ¥ <1, which implies that th&' are valid lengths of prefix code words, for instahkte:
Innif n< o ork = % + 2Ini if n= . Each complexity defines a weight by means df end vice
versa. In the following we will talk of complexities rather than of weights i finite, then usually
one setk = Inn for all i; this is the case afiniform complexities/weightdf the set of experts is
countably infinite (1 = ), uniform complexities are not possible. The vector of all complexities
is denoted byk = (k')1<i<n. At each timet, each expert suffers a losss =Losgx,V}) € [0,1],
ands = (i)lgign is the vector of all losses at time Lets. = s, + ... +&_1 (respectivelys; 1 =
s1+...+5) be the total past loss vector (including current lg3ands]i" = mini{s;, } be the loss
of the best expert in hindsight (BEHWsually we do not know in advance the time 0 at which
the performance of our predictions are evaluated.

General decision spacesThe setup can be generalized as follows. ket R" be thestate space
and?D C R" thedecision spaceAt timet the state i € §, and a decision; € D (which is made
before the state is revealed) incurs a ldgs, where *” denotes the inner product. This implies
that the loss function iBnear in the states. Conversely, each linear loss function can be represented
in this way. The decision which minimizes the loss in se¢es is

M(s) := argdngi@n{dos} 1)

if the minimum exists. The application of this general framework to PEA is straiphérd: D is
identified with the space of all unit vectos={e :1<i<n}, since a decision consists of selecting

2. The setup, analysis and results easily sca# ¢0[0, S for S> 0 other than 1.
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a single expert, and € [0,1]", so states are identified with losses. Only Theorems 2 and 10 will be
stated in terms of general decision space. Our main focds=sE. (Even for this special case,
the scalar product notation is not too heavy, but will turn out to be cdemeh All our results
generalize to the simple® =A={ve[0,1]": 3;v' = 1}, since the minimum of a linear function on
Ais always attained off.

Follow the Perturbed Leader. Givens.; at timet, an immediate idea to solve the expert problem
is to “Follow the Leader” (FL), i.e. selecting the expertwhich performed best in the past (min-
imizess_,), that is predict according to expevi(s;). This approach fails for two reasons. First,
for n= e the minimum in (1) may not exist. Second, for=2 ands= (272:27), FL always
chooses the wrong prediction (Kalai and Vempala, 2003). We solve ﬁhélf'ﬂblem by penalizing
each expert by its complexity, i.e. predicting according to exiWEd.  +k). The FPL (Follow the
Perturbed Leaderapproach solves the second problem by adding to each expertﬂy@ssandom
perturbation. We choose this perturbation to be negatymnentially distributedeither indepen-
dent in each time step or once and for all at the very beginning atttim@. The former choice
is preferable in order to protect against an adaptive adversary eherates the, and in order
to get bounds with high probability (Section 9). For the main analysis howthetatter choice
is more convenient. Due to linearity of expectations, these two possibilitiesqareakent when
dealing withexpected lossdshis is straightforward for oblivious adversary, for adaptive asaer
see Section 8), so we can henceforth assume without loss of generalityitial perturbatiorg.

The FPL algorithm is defined as follows:
Choose random vectcnri exp, i.e.P[qt...q" = e .....ed for g>0.
Fort=1,...T
- Choose learning rate.
- Output prediction of expeitwhich minimizess_, + (k —q') /n;.
- Receive loss! for all expertsi.

Other thans.i, k and g, FPL depends on thkearning raten;. We will give choices fom; in
Section 5, after having established the main tools for the analysis. Thetedgess at timé of

FPL is ¢ :== E[M(S<t+ kr;q)os[]. The key idea in the FPL analysis is the use of an intermediate
predictor IFPL (for Implicit or Infeasible FPL. IFPL predicts according tM(sl;tJr%), thus
under the knowledge af (which is of course not available in reality). By:=E[M(s11+ kriq)ost]

we denote the expected loss of IFPL at tim@he losses of IFPL will be upper-bounded by BEH
in Section 3 and lower-bounded by FPL in Section 4. Note that our definifitmred-PL algorithm
deviates from that of Kalai and Vempala. It uses an exponentially distdipegurbation similar to

their FPL* but one-sided and a non-stationary learning rate like Hannan'’s algorithm.

Notes.Observe that we have stated the FPL algorithm regardless of the ptdadtionsof the ex-
perts and possiblebservationsonly thelossesare relevant. Note also that an expert can implement
a highly complicated strategy depending on past outcomes, despite its trijadiezimtification with

a constant unit vector. The complex expert's (and environment’'sMitia summarized and hid-
den in the state vectey =Losgx;,})1<i<n. Our results therefore apply tbitrary prediction and
observation spaced” and X and arbitrary bounded loss functionghis is in contrast to the major
part of PEA work developed for binary alphabet and 0/1 or absolutedagy. Finally note that
the setup allows for losses generated by an adversary who tries to maximiagtbt of FPL and
knows the FPL algorithm and all experts’ past predictions/losses. Ifdhersary also has access
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Symbol  Definition / Explanation
n €NU{o} (n=0c means countably infinit&). Number of experts.
X = ith component of vectare R". _
T :={@g:1<i<n} = setof unit vectorse =3j).
A :={ve[0,4": 3,V =1}= simplex.
5€[0,1]" = environmental state/loss vector at titne
S1t ‘=9 +...+ 5= state/loss (similar fof; andr;).
in =min{s| }= loss of Best Expert in Hindsight (BEH).
Sct ‘=S1+...+5_1= state/loss summarg{o=0).
M(s) :=argmirycp{d-s}= best decision os.
TeNp = total time=stept € N= current time=step.
k>0 = penalization = complexity of expeirt
geR" = random vector with independent exponentially distributed components.
l¢ ‘=argminez{s.,+ %}: randomized prediction of FPL.
b ‘=E[M(st+ kr;q) -5]= expected loss at timteof FPL (=E['] for D=E).
re ::E[M(Su+%)osd= expected loss at tinteof IFPL.
Ut =M(st+ kriq) °&= actual loss at timeof FPL (:s{‘ for D=EF).

Table 1: List of notation.

to FPL's past decisions, then FPL must use independent randomizaéantatime step in order to
achieve good regret bounds. Table 1 summarizes notation.

Motivation of FPL. Letd(s.¢) be any predictor with decision based®n. The following identity
is easy to show:

<0ifd=M small ifd(-) is continuous
T T T
Zd(s<t)°& = d(si)°siT + zl[d(sd)—d(slzt)]osd + Zl[d(sd)—d(sl;t)]ost : (2)
“FPL” “BEH" “IFPL—BEH" “FPL—IFPL”

For a good bound of FPL in terms of BEH we need the first term on the r.tbe.c¢tose to BEH and

the last two terms to be small. The first term is close to BEHAfM. The second to last term is
even negative il =M, hence small il~M. The last term is small ifl(s.¢) ~d(s1t), which is the
case ifd(-) is a sufficiently smooth function. Randomization smoothes the discontinuoctdian

M: The functiond(s) := E[M(s—q)], whereq € R" is some random perturbation, is a continuous
function ins. If the mean and variance gfare small, them ~ M, if the variance ofj is large, then
d(s<t) ~d(s11). An intermediate variance makes the last two terms of (2) simultaneously small
enough, leading to excellent bounds for FPL.

3. IFPL bounded by Best Expert in Hindsight

In this section we provide tools for comparing the loss of IFPL to the loss obdst expert in
hindsight. The first result bounds the expected error induced by thenextially distributed per-
turbation.

643



HUTTER AND POLAND

Lemma 1 (Maximum of Shifted Exponential Distributions) Let a,....q" be (not necessarily in-
depe_ndent) exponentially distributed random variables, i@ ]2 e for g>0andl<i<n<oo,
and K €R be real numbers with=5" ;&% Then

o n i
Pmaxq —kK}>a = 1- rlmax{o, 1-e ¥y if g, ...,q" are independent,
i L
Pimax{q —K} >a] < min{1,ue?},
|

E[miax{qi—ki}] < 1+Inu

Proof. Using
Pld <a =max0,1-e 3 >1—e? and P[q >a =min{l,e 3} <e?

valid for anya€ R, the exact expression f®max in Lemma 1 follows from
. . . . n . . n i
Pimaxig — K} < a] =Pld —k <avi] = []Pld <a-+k] = []max0, CR
' i i

where the second equality follows from the independence ofjth&he bound orP[max for any
a< R (including negatives) follows from

=}

Pmax{q —ki} >a =P —K>a<SPgd-K>a<Syed*=ue?
[max{ } > a =P[i Zl I;

where the first inequality is the union bound. Uskg] < E[max{0,z}] _:fg‘fP[max{O,z} >yldy=
Jo Plz>y]dy (valid for any real-valued random variatdefor z=max{q —k'} —Inu, this implies

E[max{q —k'} —Inu] < / Plmax{q — K} >y+Inujdy < / e Vdy = 1,
i 0 I 0
which proves the bound da[max. O

If nis finite, a lower boundE[maxq] > 0.57721+Inn can be derived, showing that the upper
bound onE[max is quite tight (at least) fok' = 0 Vi. The following bound generalizes (Kalai
and Vempala, 2003, Lem.3) to arbitrary weights, establishing a relation hetwP& and the best
expert in hindsight.

Theorem 2 (IFPL bounded by BEH) Let D CR", s e R" for 1<t <T (both® and s may even
have negative components, but we assume that all required extreattamed), and d € R".
If Nt > 0 is decreasing in t, then the loss of the infeasible FPL knowjnat $ime t in advance
(I.h.s.) can be bounded in terms of the best predictor in hindsight (finst terr.h.s.) plus additive
corrections:

< k- )e st<m|n{d (slT+—)}+imax{d °(q— k)}—iM( k

q
M
t; (51 Nt nr nr d nr r]T)q
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Note that if D =E (or D =A) ands > 0, then all extrema in the theorem are attained almost
surely. The same holds for all subsequent extrema in the proof andytioouthe paper.

Proof. For notational convenience, Igy=c ands;; = slt+ . Consider the losses=s + (k—

q)(n—lt - m—) for the moment. We first show by induction fmthat the infeasible predictdv (5;+)

has zero regret for any lossi.e.

ZM )°& < M(8u7) <80t 3)
ForT =1 this is obvious. For the induction step from-1 to T we need to show
M(811)°8t < M(8u7)°81T — M(81)°87. (4)

This follows fromsj.t =81 +58r andM(&;.1) 5.1 >M(8-1) 5.1 by minimality of M. Rearranging
terms in (3), we obtain

1 1
M(& < M(§ -y M( k—q)— - — 5
zl )°S (S17) 81T Zl (811)°( Q)(nt f]t—l) (5)
Moreover, by minimality oM,
~ ~ k k—q
M(Si7)°8r < M(Si:T+ HT) <51:T+n—T> (6)
. k q
= e ) M) g
holds. Usmg— 1 — >0 and again minimality oM, we have
L1 1 L1 1
— — — )M(&11)°(g—k) < — — — M(k—-q)(g—k 7
Zm -~ (51)°(q )—t,(nt m_l)( q)°(q — k) ()

1 1
= —M(k—0)°(q—k) = —max{d-(qg—k)}.
Mk — )@=k = Tmaxd-(q—k)}
Inserting (6) and (7) back into (5) we obtain the assertion. O

Assumingg random withE[q‘] =1 and taking the expectation in Theorem 2, the last term
reduces to-q= L z,” 1|\/|(51T+ K )' If Q)>O the term is negative and may be dropped. In case of

D=E orA, the last term is |dent|cal te (smcez,d' 1) and keeping it improves the bound.
Furthermore, we need to evaluate the expectatlon of the second to last tEhearem 2, namely
E[maxep{d-(q—k)}]. For D = E andq being exponentially distributed, using Lemma 1, the
expectation is bounded bytllnu. We hence get the following bound:

Corollary 3 (IFPL bounded by BEH) For D= and y;e ¥ <1 and Fig]=e 9 for q>0 and
decreasing); > 0, the expected loss of the infeasible FPL exceeds the loss of expert nimsat
K/nT:
rir < Spr+ iki Vi
nr
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Theorem 2 can be generalized to expert dependent factorlqab#e]t =n;-n' by scalingk' ~»
K /n" andg ~q /n'. Usng[max{q —K ] <E[max{q —k'}]/min{n'}, Corollary 3, generalizes
to

1 .
] §1T+Ekl r]%"” VI,

wheren™":=min;{n’ }. For example, fon! = /ki/t we get the desired bourgl; ++/T- (K +4).
Unfortunately we were not able to generalize Theorem 4 to expert-depém, necessary for the
final bound on FPL. In Section 6 we solve this problem by a hierarchypérts.

4. Feasible FPL bounded by Infeasible FPL

This section establishes the relation between the FPL and IFPL lossedl tRatcq = E[M (st +
%)ost] is the expected loss of FPL at timeandr; = E[M(sl;ﬁ—%)ost] is the expected loss of
IFPL at timet.

Theorem 4 (FPL bounded by IFPL) For D =E and0< ¢ < 1 Vi and arbitrary s.; and Fig] =
e 2id for g> 0, the expected loss of the feasible FPL is at most a fagtar 1 larger than for the
infeasible FPL:

T
b < €lry,  whichimplies (11 —ry7 < Zlntﬁt.
Furthermore, ifn; <1, then alsol; < (1+r]t+r]t e < (1+2n¢)r:.

Proof. Lets= Sct+q Lk be the past cumulative penalized state veajdre a vector of independent
exponential dlstrlbutlons i.e[g]=e" d , andn=n;. Then

| | e if sl >m
Pl 2nE —m+ D] _ )] cng-mt) i m_o1<si<m b>en
Plal > n(s — m) 1 dem-1 )

We now define the random variables=argmin{s — 1q'} andJ:=argmin{s +§ - r]q'} where
0<d <1Vi. Furthermore, for fixed vectorc R" and fixedj we definem:= m|n.7éj{s' - —x'} <

minij{s +9 — —x'} :ml. With this notation and using the independencegidfom g' for aII 1],
we get

Pl = jld =xVi#]j] = Pl - ) <mld =xVi # j] = Plg} >n(s —m)]
< @P[gl > n(s ~m+1)] < &P[gl > n(s +9 — )]
= &Pl 14 —fol <nfld =xXVi# ]| = @PI=jld =xVi#])

Since this bound holds under any conditigiit also holds unconditionally, i.€[l = j| <€P[J=]].
9)es ands' =M (sy1+ kaq) °&, which implies

G- ER] = TAPI=j <@ is&-Pp: | = JES] = o
2
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Finally, £ —ry <ne follows fromr >e 4 > (1—n¢) 4, andl <eMtry < (1+ne+n2)re < (1+2n¢)r¢
for n¢<1is elementary. O

Remark. As done by Kalai and Vempala (2003), one can prove a similar statemegefaral
decision spac® as long as;|s| <Ais guaranteed for som&> 0: In this case, we haug < etAr;.

If nis finite, then the bound holds féx=n. For n= o, the assertion holds under the somewhat
unnatural assumption thatis I1-bounded.

5. Combination of Bounds and Choices fon

Throughout this section, we assume
D=F, sc[0,1"w, Plg=e%%frq>0, and 5> el <1 (8)
I

We distinguiststaticanddynamicbounds. Static bounds refer to a constgntn. Since this value
has to be chosen in advance, a static choiag oéquires certain prior information and therefore is
not practical in many cases. However, the static bounds are very edsyite, and they provide
a good means to compare different PEA algorithms. If on the other handgbettam shall be
applied without appropriate prior knowledge, a dynamic choicg;afepending only o and/or
past observations, is necessary.

Theorem 5 (FPL bound for staticn;=n01/+/L) Assume (8) holds, then the expected kpssf
feasible FPL, which employs the prediction of the expert i minimiz';@gtgr%", is bounded by the
loss of the best expert in hindsight in the following way:

i) For nt=n=1/VL with L>/1 wehave
it < Sr+ VLK +1) Vi
i) For ng=+K/L with L>/¢1 and K<KVi wehave
(i1 < S+ 2VLK Vi
i) For n¢= \/m with L>max{s,1,k} we have
lrr < Sp+2VLK + 3K,

Note that according to assertigiii ), knowledge of only theatio of the complexity and the
loss of the best expert is sufficient in order to obtain good static bounds, fer non-uniform
complexities.

Proof. (i,ii) Forn;=+/K/L andL > ¢1.1, from Theorem 4 and Corollary 3, we get
U7 —r17 < er]tgt = l7v/K/L< VLK and ri7 —sr <K/nr =kK/L/K.
t=

Combining both, we gety.t —s) + < VL(VK+K /vK). (i) follows fromK =1 and(ii) fromk' <K.
(ii ) Forn=/ki /L <1 we get

iy < enrlT<(1+fH‘rl)r1T<(1+\/ﬁ )(SuT + \/7
§1;T+\/m+(\/§+kti)(L+\/m):él:T+2\/W+(2+\/g)ki.
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O

The static bounds require knowledge of an upper bdund the loss (or the ratio of the com-
plexity of the best expert and its loss). Since the instantaneous loss iddibbg 1, one may set
L=T if T is known in advance. For finite andk' = K = Inn, bound(ii) gives the classic regret
O+ TInn. If neitherT nor L is known, a dynamic choice af; is necessary. We first present bounds

with regretd /T, thereafter with regrefl | /< .

Theorem 6 (FPL bound for dynamicn;01/y/t) Assume (8) holds.

i) For ni=1/vt wehave f11 < S1+VT(K+2) Vi

i) For ni=+/K/2t and K <K Vi wehave/;7 < st +2V2TK Vi.
Proof. Forn.=/K/2t, usingy ", % < fT dt _2/T and/ <1 we get

2T

T . . .
by — 7 < erlt <V2TK and ri7—s1 <K/nr =K/ —.
2 K

Combining both, we get; 1 —s|.; < V2T (VK+K /VK). (i) follows from K = 2 and(ii) from
K <K. O

In Theorem 5 we assumed knowledge of an upper bauod ¢;-r. In an adaptive forml :=
{+1, known at the beginning of timrtecould be used as an upper boundgywith corresponding
adaptiven; 01/+/L;. Such choice ofy; is also calledself-confidenfAuer et al., 2002).

Theorem 7 (FPL bound for self-confidentn; J1/1/¢~t) Assume (8) holds.
i) For nt=1/y/2({++ 1) we have

fr < Sir+ (K+1)1/2(8 1 4+1) + 2(K+1)2 Vi

i) For ng=+K/2(lx+1) and R<KVYi wehave
lir < Sir 2/ 2(S;r+)K + 8K vi.

Proof. Usingn; = /K/2({1+1) <\/K/2£1tand =(vb— \/5)([+\/5)\/5<2(\/_ NE)

for a<bandty:=min{t: /11 >0} we get

T

14 f
lrr—r17 < Zﬂtft \ 2 Z 1t VZKZ[ Ut —/lat] = V2K U7,
=l

IN

Addingryt—8 1 < #—'T <K./2(¢17+1)/K we get

li1 — S < (/2K (i +1), where VK = VK +K/VK.

Taking the square and solving the resulting quadratic inequality %.f.twe get

fr < s+ K+ \/2(§1:T+1)E + (K)2 < Spp +1/2(Sp + DK + 2K

648




ADAPTIVE ONLINE PREDICTION BY FOLLOWING THE PERTURBEDLEADER

ForK =1 we getv/k' =ki+1 which yields(i). Forki <K we getk' <4K which yields(ii). O

The proofs of results similar t@i ) for WM for 0/1 loss all fill several pages (Auer et al., 2002;
Yaroshinsky et al., 2004). The next result establishes a similar bowtdnstead of using the
expectedraluel¢, thebest loss so fari@é” is used. This may have computational advantages, since
sMinis immediately available, whilé.; needs to be evaluated (see discussion in Section 9).

Theorem 8 (FPL bound for adaptiven; 01/1/s%") Assume (8) holds.

i) For ny=1/ miin{ki + \/(ki)2 +2¢.(+2} wehave
fir < spp+ (K+2)y/28 1 +2(K+2) Vi

i) For n = \/g-min{l, M} and K<KYVi wehave
fur < S +2/2Kspr +5KIn(Syy) + 3K +6 Vil

We briefly motivate the strange looking choice fiin (i). The first naive candidatg; 01/+/s%",
turns out too large. The next natural trial is requestifpg= 1/, /2min{s‘§<t+%}. Solving this

equation results iny=1/(k'++/(k')2+2s.,), wherei be the index for whicl§'<t+n£'t is minimal.

Proof. Define the minimum of a vector as its minimum component, e.g(khia k™". For nota-
tional convenience, lag = ands;; = sl;t+%. Like in the proof of Theorem 2, we consider
one exponentially distributed perturbatignSinceM (§;1) & <M(&11) 811 —M(5t) 51 by (4), we

have
k—q k—q)

Nt Nt—1
Sincent <+/Y/2, Theorem 4 asserts <E[(1+1n:+nZ)M(811) ], thusly.t < A+B, where

M(S11)°s < M(511) 81t — M(5t) St — M(811)© (

.
A= 2EIH Nt + N7) (M(810) 811 — M(8ct)5t)|
t=

= E[(1+n7 +n§)M(SuT) 7] — E[(1+Nn1+nd) min(%)]

T-1
+ Zi E [Nt — Nesa + ¢ — né)M(81r) 811 and
t=

B — tiE {(1+ N+ NE)M(811)° (q_ o kﬂ

Nt Nt—1
o A+ (1_ 1 ) _lbnranf ST Neatnf-ndg
N t; Nt Ni-1 nT t; Nt

Here, the estimate fdB follows from 1 — - >0 andE[M(nes11 +k—0q)*(q—k)] < E[max{d —

k'}] <1, which in turn holds by minimality of, T;e ¥ <1 and Lemma 1. In order to estimafiewe
sets; ¢ :sl;tJrr]—"t and observéM (5;1) 811 <M(S11)°(S11— %) by minimality of M. The expectations
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of g can then be evaluated E§M(s;1)°g] =1, and as before we ha#g—min(k—q)] <1. Hence

_ - 1
fir < A+B < (I+nr+n7) <M(51:T)°51:T—H—T>+

1+n1+4n?
ni

T-1 o 1
+ Z(ﬂt —Ner1+N¢ —Nt) <M(Sl:t)°51:t - —> +B 9)
t= Nt
T-1

o e 1
< (I+nr+nF)minser) + Y (e — Nees + 07— NEy) Min(Sie) + T 2.
t=

We now proceed by considering the two parts of the theorem separately.
(i) Here, ni = 1/min(k+ /k?+2s4+2). Fix t < T and choosem such thatk™+
(k2257 +2 is minimal. Then

min(sus + <) < §% 4 1 S = 3 kM2t 28 42 = sy <
e T 2 < 27 2NNt

Nt 2n
We may overestimate the quadratic temgsn (9) by n; — the easiest justification is that we could
have started with the cruder estiméte (1+2n;)r; from Theorem 4. Then

_ k i : k, 1
tir < (I+2n7)min(syt + —) + 2 met — Ner1) Min(syie + —) + — +2
nr & Nt N1
T-1 1

1 1
142 — 4+ 2 — —t+ — 42
(1+ nT)Zn% + t;(r]t rIt+1)2r]t2 + - +

1 1 2/ 1 1
—2+—+21<—__>+_+2

s Nt & N1 N N1

Imin(k + k2 + 2s.7 +2)% + 2min(k + k2 + 251 + 2) + 2

< S+ (K+2)4/28 1 +2(kK)2+ 6k +6 foralli.

IN

IN

IN

This proves the first part of the theorem.
(i) Here we hav& >k for all i. Abbreviatea; =max{K,s[i"} for 1<t<T, thenn; =/ 5—,

Q-1

_ &) — _ _ _ VK(a—a 1)
a > K, andKat a1 <1 for allt. ObserveM(s;1) =M(S11), Nt —Nt+1= V2 /aa(Vatyvan)'
n2—na,= (za;t;ajl) , and 322 <In(14+321) —In(a) —In(a_1) which is true for 2= < 2 <

. This implies

(Nt _l;]tHl)K - K(atza—taltl) <K <1+ %) = K(In(a) — In(a1)),
g < VK@-a)(/AT vE - va)
e = V2 aca(Va + yas)
B E B \/K(at — atfl)2
= \/;(\/a_t VAt e Jat A
usedy —g-1<1
anda—1>K

< \Sva-vam+ L (In(@) - Infac 1)
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(M- n2K _ KvK(a - ag) 2% _
o = = < V2K(In(a) —In(a_1)), and

(f —nfpsly” < wgl«ln(aﬁ—ln(a{m
a1

The logarithmic estimate in the second and third bound is unnecessarily roddbraonvenience

only. Therefore, the coefficient of the log-term in the final bound oftile®rem can be reduced to
2K without much effort. Plugging the above estimates back into (9) yields

by7 §1n¥1+\/ ¥]+\/2K§P¥]+3K+2+\/7 K+2\f In(sf'¥)
+ +2< + 24/2K + 5K In + 3K + 6.
n ST + 2/ 2K (sT)

This completes the proof. O

Theorem 7 and Theorem(8) immediately imply the following bounds on thglLoss-regrets:
VT <4/S1p +14+VBK, VT <\ /Sip +1+V2(K+1), andy/li1 < (/S 1 +V2(K +2), respec-
tively.

Remark. The same analysis as for Theorems [3#3Rhpplies to generaD, using/; <e"r; instead
of ¢ <eMr, and leading to an additional factgm in the regret. Compare the remark at the end of
Section 4.

6. Hierarchy of Experts

We derived bounds which do not need prior knowledge. afith regret] +/TK and [ \/§1T

for a finite number of experts with equal penaky= k' =Inn. For an infinite number of experts,
unbounded expert-dependent complexity penakiese necessary (due to constramta*k <1).

Bounds for this case (without prior knowledgeTf with regretdk'y/T andJK'y /s + have been

derived. In this case, the complexityis no longer under the square root. Although this already
implies Hannan consistency, i.e. the average per round regret tends tsze> o, improved regret

boundsD vTK and O ,ié'ﬂki are desirable and likely to hold. We were not able to derive such
improved bounds for FPL, but for a (slight) modification. We consider alevel hierarchy of
experts. First consider an FPL for the subclass of experts of complexityr eachK € N. Regard
these FPK as (meta) experts and use them to form a (meta) FPL. The class of metts axper
contains for each complexity only one (meta) expert, which allows us toedgowd bounds. In the
following, quantities referring to complexity claksare superscripted kg, and meta quantities are
superscripted by.

Consider the class of experB = {i:K-1<k < K} of compIeX|tyK for eachk € N. FPLK
makes randomized predictidft := argmlnezK{§<t+ kg } with nK := \/K/2t and suffers loss

ul ::s{t at timet. Sincek! <K Vi e £k we can apply Theorem(B) to FPLK:

Eluf;] = X1 < S+ +2V2TK Vie EX VK eN. (10)
We now define a meta stag = uf and regard FP{ for K € N as meta experts, so meta exgért
suffers losss®. (Assigning expected loss = E[uf] = ¢K to FPLX would also work.) Hence the
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setting is again an expert setting and we define the Fletato predict; :=argmirnken {§§t+ i }

with fi;=1//t andk€ =1+2InK (implying 3_ 16 ¥ <1). Note thasl, =& +...+§ = 51 +.. +s[
sums over the same meta state componkntisut over different component§ in normal state
representation.

By Theorem 6i) the g-expected loss ofPL is bounded b + /T (k< +2). As this bound
holds for allq it also holds ing-expectation. So if we defin@ 1 to be theq and{ expected loss of
FPL, and chain this bound with (10) foe £K we get;

b < EBr +VT(K+2) = 5+ VTR +2)
< S+ VT2y/2(K+1) + 3 +2In(k+ 1) + 2,

where we have useld < ki +1. This bound is valid for all and has the desired regriéty'TK.
Similarly we can derive regret bounds, /s,.+ki by exploiting that the bounds in Theorems 7 and 8
are concave i} ; and using Jensen’s inequality.

Theorem 9 (Hierarchical FPL bound for dynamic n;) The hierarchicalFPL employs at time t
the prediction of expert i= It't, where

I = = arg m|n{§<t + —R—} and Iy := arg min{s'l1K + .t s{‘éi + M}
i[ki]= KeN i
Under assumptions (8) and independefi®= e @ VKeN, the expected logg.1 = E[§f+...+§ﬂ

of FPL is bounded as follows:

a) For nf=./K/2 and f;=1/vt we have

l1 < Sip42V2THK (1+0('35)) Vi.

b) Forfj; asin(i) andnkK as m(u)ofTheorem{ } we have
lir < Siq+2,/28 .K-( 1+o<'”'<'))+{0k,m§l } Vi

The hierarchicaFPL differs from a direct FPL over all expers. One potential way to prove a
bound on direct FPL may be to show (if it holds) that FPL performs betterfRad., i.e.f11 </1-T.
Another way may be to suitably generalize Theorem 4 to expert dependent

7. Lower Bound on FPL

A lower bound on FPL similar to the upper bound in Theorem 2 can also lverpro

Theorem 10 (FPL lower-bounded by BEH) Let n be finite. Assum®CR" and $cR" are chosen
such that the required extrema exist (possibly negative Ry andn; >0 is a decreasing sequence.
Then the loss of FPL for uniform complexities (l.h.s.) can be lower-boundenms of the best
predictor in hindsight (first term on r.h.s.) plus/minus additive corrections:

)
pl (52— )2 = minge sﬂ}—imax{d q + zl——n—ll>m<s<t>oq
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Proof For notational convenience, lgy=oo ands?n_sn—— Consider the losses=5s — q(
e ) for the moment. We first show by induction dnthat the predictoM(5.¢) has nonnegatlve
regret, ie.

Z\ M(S ICRIESES (11)

For T =1 this follows immediately from minimality oM (5.1 :=0). For the induction step from
T—-1toT we need to show

M(8<1)°8r > M(8u7) 81t — M(8ct)°8cr.

Due tos;t =581 +5r, this is equivalent td1(5.7) 5.1 > M(81.1) °& 1, which holds by minimality
of M. Rearranging terms in (11) we obtain

1 1
M(&1)s > M(&1)Sr + S ME)-q( = — —=—),  with 12
Zl s (Sur)-Sur Zi q<r]t r]t—l> (12)
- o q q q
M(&1)o81 = M "5 — M(sy.
(817)°8T ( nT) S1T (s1: T )e oy 2 min
.

1 1 1
and M(8 ——— > — — —— |M(S<t)°0Q.
21 <r]t Nt— 1> o t;<nt r]t—1> (8<t)°0
Again, the last bound follows from the minimality ™, which asserts thdM(s—q) —M(s)]°s>
0> [M(s—q)—M(s)]°(s—q) and thus implies tha¥l(s—q)-q > M(s)°g. So Theorem 10 follows
from (12). a

Assumingq random withE[q] = 1 and taking the expectation in Theorem 10, the last term
reduces tdZt(n—l[—m—l,l)ZiM(%t)i- If D >0, the term is positive and may be dropped. In case of
D= E or A, the last term is identical tﬂl; (sincezidi = 1) and keeping it improves the bound.
Furthermore, we need to evaluate the expectation of the second to last fEheadrem 10, namely
E[maxicn{d-q}]. For D=E andq being exponentially distributed, using Lemma 1 wktk=0 Vi,
the expectation is bounded by-Inn. We hence get the following lower bound:

Corollary 11 (FPL lower-bounded by BEH) For D = £ and any.s and all K equal and Ry] =
e 9 for q>0 and decreasing); >0, the expected loss of FPL is at mdst/nT lower than the loss
of the best expert in hindsight:

nInn
(11 > St — —
V=N g
The upper and lower bounds ént (Theorem 4 and Corollaries 3 and 11) together show that
giitn—’l if ne—0 and n¢si"—w and K =KYVi. (13)

it

For instancen: = vK/2s%". Forn; = /K/2(¢-1+1) we proved the bound in Theorentiij.
Knowing that/K/2(¢-¢+1) converges to,/K/2s™{" due to (13), we can derive a bound similar
to Theorem Tii) for n; = /K/2s{". This choice fom; has the advantage that we do not have to
compute/; (cf. Section 9), as also achieved by Theore(in)8

We do not know whether Theorem 10 can be generalized to expemdepecomplexitie&'.
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8. Adaptive Adversary

In this section we show that bounds that hold against an oblivious adyerstomatically also hold
against an adaptive one.

Initial versus independent randomization. So far we assumed that the perturbatiqase sampled
only once at timé¢ =0. As already indicated, under the expectation this is equivalent to demera
a new perturbatiomy; at each time step i.e. Theorems 4-9 remain valid for this case. While the
former choice was favorable for the analysis, the latter has two advantaigst, repeated sampling
of the perturbations guarantees better bounds with high probability (sésewtion). Second, if
the losses are generated by an adaptive adversary (not to beenbmftis an adaptive learning rate)
which has access to FPL's past decisions, then he may after some time figtie mitial random
perturbation and use it to force FPL to have a large loss. We now showhthéiounds for FPL
remain valid, even in case of an adaptive adversary, if independsatmazationg~ ¢ is used.

Oblivious versus adaptive adversary. Recall the protocol for FPL: After each expermade
its predictiony}, and FPL combined them to form its own predictigit-, we observex, and
Loss:,Y; ) is revealed for FPL's and each expert’s prediction. For indepandadomization, we
haveyf Pt = yfPL(xt,y11,0). For an oblivious (non-adaptive) adversaky= X (X-t,y~t). Recur-
sively inserting and eliminating the expeyts=Vi (x-t,yt) andyfF-, we get the dependencies

W= Lossx, YY) = w(xwr, ) and § := Losgx,V}) = S (X11), (14)

wherex; 1 is a “fixed” sequence. With this notation, Theorems 5-8 mad= E[S [, u (X11,0)] <
f(xe7) for all x;.1 € X7, where f(x.1) is one of the r.h.s. in Theorems 5-8. Noting tHais
independent off; 1, we can write this as

.
A1 <0, where A(X<t,0<) := YQQXEq‘; [ Z (X1:15 Chr) (X1:T)}, (15)

whereE,,; is the expectation w.r.t;...qr (keepingg fixed).

For an adaptive adversang = % (X<t,yt,y-tr") can additionally depend oytt“. Eliminat-
ing yi andyfP- we get, again, (14), bug = X (Xt,0<¢) is no longer fixed, but an (arbitrary) ran-
dom function. So we have to replageby % (X<t,0<t) in (15) fort =1..T. The maximization is
now a functional maximization over all functions(-,-)...xr (-,-). Using “max.\Eq[g(x(q),q)] =
Eqmax[g(x,q)];” we can write this as

—

?
=1

So, establishing@; <0 would show that all bounds also hold in the adaptive case.

Lemma 12 (Adaptive=Oblivious) Let q...qr € RT be independent random variables, Be the
expectation w.r.t. ¢ f any function of xt € XT, and y arbitrary functions of x; and q. Then,
A (X<t,9<t) =Bt (X<t,0<t) forall 1<t<T, where Aand B are defined in (15) and (16). In particular,
A; <0implies B <0.
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Proof. We proveB; = A; by induction ont, which establishes the theorerB; = At is obvious.
AssumeB; =A;. Then

Bi_.1 = anXEq,la = r)r(?axeqflAt
T
= maxEq [maxEqiT [ Zut(xl;r,qT) — f(xl;T)H

= n);[alXEQtfl { rzl Ur(Xet, Gr) + th?Xeq:T [ i Ur (X1, O) — f(xliT)} ]

=

independent;-t andg;.t independenty_1, since they are i.d.
t—1 T
= max[Eqt 1[ Z Ur (X1, O ) ] +maxEq [ Ut (X1, G (XlT)H
1=

X-1 XT

t—1
= maxmaxEqT[ Gt ZUT(Xl:r,QT)+ZUT(XLUQT)_ f(Xl:T)] = Ac1
= 1=

Corollary 13 (FPL Bounds for adaptive adversary) Theorems 5-8 also hold for an adaptive ad-
versary in case of independent randomization ¢.

Lemma 12 shows that every bound of the fokg< O proven for an oblivious adversary, implies
an analogous bounB; < 0 for an adaptive adversary. Note that this strong statement holds only
for thefull observation gamei.e. if after each time step we learn all losses. In partial observation
games such as the Bandit case (Auer et al., 1995), our actual actioneperydion our past action
by means of our past observation, and the assertion no longer holdhkis loase, FPL with an
adaptive adversary can be analyzed as shown by McMahan and BQ0#®)( Poland and Hutter
(2005). Finally,yi™"- can additionally depend on, but the “reduced” dependencies (14) are the
same as for FPL, hence, IFPL bounds also hold for adaptive adyersa

9. Miscellaneous

Bounds with high probability. We have derived several bounds for the expecteddpsof FPL.
Theactualloss at timet is uy =M (s + kr;q)os[. A simple Markov inequality shows that the total
actual lossu; v exceeds the total expected ldsg =E[u; 7] by a factor ofc > 1 with probability at
most 1/c:

Plupt > cl11] < 1/c.

Randomizing independently for eatlas described in the previous Section, the actual loss=s
M(sct+ katq‘ )°s with the same expected loésr =E[u;.7] as before. The advantage of independent
randomization is that we can get a much better high-probability bound. Wexgdait a Chernoff-
Hoeffding bound (McDiarmid, 1989, Cor.5.2b), valid for arbitrary indeg@ent random variables
O<uy<lfort=1,..,T:

P(luit — E[urr]| > 8E[urt]| < 2exp(—38°E[urt]), 0<d< 1
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Ford=./3c/l1T we get
Pllupt — f17| > /3clyt] < 26¢ assoonas /1.1 > 3c. a7

Using (17), the bounds fak .t of Theorems 5—-8 can be rewritten to yield similar bounds with high
probability (1-2e ) for u;.t with small extra regretl v/c-L or O «/c-sfl:T. Furthermore, (17)
shows that with probability 1y;.t /¢1.1 converges rapidly to 1 fof; 1 — . Hence we may use the

easier to computg; = /K /2u; instead ofn; = /K /2(¢-1+1), likely with similar bounds on the
regret.

Computational Aspects. It is easy to generate the randomized decision of FPL. Indeed, only a
single initial exponentially distributed vectge R" is needed. Only for self-confident 01/+v/¢ ¢
(see Theorem 7) we need to compute expectations explicitly. Gjuefnomt~t+1 we need to
computel; in order to update;. Note that/; =wys, wherew; =P[l; =i] andl; :=argmincz{s_;+
%} is the actual (randomized) prediction of FPL. With=s_;+k/n¢, P[l; =i] has the following
representation:

i j
Pli=i] = Pls— & <s— 2 yj#i
Nt Nt

q g L
= /P[s——:m A sS——>mVj#ildm
Nt Nt
— [ Pld = (s ~m)- []Pld’ < ne(s! — m)jdm
n J#
_ /gﬂ e M (L — &) dm
- 1#
(o)L

= >
sty Enrea

e Nt Tjenr(sI—s™)

In the last equality we expanded the product and performed the resukpanential integrals.
For finite n, the second to last one-dimensional integral should be numerically fea€lhlee the
productﬂ?:l(l—e*”t(s'*m)) has been computed in tin@(n), the argument of the integral can be
computed for eachin time O(1), hence the overall time to computeis O(c-n), wherec is the
time to numerically compute one integral. For infinitethe last sum may be approximated by the
dominant contributions. Alternatively, one can modify the algorithm by camsid only a finite
pool of experts in each time step; see next paragraph. The expectatyoalsoebe approximated
by (Monte Carlo) sampling; several times.

Recall that approximating. can be avoided by using{" (Theorem 8) om. (bounds with
high probability) instead.

Finitized expert pool. In the case of an infinite expert class, FPL has to compute a minimum over
an infinite set in each time step, which is not directly feasible. One possibilitydessl this is to
choose the experts fromfiite poolin each time step. This is the case in the algorithm of Gentile
(2003), and also discussed by Littlestone and Warmuth (1994). FoniPtan obtain this behavior

by introducing arentering timet' > 1 for each expert. Then expéris not considered for< T'.

In the bounds, this leads to an additiorﬂlglin Theorem 2 and Corollary 3 and a further additional

T in the final bounds (Theorems 5-8), since we must add the regret oéstte@xpert in hindsight
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which has already entered the game and the best expert in hindsightSglabtingt' =k' implies
bounds for FPL with entering times similar to the ones we derived here. Thisdend proofs for
this construction can be found in (Poland and Hutter, 2005).

Deterministic prediction and absolute loss.Another use ofy; from the second last paragraph is
the following: If the decision space 8=A, then FPL may make a deterministic decisibaw; € A

at timet with bounds now holding for sure, instead of selecéngith probabilityw{. For example
for the absolute loss = |x —Vj| with observatior € [0,1] and predictions/ € [0,1], a master
algorithm predicting deterministicaliyy; € [0,1] suffers absolute logg —Weyt| < W [% —Yi| =4,
and hence has the same (or better) performance guarantees as éherial, masters can be chosen
deterministic if prediction spacg and loss-function Logs,y) are convex. Fok.yi € {0,1}, the
absolute los$x — pt| of a master deterministically predicting € [0,1] actually coincides with the
pi-expected 0/1 loss of a master predicting 1 with probability Hence a regret bound for the
absolute loss also implies the same regret for the 0/1 loss.

10. Discussion and Open Problems

How does FPL compare with other expert advice algorithms? We brieflystidour issues, sum-
marized in Table 2.

Static bounds. Here the coefficient of the regret terfK L, referred to as thieading constanin
the sequel, is 2 for FPL (Theorem 5). It is thus a factor/@ worse than the Hedge bound for
arbitrary loss by Freund and Schapire (1997), which is sharp in sonse gpovk, 1995). This
is the price one pays for the elegance of FPL. There is evidence thawhist{case) difference
really exists and is not only a proof artifact. For special loss functiomsbtiunds can sometimes
be improved, e.g. to a leading constant of 1 in the static (randomized) WMwihs@/1 loss (Cesa-
Bianchi et al., 1997) Because of the structure of the FPL algorithm however, it is questioifable
corresponding bounds hold there.

Dynamic bounds. Not knowing the right learning rate in advance usually costs a factar2f
This is true for Hannan’s algorithm (Kalai and Vempala, 2003) as well adl wur cases. Also for
binary prediction with uniform complexities and 0/1 loss, this result has b&tableshed recently —
Yaroshinsky et al. (2004) show a dynamic regret bound with leadingtaot/2(1+¢). Remark-
ably, the best dynamic bound for a WM variant proven by Auer et aDZ20as a leading constant
21/2, which matches ours. Considering the difference in the static case, ieéoifeeconjecture that
a bound with leading constant of 2 holds for a dynamic Hedge algorithm.

General weights. While there are several dynamic bounds for uniform weights, the onlyiqare
result for non-uniform weights we know of is (Gentile, 2003, Cor.16)jol gives the dynamic
bounde$entie<g . +i+0 [\/(§1:T +i)In(s) 1 +i)] for a p-norm algorithm for the absolute loss. This
is comparable to our bound for rapidly decaying weighits- exp(—i), i.e.k' =i. Our hierarchical
FPL bound in Theorem %b) generalizes this to arbitrary weights and losses and strengthens it,
since both, asymptotic order and leading constant, are smaller.

It seems that the analysis of all experts algorithms, including Weighted Majaitgnts and
FPL, gets more complicated for general weights together with adaptiverigaate, because the

3. While FPL and Hedge and WMR (Littlestone and Warmuth, 1994) canIsaampexpert without knowing its pre-
diction, Cesa-Bianchi et al. (1997) need to know the experts’ preditidlote also that for many (smooth) loss-
functions like the quadratic loss, finite regret can be achieved (Vo\8Q)19
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n Loss | conjecture| Lower Bound Upper Bound
static 0/1 1 1? 1 (Cesa-Bianchi et al., 1997)
static | any V21 V2 (Vovk, 1995) V2 (Hedge), 2 (FPL)
dynamic| 0/1 V2 1? (Hutter, 2003b) /2 (Yaroshinsky) , 2/2 (Auer 2002)
dynamic| any 2 V2 (Vovk, 1995) | 2v/2 (FPL), 2 (Hutter, 2003b, Bayes)

Table 2: Comparison of the constantm regretscy/Lossx Inn for various settings and algorithms.

choice of the learning rate must account for both the weight of the besirtefin hindsight) and
its loss. Both quantities are not known in advance, but may have a difienpact on the learning
rate: While increasing the current loss estimate always decrgagsbs optimal learning rate for an
expert with higher complexity would be larger. On the other hand, all aeslgsown so far require

decreasing);. Nevertheless we conjecture that the bounidéT K and /s, ki also hold without
the hierarchy trick, probably by using expert dependent learning)tate

Comparison to Bayesian sequence predictionWe can also compare theorst-casebounds for
FPL obtained in this work to similar bounds fBayesian sequence predictidret {v; } be a class of
probability distributions over sequences and assume that the true segsisampled fronpe {v; }
with complexity kM (Zie‘kvi <1). Then it is known that the Bayes optimal predictor based on the
e X"-weighted mixture of);’s has an expected total loss of at mb&t-2v/LFkH+2k*, wherel is
the expected total loss of the Bayes optimal predictor basqd(btutter, 2003a, Thm.2), (Hutter,
2004b, Thm.3.48). Using FPL, we obtained the same bound except foraitiedeorder constant,
but for any sequence independently of the assumption that it is gendraied This is another
indication that a PEA bound with leading constant 2 could hold. See Hutte4&0Hutter (2003b,
Sec.6.3) and Hutter (2004b, Sec.3.7.4) for a more detailed comparisoryes Baunds with PEA
bounds.
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