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Abstract

Recent work has introduced Boolean kernels with which one can learn linear threshold functions
over a feature space containing all conjunctions of length up tok (for any 1≤ k≤n) over the original
n Boolean features in the input space. This motivates the question of whether maximum margin
algorithms such as Support Vector Machines can learn Disjunctive Normal Form expressions in
the Probably Approximately Correct (PAC) learning model byusing this kernel. We study this
question, as well as a variant in which structural risk minimization (SRM) is performed where the
class hierarchy is taken over the length of conjunctions.

We show that maximum margin algorithms using the Boolean kernels do not PAC learnt(n)-
term DNF for anyt(n) = ω(1), even when used with such a SRM scheme. We also consider PAC
learning under the uniform distribution and show that if thekernel uses conjunctions of length
ω̃(

√
n) then the maximum margin hypothesis will fail on the uniform distribution as well. Our

results concretely illustrate that margin based algorithms may overfit when learning simple target
functions with natural kernels.

Keywords: computational learning theory, kernel methods, PAC learning, Boolean functions

1. Introduction

Maximum margin algorithms, notably the Support Vector Machines (SVM) introduced by Boser
et al. (1992), have received considerable attention in recent years (see, e.g., Shawe-Taylor and Cris-
tianini, 2000, for an introduction). In their basic form, SVM learn linear threshold hypotheses and
combine two powerful ideas. The first idea is to learn using the linear separator which achieves
the maximum marginon the training data rather than an arbitrary consistent linear threshold hy-
pothesis. The second idea is to use an implicit feature expansion by akernel function. The kernel
K : X ×X → R, whereX is the original space of examples, computes the inner product in the ex-
panded feature space. Given a kernelK which corresponds to some expanded feature space, the
SVM hypothesish is (an implicit representation of) the maximum margin linear threshold hypoth-
esis over this expanded feature space rather than the original feature space. SVM theory (see, e.g.,
Shawe-Taylor and Cristianini, 2000) implies that if the kernelK is efficiently computable then it is
possible to efficiently construct this maximum margin hypothesish and thath itself is efficiently
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computable. Several on-line algorithms have also been proposed which iteratively construct large
margin hypotheses in the feature space (see, e.g., Friess et al., 1998; Gentile, 2001).

Both theoretical and experimental studies suggest that such algorithms may be able to take
advantage of properties of the distribution and data to converge faster than what would be required
by uniform convergence bounds. In particular, convergence bounds based on the maximum margin
of the classifier on the observed data have been obtained by Shawe-Taylor et al. (1998) and by
Shawe-Taylor and Cristianini (2000).

1.1 Can SVMs Learn DNF?

Another major focus of research in learning theory is the question of whether various classes of
Boolean functions can be learned by computationally efficient algorithms. The canonical open ques-
tion in this area is whether there exist efficient algorithms in the Probably Approximately Correct
(PAC) learning model of Valiant (1984) for learning Boolean formulas in Disjunctive Normal Form,
or DNF. This question has been open since the introduction of the PAC modeland has been inten-
sively studied by many researchers (see, e.g., Blum et al., 1994; Blum and Rudich, 1995; Bshouty,
1996; Hancock and Mansour, 1991; Jackson, 1997; Khardon, 1994; Klivans and Servedio, 2001;
Kucera et al., 1994; Kushilevitz and Roth, 1993; Sakai and Maruoka, 2000; Tarui and Tsukiji, 1999;
Verbeurgt, 1990, 1998).

In this paper we analyze the performance of maximum margin algorithms when used with
Boolean kernels to learn DNF formulas. Several authors including Khardon et al. (2002), Sado-
hara (2001), Watkins (1999) and Kowalczyk et al. (2002) have recently proposed a family of kernel
functionsKk : {0,1}n×{0,1}n → N, where 1≤ k ≤ n, such thatKk(x,y) computes the number of
(monotone or unrestricted) conjunctions of length (exactly or up to)k which are true in bothx andy.
This is equivalent to expanding the original feature space ofn Boolean features to include all such
conjunctions.1 Since linear threshold elements can represent disjunctions, one can naturally view
any DNF formula as a linear threshold function over this expanded featurespace. It is thus natural
to ask whether theKk kernel maximum margin learning algorithms are good algorithms for learning
DNF.

Additional motivation for studying DNF learnability with theKk kernels comes from recent
progress on the DNF learning problem. The fastest known algorithm for PAC learning DNF is
due to Klivans and Servedio (2001); it works by explicitly expanding each example into a feature
space of monotone conjunctions and explicitly learning a consistent linear threshold function over
this expanded feature space. Since theKk kernel enables us to do such expansions implicitly in a
computationally efficient way, it is natural to investigate whether theKk-kernel maximum margin
algorithm yields a computationally efficient algorithm for PAC learning DNF.

1.2 Discussion of the Problem and Previous Work

Recall that a polynomial size sample is sufficient for PAC learning any concept class where each
concept in the class has a polynomial size description. In any such case,as shown by Blumer
et al. (1987), an Occam algorithm which identifies a short consistent hypothesis in the class is a

1. This Boolean kernel is similar to the well known polynomial kernel in thatall monomials of length up tok are
represented. The main difference is that the polynomial kernel assigns weights to monomials which depend on
certain binomial coefficients; thus the weights of different monomials candiffer by an exponential factor. In the
Boolean kernel all monomials have the same weight.
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PAC learner. Thus the statistical ingredient of the problem of PAC learningpolynomial size DNF
expressions is in some sense solved and the main question seems to be computational. Yet, it is not
known whether such an Occam algorithm exists.

As mentioned above recent work of Shawe-Taylor et al. (1998) and Shawe-Taylor and Cristian-
ini (2000) has introduced convergence bounds for maximum margin learners. These bounds are
independent of the dimension of the expanded feature space but they depend on theL2 norm of ex-
amples in this space, as well as the margin obtained on the sample. In particular they depend onR/δ
whereδ is the margin andR bounds theL2 norm of examples. It is instructive to consider applying
these results in our setting, where we assume for concreteness that we are learning a function given
by onek-monomialT, and that we are using theKk monotone kernel with the maximum margin
algorithm. The linear threshold representation for this function isxT ≥ 1, i.e. only one weight is
non-zero and the (non-normalized) margin obtained is 1. However, the maximumL2 norm of exam-
ples isΘ(nk/2) so the quantityR/δ is exponentially large. Seen in another way, we can normalize
the examples to have a maximum norm of 1, but then the normalized margin obtainedis Θ(n−k/2).
Indeed, the bound given by Theorem 4.18 of the paper of Shawe-Taylor and Cristianini (2000) only
implies nontrivial generalization error for theKk kernel algorithm if a sample of sizenΩ(k) is used,
and with such a large sample the computational advantage of using theKk kernel is lost. As a result,
using such bounds we cannota priori conclude anything about the performance of the algorithm
when it is run with a polynomial size sample.

Recently, several negative results have been obtained for embedding concept classes into Eu-
clidean spaces (Ben-David et al., 2002; Forster et al., 2003). The results are best understood in
terms of their relation to the convergence bounds. For example, Ben-Davidet al. (2002) show that
there are concept classes for which there is no mapping into[0,1]N that achieves a large margin,
for anyN. This actually holds “for the majority of concept classes with low VC dimension”. Other
work of Forster et al. (2003) gives bounds on the margin (or the dimension required) for concrete
concept classes. Again, the implication is that known convergence boundsdo not imply success in
these cases. It is worth noting that the notion of embedding used in these results is slightly stronger
than the requirement in the upper bounds, in that the embedding and margin are for all the examples
(or a large fraction of the instance space) and not just for a small sample.However, these results
rule out any simple application of the upper bounds that use properties of the concept class directly.

Therefore, in many cases, and concretely in our case of learning DNF via the monomial kernel,
the upper bounds provided by standard convergence theorems only implythat a large sample will
guarantee successful generalization. However, such upper bounds donot imply that theKk kernel
maximum margin algorithm must have poor generalization error if run with a smallersample. This
is precisely the question studied in this paper. Notice the contrast with the discussion of Occam
algorithms; here we have an efficient algorithm with no known bounds on hypothesis size. The
question is whether its hypothesis provides a good generalization in a statistical sense.

The notion that this might succeed is not unreasonable. In an analogous situation, Servedio
(1999) studied the generalization error of the Perceptron and Winnow algorithms for various prob-
lems. For both Perceptron and Winnow the standard bounds gave only an exponential upper bound
on the number of examples required to learn various classes, but a detailedalgorithm-specific anal-
ysis showed that the Perceptron algorithm succeeds in polynomial time whereas the Winnow algo-
rithm requires exponential time for the problems considered. Analogously,in this paper we perform
detailed algorithm-specific analysis for theKk kernel maximum margin algorithms.
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In previous work we have studied a similar question with regard to the perceptron algorithm. In
particular, Khardon et al. (2002) constructed a simple Boolean function and an example sequence
for the online mistake-bound learning model, and showed that this sequencecauses theKn kernel
Perceptron algorithm (i.e. the Perceptron algorithm run over a feature space of all 2n monotone
conjunctions) to make 2Ω(n) many mistakes. The current paper differs in several ways from this
earlier work: we study the maximum margin algorithm rather than Perceptron, we consider PAC
learning from a random sample rather than online learning, and we analyzethe Kk kernels for all
1≤ k ≤ n. We note here that maximum margin linear threshold learning algorithms are generally
viewed as being more powerful than the simple Perceptron algorithm, and thatPAC learning is
generally viewed as being easier than online mistake bound learning (it is wellknown that any
concept class which is efficiently learnable in the mistake bound model is efficiently PAC learnable,
but the converse is not true as shown by Blum, 1994). Thus, the results of this work represent a
substantial strengthening and generalization of the work of Khardon et al. (2002).

1.3 Our Results

In this paper we study the kernels corresponding to all monotone monomials oflength up tok,
which we denote byKk. We also consider the polynomial kernelK(x,y) = (x ·y)k, parametrized by
the degree of the polynomial.

In addition to unaugmented maximum margin algorithms we also consider a natural scheme of
structural risk minimization (SRM) that can be used with maximum margin algorithms over this
family of Boolean kernels. In SRM, given a hierarchy of classesC1 ⊆C2 ⊆ . . ., one learns with each
class separately and uses a cost function combining the complexity of the class with its observed
accuracy to choose the final hypothesis. The cost function typically balances various criteria such
as the observed error and the (bound on) generalization error. A natural scheme here is to use SRM
over the classes formed byKk with k = 1, . . . ,n.2

Combining either of these algorithms (i.e. with or without SRM scheme) with the monomial
kernel we get a concrete and efficient algorithm that can be applied to theproblem of learning DNF.
We prove several negative results which establish strong limitations on the ability of such algorithms
to learn DNF. Similar negative results are proved for the polynomial kernelas well.

Our first result says essentially that for anyt(n) = ω(1), for all k = 1, . . . ,n theKk kernel maxi-
mum margin algorithm cannot PAC learnt(n)-term DNF. More precisely, we prove

Result 1: Let t(n) = ω(1) and letε = 1
4·2t(n) . There is aO(t(n)1/3)-term monotone DNF overt(n)

relevant variables, and a distributionD over{0,1}n such that for allk∈ {1, . . . ,n} theKk maximum
margin hypothesis has error larger thanε (with overwhelmingly high probability over the choice of
a polynomial size random sample fromD).

Note that this result implies that theKk maximum margin algorithms fail even when combined
with SRM regardless of the cost function. This is simply because the maximum margin hypothesis
has error> ε for all k, and hence the final SRM hypothesis must also have error> ε.

While our accuracy bound in the above result is small (it iso(1) sincet(n) = ω(1)), a simple
variant of the construction used for Result 1 also proves:

2. This is standard practice in experimental work with the polynomial kernel, where typically small values ofk are tried
(e.g. 1 to 5) and the best is chosen.
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Result 2: Let f (x) = x1 be the target function. There is a distributionD over{0,1}n such that for
anyk= ω(1) theKk maximum margin hypothesis has error at least1

2−2−nΩ(1)
(with overwhelmingly

high probability over the choice of a polynomial size random sample fromD).

Thus any attempt to learn using monomials of non-constant size can provablylead to overfitting.
Note that for anyk= Θ(1), standard bounds on maximum margin algorithms show that theKk kernel
algorithm can learnf (x) = x1 from a polynomial size sample.

Given these strong negative results for PAC learning under arbitrary distributions, we next con-
sider the problem of PAC learning monotone DNF under the uniform distribution. This is one of the
few frameworks in which some positive results have been obtained for learning DNF from random
examples only (see, e.g., Bshouty and Tamon, 1996; Servedio, 2001). In this scenario a simple
variant of the construction for Result 1 shows that learning must fail ifk is too small:

Result 3: Let t(n) = ω(1) and ε = 1
4·2t(n) . There is aO(t(n)1/3)-term monotone DNF overt(n)

relevant variables such that for allk < t(n) theKk maximum margin hypothesis has error at leastε
(with probability 1 over the choice of a random sample from the uniform distribution).

This result is representation based; we show that no possible hypothesisoutput by theKk algorithm
can have error less thanε. On the other hand, we also show that theKk algorithm fails under the
uniform distribution for largek:

Result 4: Let f (x) = x1 be the target function. For anyk = ω̃(
√

n), the Kk maximum margin
hypothesis will have error12 −2−Ω(n) with probability at least 0.028 over the choice of a polynomial
size random sample from the uniform distribution.

Note that there is a substantial gap between the “low” values ofk (for which learning is guar-
anteed to fail) and the “high” values ofk (for which we show that learning fails with constant
probability). It is of significant interest to characterize the performanceof theKk maximum margin
algorithm under the uniform distribution for these intermediate values ofk; a discussion of this point
is given in Section 5.

2. Preliminaries

We consider learning Boolean functions over the Boolean cube{0,1}n so thatf : {0,1}n →{0,1}.
It is convenient to consider instead the range{−1,1} with 0 mapped to−1 and 1 mapped to 1. This
is easily achieved by the transformationf ′(x) = 1−2 f (x) and since we deal with linear function
representations this can be done without affecting the results. For the rest of the paper we assume
this representation.

For x,y ∈ R
n we writex · y to denote the standard inner product∑n

i=1xiyi . Note that forx,y ∈
{0,1}n, x ·y calculates the number of bits which are 1 in bothx andy. Our arguments will refer to

L1 andL2 norms of vectors for which we use the notation|x| = ∑ |xi | and‖x‖ =
√

∑x2
i .

Definition 1 Let h: R
N → {−1,1} be a linear threshold function h(x) = sign(W · x−θ) for some

W ∈ R
N,θ ∈ R. Themargin ofh on 〈z,b〉 ∈ R

N ×{−1,1} is

mh(z,b) =
b(W ·z−θ)

‖W‖ .

Note that|mh(z,b)| is the Euclidean distance fromz to the hyperplaneW ·x = θ.
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Definition 2 Let S= {〈xi ,bi〉}i=1,...,m be a set of labeled examples where each xi ∈ R
N and each

bi ∈ {−1,1}. Let h(x) = sign(W ·x−θ) be a linear threshold function. Themargin ofh onS is

mh(S) = min
〈x,b〉∈S

mh(x,b).

Themaximum margin classifier forS is the linear threshold function h(x) = sign(W · x− θ) such
that

mh(S) = max
W′∈RN,θ′∈R

min
〈x,b〉∈S

b(W′ ·x−θ′)
‖W′‖ . (1)

The quantity (1) is called themargin ofS and is denoted mS.

Note thatmS > 0 iff S is consistent with some linear threshold function. IfmS > 0 then the
maximum margin classifier forS is unique (see, e.g., Shawe-Taylor and Cristianini, 2000).

For a sampleSand example〈xi ,1〉 in Swe sometimes writexi,+ to indicate thatxi is a positive
example. Similarlyx j,− is used to indicate thatx j is a negative example.

Let φ be a transformation which maps{0,1}n to R
N and letK : {0,1}n×{0,1}n →R be the cor-

responding kernel functionK(x,y)= φ(x)·φ(y). Given a set of labeled examplesS= {〈xi ,bi〉}i=1,...,m

where eachxi belongs to{0,1}n we denote byφ(S) the set of transformed examples{〈φ(xi),bi〉}i=1,...,m.
We refer to the following learning algorithm as theK-maximum margin learner:

• The algorithm takes as input a sampleS= {〈xi ,bi〉}i=1,...,m of m labeled examples.

We assume thatScontains both positive and negative examples, and that the sample is linearly
separable. If these conditions do not hold then the maximum margin hypothesisis not defined.
The assumptions are simply used to rule out the degenerate cases from the analysis.

We also assume thatm= poly(n), i.e. thatm= nΘ(1) and we have both a lower and upper
bound on the number of examples. The upper bound as usual limits the resources the al-
gorithm uses. The lower bound is again simply used to rule out degenerate cases from the
analysis.

• The algorithm’s hypothesis ish : {0,1}n →{−1,1},h(x) = sign(W ·φ(x)−θ) where sign(W ·
x−θ) is the maximum margin classifier forφ(S). Without loss of generality we assume that
W is normalized, that is‖W‖ = 1.

SVM theory tells us that ifK(x,y) can be computed in poly(n) time then theK-maximum margin
learning algorithm runs in poly(n,m) =poly(n) time and the output hypothesish(x) can be evaluated
in poly(n,m) =poly(n) time (see, e.g., Shawe-Taylor and Cristianini, 2000).

Our goal is to analyze the PAC learning ability of various kernel maximum marginlearning
algorithms. Recall (see, e.g., Kearns and Vazirani, 1994) that a PAC learning algorithm for a class
C of functions over{0,1}n is an algorithm which runs in time polynomial inn and 1

δ , 1
ε whereδ is

a confidence parameter andε is an accuracy parameter. We assume here, as is the case throughout
the paper, that each function inC has a description of size poly(n). Given access to random labeled
examples〈x, f (x)〉 for any f ∈ C and any distributionD over{0,1}n, with probability at least 1−δ a
PAC learning algorithm must output an efficiently computable hypothesish such that Prx∈D [h(x) 6=
f (x)]≤ ε. Applying this framework to the maximum margin learner, we assume that the sampleSis
drawn by taking IID samples fromD and providing the label according to the target functionf . If

1410



MAXIMUM MARGIN ALGORITHMS WITH BOOLEAN KERNELS

an algorithm only satisfies this criterion for a particular distribution such as theuniform distribution
on{0,1}n, we say that it is a uniform distribution PAC learning algorithm.

Let ρk(n) = ∑i=k
i=1

(n
i

)

. Note that the number of nonempty monotone conjunctions (i.e. mono-
mials) of size at mostk on n variables isρk(n). For x ∈ {0,1}n we write φk(x) to denote the
ρk(n)-dimensional vector(xT)T⊆{1,...,n},1≤|T|≤k wherexT = ∏i∈T xi , i.e. the components ofφk(x)
are all monotone conjunctions of the desired size. We note that for an example x∈ {0,1}n, theL1

norm of the expanded exampleφk(x) is |φk(x)| = ρk(|x|).

Definition 3 We write Kk(x,y) to denoteφk(x) ·φk(y). We refer to Kk as the k-monomials kernel.

The following theorem shows that thek-monomial kernels are easy to compute:

Theorem 4 (Khardon, Roth, and Servedio, 2002) For all1≤ k≤ n we have Kk(x,y) = ∑k
i=1

(x·y
i

)

.

We will frequently use the following observation which is a direct consequence of the Cauchy-
Schwarz inequality:

Observation 1 If U ∈ R
N1 with ‖U‖ = L and I⊆ {1, . . . ,N1}, |I | = N2, then∑i∈I |Ui | ≤ L ·

√
N2.

As a consequence of Observation 1 we have that ifρk(n) = N1 is the number of features in the
expanded feature space and|φk(x)| = ρk(|x|) = N2, thenU ·φk(x) ≤ L ·

√
N2.

Finally we also use the following well-known tail bound on sums of independent random vari-
ables (see, e.g., Kearns and Vazirani, 1994):

Fact 2 (Chernoff Bounds) Let X1, . . . ,Xm be a sequence of m independent 0/1-valued random vari-
ables, each of which has E[Xi ] = p. Let X denote∑m

i=1Xi , so E[X] = pm. Then for0 ≤ γ ≤ 1, we
have

Pr[X > (1+ γ)pm] ≤ e−mpγ2/3 and Pr[X < (1− γ)pm] ≤ e−mpγ2/2.

3. Distribution-Free Non-Learnability

We give a DNF and a distribution which are such that the maximum margin algorithmusing the
k-monomials kernel fails to learn, for all 1≤ k≤ n. The DNF we consider is a read once monotone
DNF overt(n) variables wheret(n) = ω(1) andt(n) = O(logn). In fact our results hold for any
t(n) = ω(1) but for concreteness we uset(n) = logn as a running example. Let

f (x) = (x1 · · ·x4`2)∨ (x4`2+1 · · ·x8`2)∨·· ·∨ (x4`3−4`2+1 · · ·x4`3) (2)

where 4̀3 = t(n) = logn so that the number of terms̀equalsΘ(t(n)1/3) = Θ((logn)1/3). For the
rest of this sectionf (x) will refer to the function defined in Equation (2) and` to its size parameter.

A polynomial threshold functionis defined by a multivariate polynomialp(x1, . . . ,xn) with real
coefficients. The output of the polynomial threshold function is 1 ifp(x1, . . . ,xn) ≥ 0 and is−1
otherwise. The degree of the function is the degree of the polynomialp. A simple but useful
observation is that any hypothesis output by theKk kernel maximum margin algorithm must be a
polynomial threshold function of degree at mostk. Minsky and Papert (1968) (see also Klivans and
Servedio, 2001) gave the following lower bound on polynomial threshold function degree for DNF:
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Theorem 5 Any polynomial threshold function for f(x) in Equation (2) must have degree at least
`.

The distributionD on{0,1}n we consider is the following:

• With probability 1
2 the distribution outputs 0n.

• With probability 1
2 the distribution outputs a stringx ∈ {0,1}n drawn from the following

product distributionD ′: the firstt(n) bits are drawn uniformly, and the lastn− t(n) bits are
drawn from the product distribution which assigns 1 to each bit with probability 1

n1/3 .

For small values ofk the result is representation based and does not depend on the sample drawn:

Lemma 6 If the maximum margin algorithm uses the kernel Kk for k < ` when learning f(x) under
D then its hypothesis has error greater thanε = 1

4·2t(n) = 1
4n.

Proof If hypothesish has error at mostε = 1
4·2t(n) underD then clearly it must have error at most

1
2·2t(n) underD ′. Since we are using the kernelKk, the hypothesish is some polynomial threshold

function of degree at mostk which has errorτ ≤ 1
2·2t(n) underD ′. So there must be some setting of

the lastn− t(n) variables which causesh to have error at mostτ under the uniform distribution on
the firstt(n) bits. Under this setting of variables the hypothesis is a degree-k polynomial threshold
function on the firstt(n) variables. By Minsky and Papert’s theorem, this polynomial threshold
function cannot compute the target function exactly, so it must be wrong onat least one setting
of the firstt(n) variables. But under the uniform distribution, every setting of those variables has
probability at least 1

2t(n) . This contradictsτ ≤ 1
2·2t(n) .

For larger values ofk (in fact for allk = ω(1)) we show that with high probability the maximum
margin hypothesis will overfit the sample. We start by explaining the high levelstructure of the
proof. Note that the target function depends on a small number of the features so most features are
irrelevant for the target. On the other hand the distribution is constructed such that each example
in the sample has a “large” weight on its own, whereas the weight of the commonfeatures in any
two examples is “small”. As a result of these facts, one can find a simple hypothesis with relatively
large margin by using all the structure from the examples, i.e. fitting them exactly. Naturally such
a hypothesis overfits the sample and provides little by way of generalizing to other examples. It is
hard in general to analyze the maximum margin hypothesis directly, and in particular it does not
necessarily follow the overfitting scheme of the simple hypothesis. However,our analysis uses the
simple hypothesis to infer some properties of the maximum margin hypothesis and through this
provide error bounds for it. The same structure is used again to analyze the polynomial kernel and
for the analysis of the uniform distribution. However, the technical details underlying the analysis
are different in each case.

The following definition captures typical properties of a sample from distribution D:

Definition 7 A sample S is aD-typical sampleif

• The sample includes the example0n.

• Any nonzero example x in the sample has0.99n2/3 ≤ |x| ≤ 1.01n2/3.
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• Every pair of examples xi,+ and xj,− in S satisfies xi,+ ·x j,− ≤ 1.01n1/3.

We can apply Chernoff bounds to analyze the second and third conditionsin the definition (with
p = 1

n1/3 and p = 1
n2/3 respectively) over the lastn− t(n) > n/2 bits, and absorb the firstt(n) bits

in the multiplicative(1± 0.01) divergence from the expected value in each case (recall thatt(n)
is only O(logn)). We thus have that the second and third conditions each fail with probabilityat
most 2−nΩ(1)

. Since the maximum margin algorithm usesm=poly(n) = nΩ(1) many examples (see
Section 2), the first condition fails with probability 2−m = 2−nΩ(1)

as well. A union bound thus gives:

Lemma 8 For m= poly(n), with probability1−2−nΩ(1)
a random i.i.d. sample of m draws fromD

is a D-typical sample.

Definition 9 Let S be a sample. The set Z(S) consists of all positive examples z∈ {0,1}n (i.e.
f (z) = 1) which have the property that every example x in S satisfies x·z≤ 1.01n1/3.

As above, we can apply Chernoff bounds withp = 1
n2/3 and use the union bound over all

examplesx ∈ S to show that the probability that a random examplez drawn fromD will have
x · z > 1.01n1/3 for any x ∈ S is at most 2−nΩ(1)

. Recall that f only depends on the firstt(n)
bits and its terms are shorter thant(n). Since the distribution is uniform over these bits we have
Pr[ f (z) = 1] ≥ 1

2t(n) = 1
n. Thus, conditioning onz being a positive example we still have:

Lemma 10 Let S be aD-typical sample of size m= poly(n) examples. ThenPrD [z∈ Z(S)| f (z) =

1] = 1−2−nΩ(1)
.

We now show that for aD-typical sample one can achieve a very large margin:

Lemma 11 Let S be aD-typical sample. Then the maximum margin mS satisfies

mS≥ Mh′ ≡
1
2
· ρk(.99n2/3)−mρk(1.01n1/3)

√

mρk(1.01n2/3)
.

Proof We exhibit an explicit linear threshold functionh′ which has margin at leastMh′ on the data
set. Leth′(x) = sign(W′ ·φ(x)−θ′) be defined as follows:

• W′
T = 1 if T is satisfied in some positive example;

• W′
T = 0 if T is not satisfied in any positive example.

• θ′ is the value that gives the maximum margin onφk(S) for thisW′, i.e. θ′ is the average of
the smallest value ofW′ ·φk(xi,+) and the largest value ofW′ ·φk(x j,−).

Since each positive examplex+ in S has at least.99n2/3 ones, we haveW′ · φ(x+) ≥ ρk(.99n2/3).
Since each positive example has at most 1.01n2/3 ones, each positive example in the sample con-
tributes at mostρk(1.01n2/3) ones toW′, so‖W′‖ ≤

√

mρk(1.01n2/3).

Finally, for any negative examplex− in the sample a termT contributes toW′ ·φ(x−) only if T
is true inx− and in some positive example. Now sincex− shares at most 1.01n1/3 ones with any
positive example in the sample, the number of such terms is at mostmρk(1.01n1/3). We therefore
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getW′ ·φ(x−) ≤ mρk(1.01n1/3). Putting these conditions together, we get that the margin ofh′ on
the sample is at least

1
2
· ρk(.99n2/3)−mρk(1.01n1/3)

√

mρk(1.01n2/3)

as desired.

It is instructive to use a rough calculation and compare the margin obtained to the one calcu-

lated in the introduction. The main term in the bound above grows roughly as
√

ρk(n2/3)
m which is

exponentially larger than the constant value obtained by the correct classifier.

Lemma 12 If S is aD-typical sample, then the thresholdθ in the maximum margin classifier for S
is at least Mh′ .

Proof Let h(x) = sign(W ·φ(x)−θ) be the maximum margin hypothesis. Since‖W‖ = 1 we have

θ =
θ

‖W‖ = mh(φk(0
n),−1) ≥ mh′(S) ≥ Mh′

where the second equality holds becauseW ·φ(0n) = 0 and the last inequality is by Lemma 11.

Lemma 13 If the maximum margin algorithm uses the kernel Kk for k = ω(1) when learning f(x)

underD then with probability1−2−nΩ(1)
its hypothesis has error greater thanε = 1

4·2t(n) = 1
4n.

Proof Let S be the sample used for learning and leth(x) = sign(W · φk(x)− θ) be the maximum
margin hypothesis. It is well known (see, e.g., Shawe-Taylor and Cristianini, 2000, Proposition 6.5)
that the maximum margin weight vectorW is a linear combination of the support vectors, i.e. of
certain examplesφk(x) in the sampleφk(S). Hence the only coordinatesWT of W that can be nonzero
are those corresponding to features (conjunctions)T such thatxT = 1 for some examplex in S.

By Lemma 8 we have that with probability 1− 2−nΩ(1)
the sampleS is D-typical. Consider

any z∈ Z(S). It follows from the above observations onW that W · φk(z) is a sum of at most
mρk(1.01n1/3) nonzero numbers, and moreover the sum of the squares of these numbers is at most
1. Thus by Observation 1 we have thatW · φk(z) ≤

√

mρk(1.01n1/3). The positive examplez is
erroneously classified as negative byh if θ > W ·φk(z); by Lemma 12 this inequality holds if

1
2
· ρk(.99n2/3)−mρk(1.01n1/3)

√

mρk(1.01n2/3)
>
√

mρk(1.01n1/3),

i.e. if

ρk(.99n2/3) > 2m
√

ρk(1.01n1/3)ρk(1.01n2/3)+mρk(1.01n1/3). (3)

We prove in Appendix A that this holds for anyk = ω(1).
Finally, observe that positive examples have probability at least1

2t(n) = 1
n. The above argu-

ment shows that anyz∈ Z(S) is misclassified, and Lemma 10 guarantees that the relative weight
of Z(S) in positive examples is 1− 2−nΩ(1)

. Thus the overall error rate ofh underD is at least
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(1−2−nΩ(1)
) 1

2t(n) > 1
4·2t(n) = 1

4n as claimed.

Together, Lemma 6 and Lemma 13 imply Result 1:

Theorem 14 For any value of k, if the maximum margin algorithm (as defined in Section 2)uses
the kernel Kk when learning f(x) underD then with probability1−2−nΩ(1)

its hypothesis has error
greater thanε = 1

4·2t(n) = 1
4n.

With a small modification we can also obtain Result 2. In particular, since we do not need to
deal with smallk we can use a simple functionf = x1 and modifyD as follows. With probability
1
4 the assignment 0n is drawn. With probability3

4 we draw fromD ′ wherex1 = 1 with probability
2
3 and as before the other bits are 1 with probability1

n1/3 . Note that for the modified distribution the
probability thatf (x) = 1 is 0.5. It is easy to see the that previous arguments go through for this case
and we get:

Theorem 15 For k = ω(1), if the maximum margin algorithm uses the kernel Kk when learning

f (x) = x1 underD then with probability1−2−nΩ(1)
its hypothesis has error at leastε = 1

2 −2−nΩ(1)
.

Remark 16 The proofs above can be adapted to show the same non-learnability resultsfor the
polynomial kernelKk(x,y) = (x · y)k which is commonly being used with SVM systems. The low
degree argument in Lemma 6 holds directly. We briefly sketch the ideas for thehigh degree case.
First note that Lemmas 8 and 10 hold without modification. The argument in Lemma 11 does not
go through if we use the same value ofW′ (sinceW′ is defined in the expanded feature space and
φ(x) is not a zero-one vector, it is not as easy to argue about the value ofW′ ·φ(x)). However, we
can use a simple modification to get a similar result. First note that for anyx∈ {0,1}n, all features
in φ(x) take only non-negative values. Now defineW′ to beW′ = ∑xi,+∈Sφ(xi,+). As in Lemma 11
we have:

• W′ · φ(x+) = ∑x j,+∈Sφ(x j,+) · φ(x+) ≥ φ(x+) · φ(x+) ≥ (0.99n2/3)k where the first inequality
uses the fact that all features in the expanded space have a positive value and therefore all
inner products in the sum are positive.

• W′ ·φ(x−) = ∑x j,+∈Sφ(x j,+) ·φ(x−) ≤ m(1.01n1/3)k.

• ‖W′‖ =
√

(∑x j,+∈Sφ(x j,+)) · (∑xi,+∈Sφ(xi,+)) ≤
√

m2(1.01n2/3)k.

So the maximum margin is at least

1
2
· (.99n2/3)k−m(1.01n1/3)k

m
√

(1.01n2/3)k
. (4)

Now the proof of Lemma 12 shows that (4) is a lower bound on the threshold of the maximum
margin classifier.

The argument in Lemma 13 needs to be changed since we need a bound onW ·φ(z). This can
be derived as follows. LetU be such thatUi ≥ 0 andUi = |Wi | so weights inU andW have the same
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magnitude but the weights inU are forced to be non-negative. Then we have that‖U‖ = ‖W‖ = 1.
For an examplez∈ Z(S) we now have

W ·φ(z) ≤ U ·φ(z)

≤ ∑
xi∈S

U ·φ(z∩xi)

≤ m(1.01n1/3)k/2.

The first inequality holds since all entries inφ(z) are non-negative. The second inequality is true
since both vectors do not have negative weights and a monomial contributesto W ·φ(z) only if it is
true both inz and in at least one example in the sample (recall that, as in the proof of Lemma 13,
the vectorW is a linear combination of vectorsφ(x) ∈ φ(S)). Therefore, each weight inφ(z) is
represented by a weight in one of the intersections, and the value of the weight depends only on the
monomial so it is the same inφ(z) andφ(z∩xi). Summing over allxi in Sgives an upper bound on
the total contribution toW ·φ(z). The last inequality follows from the Cauchy-Schwarz inequality.

As a result of this upper bound onW ·φ(z), we have thatz is misclassified if

1
2
· (.99n2/3)k−m(1.01n1/3)k

m
√

(1.01n2/3)k
> m

√

(1.01n1/3)k.

This can be shown to hold for allk = ω(1).

4. Uniform Distribution

While Theorem 14 tells us that theKk-maximum margin learner is not a PAC learning algorithm for
monotone DNF in the distribution-free PAC model, it does not rule out the possibility that theKk-
maximum margin learner might succeed for particular probability distributions such as the uniform
distribution on{0,1}n. In this section we investigate the uniform distribution.

It is easy to observe that the proof of Lemma 6 goes through for the uniform distribution as well
(we actually gain a factor of 2). This therefore proves Result 3: if the algorithm uses too low a
degreek then its hypothesis cannot possibly be a sufficiently accurate approximationof the target.
In contrast, the next result will show that if a rather largek is used then the algorithm is likely to
overfit.

The case of largek is more complex. In Section 3 we took advantage of the fact that 0n occurred
with high weight under the distributionD. This provided a lower bound (of 0) on the value of
W ·φk(x) for some negative example in the sample, and then we could argue that the value of θ in
the maximum margin classifier must be at least as large asmS. For the uniform distribution, though,
this lower bound no longer holds, so we must use a more subtle analysis. Before explaining the idea
we need some technical details.

For the next result, we consider the target functionf (x) = x1. Let S= S+ ∪S− be a data set
drawn from the uniform distributionU and labeled according to the functionf (x) whereS+ =
{〈xi,+,1〉}i=1,...,m+ are the positive examples andS− = {〈x j,−,−1〉} j=1,...,m− are the negative exam-
ples. Letui denote|xi,+| the weight of thei-th positive example, and let the positive examples be
ordered so thatu1 ≤ u2 ≤ ·· · ≤ um+ . Similarly let v j denote|x j,−| the weight of thej-th negative
example withv1 ≤ v2 ≤ ·· · ≤ vm− .

It turns out that the relative sizes ofu1 andv1, the weights of the lightest positive and negative
examples inS, play an important role. This is captured by the following definition:
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Definition 17 A sample S of size m ispositive-skewedif u1 ≥ v1 + B, i.e. the lightest positive

example in S weighs at least B more than the lightest negative example, where B= 1
66

√

n
logm.

Now, if the sample is positive skewed we can calculate a lower bound onW ·φk(x) for negative
examples in the sample. The value ofB is chosen so that this bound can be used to give a non-trivial
bound forθ. The details of this argument are developed in Section 4.2. But we must firstestablish
that the algorithm may indeed get a positive-skewed sample as input.

4.1 The Probability of Obtaining Positive-Skewed Samples

Theorem 18 Let S be a sample of size m= poly(n) drawn from the uniform distribution. Then S is
positive-skewed with probability at least0.029.

Proof Our first step is to reduce to a situation in which the positive examples and negative examples
are independent from each other.3

Let M−,M+ be any two positive integers. Consider the following new probabilistic experiment
which we callEM−,M+ : first M− draws are made from a binomial distributionB(n−1, 1

2) to obtain
(sorted) valuesv1 ≤ ·· · ≤ vM− , and thenM+ draws are made from 1+B(n−1, 1

2) to obtain (sorted)
valuesu1 ≤ ·· · ≤ uM+. The valuesv1, . . . ,vM− are thus distributed identically to the weights of the
negative examples in the scenario of Theorem 18 conditioned onm− = M−, and likewise for the
u1, . . . ,uM+ and the positive examples.

We define the following event:

• EventAM−,M+: u1 ≥ v1 +B.

For succinctness let us writeAm for the event (in our original scenario of a size-m sampleS
drawn fromU) thatS is positive-skewed. We then have

Pr[Am] ≥ Pr[.49m< m−,m+ < .51m] ·Pr[Am | .49m< m−,m+ < .51m]

≥ (1−2−Ω(m))Pr[Am | .49m< m−,m+ < .51m]

≥ (1−2−Ω(m)) min
.49m<M−,M+<.51m

Pr[Am | m− = M− andm+ = M+]

= (1−2−Ω(m)) min
.49m<M−,M+<.51m

Pr[AM−,M+ ].

where the second inequality holds by Chernoff bound.
It thus suffices to show that for any valuesM−,M+ in (.49m, .51m) we have Pr[AM−,M+ ] ≥

0.0291. Fix anyM−,M+ in this range; we will henceforth only consider the experimentEM−,M+ in
which any event involving only theui ’s is independent from any event involving onlyvi ’s.

Let n′ denoten−1. The idea of the next part of the proof is to show that with some probability
v1 falls into a relatively small left tail of the distribution whileu1 is bounded away from this tail.
This gives us a gap betweenu1 andv1 as desired.

We consideru1 first. For 1≤ i ≤ n′ let ψ(i) denote∑i−1
j=0

(n′

j

)

2−n′ . Note thatψ(i) is precisely the

weight in the “left tail up toi” of the distribution 1+B(n′, 1
2). Let X be the event thatψ(u1) ≥ 1

2m

3. Note that this is not the case inSbecause the total number of examples ism so that more positive examples means
less negative examples and vice versa. This dependence affects thatprobability over weights for the lightest positive
and negative examples in a subtle way which is hard to analyze directly.
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andu1 ≤ n′/2. In order to haveψ(u1) < 1
2m, at least one of theM+ < .51mdraws from 1+B(n′, 1

2)
must land in the “left tail” of weight less than12m; by a union bound the probability that this occurs
is less than0.51

2 and hence Pr[ψ(u1) ≥ 1
2m] ≥ 1− 0.51

2 > 0.745. The probability thatu1 ≥ n′/2 is
2−Ω(m) and thus Pr[X] > 0.745−2−Ω(m) > 0.74.

Next considerv1. For 1≤ i ≤ n′ let ϕ(i) denote∑i
j=0

(n′

j

)

2−n′ ; similar toψ(i) we have thatϕ(i)

captures the weight in the left tail ofB(n′, 1
2). Let Y be the event thatϕn(v1) ≤ 1

4m. This event fails
to occur only if each of theM− draws fromB(n′, 1

2) misses the left tail of weight at most14m. We
need to be slightly careful; note thatϕ(·) takes discrete values, so this tail may actually weigh less
than 1

4m (e.g. conceivablyϕ(22) = 1
m2 andϕ(23) = 1

m.) To take care of this we will now show that
this tail cannot weigh much less than14m.

Forc≥ 1 let σ(c) denote the largest integer such thatϕ(σ(c)) ≤ 1
cm.

Lemma 19 For any constant c≥ 1 we haveϕ(σ(c)) ≥ 1
3cm.

Proof Suppose not; then we haveϕ(σ(c)) < 1
3cm andϕ(σ(c)+1) > 1

cm. This implies that
( n′

σ(c)+1

)

>

2∑σ(c)
j=0

(n′

j

)

so in particular
( n′

σ(c)+1

)

> 2
( n′

σ(c)

)

. This implies thatn′−σ(c) > 2σ(c)+2 which implies
σ(c) < (n′−2)/3. But then Chernoff bound implies that for such values ofσ(c), ϕ(σ(c)+ 1) =
2−Ω(n′) which contradicts the inequalityϕ(σ(c)+1) > 1

cm sincec is constant andm is polynomial
in n.

The lemma implies that the left tail of weight at most1
4m must have weight at least112m. Hence

the probability that each of theM− > .49m draws fromB(n′, 1
2) misses this left tail is at most

(1− 1
12m).49m. This is at most 0.96 and hence Pr[Y] ≥ 0.04.

We next show that if eventsX andY both occur then eventAM−,M+ occurs. This will complete
the proof of the theorem since the eventsX andY are independent and we have that Pr[AM−,M+ ] ≥
Pr[X]Pr[Y] ≥ 0.0296.

Suppose, for the sake of contradiction, that eventsX andY both occur butu1 ≤ v1 +(B−1).
SinceX occurs we haveψ(u1) ≥ 1

2m, i.e.

ψ(u1) =
u1−1

∑
j=0

(

n′

j

)

2−n′ ≥ 1
2m

.

On the other hand sinceY occurs we haveϕ(v1) ≤ 1
4m, so

v1

∑
j=0

(

n′

j

)

2−n′ ≤ 1
4m

. (5)

These two inequalities together clearly implyu1 > v1. In fact they imply

u1−1

∑
j=v1+1

(

n′

j

)

2−n′ ≥ 1
4m

. (6)

Thus we see that the weights betweenv1 +1 andu1−1 have a substantial size. We next show that
this implies that the weights belowv1 also have a substantial size, contradicting Equation (5). The
following lemma is useful:
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Lemma 20 For all j such that u1−3B≤ j ≤ u1−1 we have
(n′

j

)

≥ 1
2

( n′

u1−1

)

.

Proof Clearly it suffices to prove that 2
( n′

u1−3B

)

≥
( n′

u1−1

)

. By eventX we know thatψ(u1) ≥ 1
2m.

But the left tail Chernoff bound implies that unless

u1−1≥ n′

2
−2
√

n′ logm (7)

we haveψ(u1) < 1
m4 < 1

2m so (7) must hold.

Let c = n′
2 − (u1−1) so 0< c≤ 2

√
n′ logm. Now observe that for anyb such thatb < 0.1n′ we

have
( n′

n′/2−b

)

( n′
n′/2−b−1

) =
n′/2+b+1

n′/2−b
= 1+

2b+1
n′/2−b

< 1+
2b+1
0.4n′

= 1+
5b+2.5

n′
.

We thus have
( n′

u1−1

)

( n′
u1−3B

) =

( n′

u1−1

)

( n′
u1−2

) ·
( n′

u1−2

)

( n′
u1−3

) · · · · ·
( n′

u1−3B+1

)

( n′
u1−3B

)

=

( n′
n′
2 −c

)

( n′
n′
2 −c−1

)
·
( n′

n′
2 −c−1

)

( n′
n′
2 −c−2

)
· · · · ·

( n′
n′
2 −(c+3B−2)

)

( n′
n′
2 −(c+3B−3)

)

<

(

1+
5c+2.5

n′

)(

1+
5(c+1)+2.5

n′

)

· · ·
(

1+
5(c+3B−2)+2.5

n′

)

<

(

1+
5(c+3B)+2.5

n′

)3B

≤ e
5(c+3B)+2.5

n′ 3B

where we have used the inequality 1+x≤ ex. The last quantity is at most
√

e< 2 provided that

3B <
n′

10(c+3B)+5
. (8)

Now sincec≤ 2
√

n′ logmand we can bound 5<
√

n′ logmand 30B < 0.5
√

n′ logm this holds if

3B =
1
22

√

n
logm

<
n′

21.5
√

n′ logm
=

1
21.5

√

n′

logm

which is clearly true for sufficiently largen.

Recalling thatu1 ≤ v1 +(B−1), we have that the sum in Equation (6) has at mostB−2 terms.
Now since eventX holds,u1 < n′

2 and therefore the largest of these terms is
( n′

u1−1

)

2−n′ . By Equa-
tion (6) we thus have that

(

n′

u1−1

)

2−n′ ≥ 1
4(B−2)m

. (9)
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Now Lemma 20 together with Equation (9), implies that we have

v1−1

∑
j=u1−3B

(

n′

j

)

2−n′ >
u1−B−1

∑
j=u1−3B

(

n′

j

)

2−n′ ≥
u1−B−1

∑
j=u1−3B

1
2

(

n′

u1−1

)

2−n′ ≥ 2B
2

1
4(B−2)m

>
1

4m

but this contradicts Equation (5).

4.2 Lower Bound for Large k

Using the fact that the sample is positive-skewed with constant probability wecan prove the lower
bound along the same lines as before.

Definition 21 A sample S is aU-typical sampleif

• Every example x∈ S satisfies0.49n≤ |x| ≤ 0.51n.

• Every pair of examples xi,+ and xj,− in S satisfies xi,+ ·x j,− ≤ 0.26n.

As above we can apply Chernoff bounds to derive the next two lemmas:

Lemma 22 For m= poly(n), with probability1−2−Ω(n) a random i.i.d. sample of m draws from
U is a U-typical sample.

Definition 23 Let S be a sample. The set Z(S) includes all positive examples z such that every
example x in S satisfies x·z≤ 0.26n.

Lemma 24 Let S be aU-typical sample of size m= poly(n) examples. ThenPrU [z∈ Z(S)| f (z) =
1] = 1−2−Ω(n).

The following lemma is analogous to Lemma 11:

Lemma 25 Let S be aU-typical sample of size m. Then the maximum margin mS satisfies

mS≥
1
2

(

1√
m

√

ρk(u1)−
√

mρk(.26n)

)

.

Proof We exhibit an explicit linear threshold functionh′ which has this margin. Leth′(x) =
sign(W′ ·φk(x)−θ′) be defined as follows:

• For each positive examplexi,+ in S, pick a set ofρk(u1) features (monomials) which take
value 1 onxi,+. This can be done since each positive examplexi,+ has at leastu1 bits which
are 1. For each featureT in each of these sets, assignW′

T = 1.

• For all remaining featuresT setW′
T = 0.

• Set θ′ to be the value that gives the maximum margin onφk(S) for this W′, i.e. θ′ is the
average of the smallest value ofW′ ·φk(xi,+) and the largest value ofW′ ·φk(x j,−).
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Note that since each positive example contributes at mostρk(u1) nonzero coefficients toW′, the
number of 1’s inW′ is at mostmρk(u1), and hence‖W′‖ ≤

√

mρk(u1). By construction we also
have that each positive examplexi,+ satisfiesW′ ·φk(xi,+) ≥ ρk(u1).

SinceS is a U-typical sample, each negative examplex j,− in S shares at most.26n ones with
any positive example inS. Hence the value ofW′ · φk(x j,−) is a sum of at mostmρk(.26n) num-
bers whose squares sum to at mostmρk(u1). By Observation 1 we have thatW′ · φk(x j,−) ≤
√

mρk(.26n)
√

mρk(u1).
The lemma follows by combining the above bounds on‖W′‖, W′ ·φk(xi,+) andW′ ·φk(x j,−).

Now we can give a lower bound on the thresholdθ for the maximum margin classifier.

Lemma 26 Let S be a labeled sample of size m which isU-typical and positive skewed, and let
h(x) = sign(W ·φk(x)−θ) be the maximum margin hypothesis for S. Then

θ ≥ 1
2

(

1√
m

√

ρk(u1)−
√

mρk(.26n)

)

−
√

ρk(u1−B).

Proof SinceS is positive-skewed we know thatW ·φk(x1,−) is a sum of at mostρk(u1−B) weights
WT , and sinceW is normalized the sum of the squares of these weights is at most 1. By Observation
1 we thus haveW ·φk(x1,−)≥−

√

ρk(u1−B). Now sinceθ ≥W ·φk(x1,−)+mS, Lemma 25 implies
the result.

Putting all of the pieces together, we have:

Theorem 27 If the maximum margin algorithm uses the kernel Kk for k= ω(
√

nlog
3
2 n) when learn-

ing f(x) = x1 under the uniform distribution then with probability at least0.028 its hypothesis has
error ε = 1

2 −2−Ω(n).

Proof By Lemma 22 and Theorem 18, the sampleSused for learning is bothU-typical and positive
skewed with probability at least 0.029−1/2−Ω(n) which is more than 0.028 for sufficiently largen.
Consider anyz∈ Z(S). Using the reasoning from Lemma 13,W ·φ(z) is a sum of at mostmρk(.26n)
numbers whose squares sum to at most 1, soW ·φ(z)≤

√

mρk(.26n). The examplez is erroneously
classified as negative byh if

1
2

(

1√
m

√

ρk(u1)−
√

mρk(.26n)

)

−
√

ρk(u1−B) >
√

mρk(.26n).

so it suffices to show that
√

ρk(u1) > 3m
(

√

ρk(.26n)+
√

ρk(u1−B)
)

. (10)

Recall thatρk(x) = ∑k
j=0

(x
j

)

. Note that fork = n (all-monomials kernel) the above inequality be-

comes 2u1/2 > 3m
(

2.13n +2(u1−B)/2
)

which is clearly true. In Appendix B we show that Equation

(10) holds for allk = ω(
√

nlog
3
2n) as required.

The above argument shows that anyz∈ Z(S) is misclassified, and Lemma 24 guarantees that the
relative weight ofZ(S) in positive examples is 1−2−Ω(n). Since Prx∈U [ f (x) = 1] is 1/2, we have
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that with probability at least 0.028 the hypothesish has error rate at leastε = 1
2 −2−Ω(n), and we are

done.

Remark 28 Here again we can adapt the proofs to show non-learnability results for the polynomial
kernelKk(x,y) = (x·y)k. We modify the definition ofW′ in Lemma 25 as follows. For every positive
examplexi,+ in the sample let ˆxi,+ be the example obtained by picking an arbitrary subset of sizeu1

of the original true bits and setting all other bits to 0. Now letW′ = ∑xi,+∈Sφ(x̂i,+). Arguing as in
Remark 16 we get that the maximum margin is at least

1
2
· uk

1−m(0.26n)k

m
√

uk
1

.

Now in Lemma 26 we get thatW′ ·φ(x1,−) ≥ −(u1−B)k/2 which again implies a lower bound on
the threshold.

Finally, following Theorem 27 and the argument in Remark 16 one can show that for an example
z∈ Z(S) we haveW ·φ(z) ≤ m

√

(0.26n)k so thatz is misclassified if

uk
1−m(0.26n)k−2m

√

uk
1

√

(u1−B)k ≥ 2m2
√

uk
1(0.26n)k

which is true if
uk/2

1 > 5m2(u1−B)k/2.

Using the reasoning in Case 1 of Appendix B, one can show that this holds for k = ω(
√

nlog
3
2 n).

5. Conclusions and Future Work

Boolean kernels offer an interesting new algorithmic approach to one of themajor open problems
in computational learning theory, namely learnability of DNF expressions. Wehave studied the
performance of the maximum margin algorithm with the Boolean kernels, giving negative results
for several settings of the problem. Our results indicate that the maximum marginalgorithm can
overfit even when learning simple target functions and using natural andexpressive kernels for such
functions, and even when combined with structural risk minimization. Our results consider cases
where the L2 norm of examples in the expanded feature space is large. This seems necessary for
learning DNF; note that while one can use an exponential function to definea kernel with weighted
monomials where the weight decays exponentially depending on the degreek, this implies that the
margin for functions of high degree is exponentially small.

While our results are negative there are several interesting avenues suggested by this work which
may succeed; we discuss these briefly below. One direction is to modify the basic learning algo-
rithm. Many interesting variants of the basic maximum margin algorithm have been used in recent
years, such as soft margin criteria and kernel regularization. It may bepossible to prove positive
results for some DNF learning problems using these approaches. A startingpoint would be to test
their performance on the counterexamples (functions and distributions) which we have constructed.

A more immediate goal is to close the gap between small and largek in our results for the
uniform distribution. It is well known (see, e.g., Verbeurgt, 1990) that when learning polynomial
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size DNF under the uniform distribution, conjunctions of lengthω(logn) can be ignored with little
effect. Hence the most interesting setting ofk for the uniform distribution learning problem isk =
Θ(logn). Learning under the uniform distribution with ak = Θ(logn) kernel is qualitatively quite
different from learning with the large values ofk which we were able to analyze. For example, for
k = Θ(logn) if a sufficiently large polynomial size sample is taken, then with very high probability
all features (monomials of size at mostk) are active in the sample.

As a first concrete problem in this scenario, one might consider the question of whether ak =
Θ(logn) kernel maximum margin algorithm can efficiently PAC learn the target functionf (x) = x1.
For this problem it is easy to show that that the naive hypothesish′ constructed in our proofs achieves
both a large margin and high accuracy. Moreover, it is possible to show that with high probability
the maximum margin hypothesis has a margin which is within a multiplicative factor of(1+o(1))
of the margin achieved byh′. Though these preliminary results do not answer the above question
they suggest that the answer may be positive. A positive answer, in our view, would be strong
motivation to analyze the general case.

Finally, the kernel we have used is natural in terms of capturing all monomials of a certain length
but there are other ways to capture natural kernels for Boolean problems. An interesting possibility
is using a kernel of parity functions and such a construction can indeed be given. The resulting
representation is closely related to learning via the Fourier transform as done in the work of Linial
et al. (1993); Kushilevitz and Mansour (1993); Mansour (1995) butthe algorithmic ideas are very
different to the ones used by maximum margin algorithms.
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Appendix A. Proof of Equation (3)

To show that

ρk(.99n2/3) > 2m
√

ρk(1.01n1/3)ρk(1.01n2/3)+mρk(1.01n1/3)

it suffices to show that

ρk(.99n2/3) > 3m
√

ρk(1.01n1/3)ρk(1.01n2/3). (11)

The proof uses several cases depending on the value ofk relative ton.

Case 1:k≤ 0.505n1/3. Sinceρk(`) = ∑k
i=1

(

`
i

)

, for k≤ `/2 we have thatρk(`) ≤ k
(

`
k

)

. For allk we
haveρk(`) ≥

(

`
k

)

so it suffices to show that

(

.99n2/3

k

)

> 3mk

√

(

1.01n1/3

k

)(

1.01n2/3

k

)
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which is equivalent (clearing denominators from the binomial coefficients)to

k−1

∏
i=0

(.99n2/3− i) > 3mk

√

k−1

∏
i=0

(1.01n1/3− i)(1.01n2/3− i).

We now use the fact that fori ≥ 0 we have(A− i)(B− i)≤ (
√

AB− i)2 provided that 2
√

AB< A+B;
it is easy to see that this latter condition holds forA = 1.01n1/3, B = 1.01n2/3. It thus suffices to
show that

k−1

∏
i=0

(.99n2/3− i) > 3mk
k−1

∏
i=0

(1.01n1/2− i)

which in turn is implied by
(

.99n2/3

1.01n1/2

)k

> 3mn

(we used the fact thatk ≤ n to obtain the right-hand side above). This holds as long ask >
log(3mn)

log0.98+ 1
6 logn

= Θ(1) for anym= poly(n). Therefore the condition holds for anyk = ω(1).

Case 2:0.5 ·1.01n1/3 ≤ k≤ 5 ·1.01n1/3. In this case we use the bounds( `
k)

k ≤ ρk(`) = ∑k
i=1

(

`
i

)

≤
( è

k )k for the first and third occurrences ofρk in equation (11) and we useρk(`) ≤ 2` for the second
occurrence. It thus suffices to show that

(

.99n2/3

k

)k

> 3m

√

(

e·1.01n2/3

k

)k

·21.01n1/3
.

Applying the upper bound onk in the denominator on the left side, and the lower bound onk in the
denominator on the right side, it suffices to show that

(

.99
5.05

n1/3
)k

> 3m

√

(

e·1.01
0.505

n1/3

)k

·21.01n1/3

Now since 1.01n1/3 ≤ 2k the condition holds if
(

n1/3

6

)k

> 3m
(

2e·n1/3
)k/2

·2k

or equivalently if
(

n1/6

12
√

2e

)k

> 3m.

This obviously holds sincek = Θ(n1/3).

Case 3:5 ·1.01n1/3 ≤ k ≤ 0.25·0.99n2/3. We use the same bounds as in the previous case to start
the analysis, so we want to show that

(

.99n2/3

k

)k

> 3m

√

(

e·1.01n2/3

k

)k

·21.01n1/3
.
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Since 1.01n1/3 ≤ k/5 it suffices to show that

(

.99n2/3

k

)k

> 3m

(

e·1.01n2/3

k

)k/2

·2k/10

which holds (takingk-th roots and rearranging) if and only if

(

1
2

)1/10

· .99n2/3

k
·

√
k

n1/3
√

1.01·e
=

(

1
2

)1/10

·
(

.99√
1.01·e

)

· n1/3
√

k
> (3m)1/k.

Using our upper bound onk on the left side, the previous inequality holds if

(
1
2
)1/10 .99√

1.01·e
· 2√

.99
> (3m)1/k

and since the left side is greater than 1.1 the inequality holds ifk > log3m
log1.1 = Θ(logn) for m =

poly(n). This obviously holds sincek = Ω(n1/3).

Case 4:0.25·0.99n2/3 ≤ k≤ 0.5·0.99n2/3. We use the following bound (proved later) which holds
for 0 < α < 1 :

αq

∑
i=1

(

q
i

)

≥ 1√
2πq

2H(α)q (12)

whereH(p) = −plogp− (1− p) log(1− p) is the binary entropy function. Applying this bound to
the left side of (11) withq= .99n2/3 andα = k/q, we have.25≤ α ≤ .5 soH(α) > .81. Sinceρk(`)
is always at most 2̀it suffices to show that

1√
2π · .99n2/3

20.81·0.99n2/3
> 3m

√

21.01n2/3+1.01n1/3
.

This is easily seen to hold for anym= poly(n).

To prove the bound (12) we use Stirling’s approximation
√

2πn(n
e)

n ≤ n! ≤
√

2πn(n
e)

n
√

1+ 1
2n;

in fact we use a weaker form with
√

2 instead of
√

1+ 1
2n in the upper bound. We thus have

αq

∑
i=1

(

q
i

)

≥
(

q
αq

)

=
q!

(αq)!((1−α)q)!
≥

√
2πq

2
√

2παq
√

2π(1−α)q

(q
e

)q
(

e
αq

)αq( e
(1−α)q

)(1−α)q

=
1

2
√

2πα(1−α)q
α−αq(1−α)−(1−α)q =

1

2
√

2πα(1−α)q
2qH(α).

Equation (12) follows sinceα(1−α) ≤ 1/4.

Note that by using∑αq
i=0

(q
i

)

≤ αq
( q

αq

)

one can also obtain∑αq
i=0

(q
i

)

≤
√αq√
π(1−α)

2H(α)q.

Case 5: k ≥ 0.5 · 0.99n2/3. In this case we haveρk(.99n2/3) = ∑k
i=1

(

.99n2/3

i

)

≥ 1
22.99n2/3

. Thus it
suffices to show that

1
2
·20.99n2/3

> 3m
√

21.01n2/3+1.01n1/3

which is easily seen to hold for anym= poly(n). Thus Equation (11) holds for allk = ω(1).
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Appendix B. Proof of Equation (10)

We must show that
√

ρk(u1) > 3m
(

√

ρk(.26n)+
√

ρk(u1−B)
)

. Since we are assuming that the

sampleS is U-typical, we haveu1 ≥ .49n sou1−B > 0.26n. It thus suffices to show thatρk(u1) >
36m2ρk(u1−B).

Case 1:k ≤ 1
2(u1−B). Sinceρk(`) = ∑k

i=1

(

`
i

)

, for k ≤ `/2 we haveρk(`) ≤ k
(

`
k

)

. Also for all k,
ρk(`) ≥

(

`
k

)

so it suffices to show that
(

u1

k

)

> 36m2k

(

u1−B
k

)

.

This inequality is true if
(

u1

u1−B

)k

> 36m2k.

Recall thatB = 1
66

√

n
logm. Now using the fact that

u1

u1−B
= 1+

B
u1−B

> 1+
B
n

= 1+
1

66
√

nlogm

it suffices to show that
(

1+
1

66
√

nlogm

)k

> 36m2k.

Using the fact that 1+x≥ ex/2 for 0 < x < 1, we can see that this inequality holds if

k > 132
√

nlog(m) ln(36m2n).

Sincem= poly(n), this is the case fork = ω(
√

nlog
3
2 n).

Case 2: 1
2(u1−B) < k. Sinceρk(u1−B) ≤ 2u1−B, it suffices to show that

u1
2 − B

2

∑
i=1

(

u1

i

)

> 36m2 ·2u1−B.

Since
√

u1 >
√

0.49n > 92
132

√
n > 92B

2 it suffices to show that

u1
2 −

√
u1

92

∑
i=1

(

u1

i

)

> 36m2 ·2u1−B.

Using Stirling approximation it is easy to check that
( q

q/2

)

<
√

1+ 1
2q

√

2
π

1√
q 2q and this implies

that
u1
2 −

√
u1

92

∑
i=1

(

u1

i

)

>
1
2

2u1 −
√

u1

92

√

1+
1

2u1

√

2
π

1√
u1

2u1 > 0.49·2u1

so the condition above holds if
0.49·2B > 36m2.

This is clearly true sincem= poly(n) andB = 1
66

√

n
logm.
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