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Abstract

While classical kernel-based learning algorithms are basedon a single kernel, in practice it is often
desirable to use multiple kernels. Lanckriet et al. (2004) considered conic combinations of kernel
matrices for classification, leading to a convex quadratically constrained quadratic program. We
show that it can be rewritten as a semi-infinite linear program that can be efficiently solved by recy-
cling the standard SVM implementations. Moreover, we generalize the formulation and our method
to a larger class of problems, including regression and one-class classification. Experimental re-
sults show that the proposed algorithm works for hundred thousands of examples or hundreds of
kernels to be combined, and helps for automatic model selection, improving the interpretability of
the learning result. In a second part we discuss general speed up mechanism for SVMs, especially
when used withsparsefeature maps as appear for string kernels, allowing us to train a string kernel
SVM on a 10 million real-world splice data set from computational biology. We integrated multi-
ple kernel learning in our machine learning toolboxSHOGUN for which the source code is publicly
available athttp://www.fml.tuebingen.mpg.de/raetsch/projects/shogun.

Keywords: multiple kernel learning, string kernels, large scale optimization, support vector ma-
chines, support vector regression, column generation, semi-infinite linear programming

1. Introduction

Kernel based methods such as support vector machines (SVMs) have proven to be powerful for a
wide range of different data analysis problems. They employ a so-called kernel functionk(xi ,x j)
which intuitively computes the similarity between two examplesxi and x j . The result of SVM
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learning is anα-weighted linear combination of kernels with a biasb

f (x) = sign

(
N

∑
i=1

αiyik(xi ,x)+b

)

, (1)

where thexi , i = 1, . . . ,N are labeled training examples (yi ∈ {±1}).
Recent developments in the literature on SVMs and other kernel methods haveshown the need

to consider multiple kernels. This provides flexibility and reflects the fact thattypical learning
problems often involve multiple, heterogeneous data sources. Furthermore, as we shall see below, it
leads to an elegant method to interpret the results, which can lead to a deeperunderstanding of the
application.

While this so-called “multiple kernel learning” (MKL) problem can in principle be solved via
cross-validation, several recent papers have focused on more efficient methods for multiple kernel
learning (Chapelle et al., 2002; Bennett et al., 2002; Grandvalet and Canu, 2003; Ong et al., 2003;
Bach et al., 2004; Lanckriet et al., 2004; Bi et al., 2004).

One of the problems with kernel methods compared to other techniques is that the resulting
decision function (1) is hard to interpret and, hence, is difficult to use in order to extract relevant
knowledge about the problem at hand. One can approach this problem by considering convex
combinations ofK kernels, i.e.

k(xi ,x j) =
K

∑
k=1

βkkk(xi ,x j) (2)

with βk ≥ 0 and∑K
k=1 βk = 1, where each kernelkk uses only a distinct set of features. For ap-

propriately designed sub-kernelskk, the optimized combination coefficients can then be used to
understand which features of the examples are of importance for discrimination: if one is able to
obtain an accurate classification by asparseweightingβk, then one can quite easily interpret the re-
sulting decision function. This is an important property missing in current kernel based algorithms.
Note that this is in contrast to the kernel mixture framework of Bennett et al. (2002) and Bi et al.
(2004) where each kerneland each example are assigned an independent weight and therefore do
not offer an easy way to interpret the decision function. We will illustrate that the considered MKL
formulation provides useful insights and at the same time is very efficient.

We consider the framework proposed by Lanckriet et al. (2004), which results in a convex op-
timization problem - a quadratically-constrained quadratic program (QCQP). This problem is more
challenging than the standard SVM QP, but it can in principle be solved by general-purpose opti-
mization toolboxes. Since the use of such algorithms will only be feasible for small problems with
few data points and kernels, Bach et al. (2004) suggested an algorithm based on sequential mini-
mization optimization (SMO Platt, 1999). While the kernel learning problem is convex, it is also
non-smooth, making the direct application of simple local descent algorithms such as SMO infeasi-
ble. Bach et al. (2004) therefore considered a smoothed version of theproblem to which SMO can
be applied.

In the first part of the paper we follow a different direction: We reformulate the binary clas-
sification MKL problem (Lanckriet et al., 2004) as asemi-infinite linear program, which can be
efficiently solved using an off-the-shelf LP solver and a standard SVM implementation (cf. Sec-
tion 2.1 for details). In a second step, we show how easily the MKL formulationand the algorithm
is generalized to a much larger class of convex loss functions (cf. Section2.2). Our proposedwrap-
per methodworks for any kernel and many loss functions: In order to obtain an efficient MKL
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algorithm for a new loss function, it now suffices to have an LP solver andthe corresponding single
kernel algorithm (which is assumed to be efficient). Using this general algorithm we were able to
solve MKL problems with up to 30,000 examples and 20 kernels within reasonable time.1

We also consider achunkingalgorithm that can be considerably more efficient, since it optimizes
the SVM α multipliers and the kernel coefficientsβ at the same time. However, for large scale
problems it needs to compute and cache theK kernels separately, instead of only one kernel as
in the single kernel algorithm. This becomes particularly important when the sample sizeN is
large. If, on the other hand, the number of kernelsK is large, then the amount of memory available
for caching is drastically reduced and, hence, kernel caching is not effective anymore. (The same
statements also apply to the SMO-like MKL algorithm proposed in Bach et al. (2004).)

Since kernel caching cannot help to solve large scale MKL problems, we sought for ways to
avoid kernel caching. This is of course not always possible, but it certainly is for the class of
kernels where the feature mapΦ(x) can be explicitly computed and computations withΦ(x) can
be implemented efficiently. In Section 3.1.1 we describe several string kernels that are frequently
used in biological sequence analysis and exhibit this property. Here, thefeature space can be very
high dimensional, butΦ(x) is typically very sparse. In Section 3.1.2 we discuss several methods for
efficiently dealing with high dimensional sparse vectors, which not only is ofinterest for MKL but
also for speeding up ordinary SVM classifiers. Finally, we suggest a modification of the previously
proposed chunking algorithm that exploits these properties (Section 3.1.3). In the experimental part
we show that the resulting algorithm is more than 70 times faster than the plain chunking algorithm
(for 50,000 examples), even though large kernel caches were used.Also, we were able to solve
MKL problems with up to one million examples and 20 kernels and a 10 million real-world splice
site classification problem from computational biology. We conclude the paper by illustrating the
usefulness of our algorithms in several examples relating to the interpretationof results and to
automatic model selection. Moreover, we provide an extensive benchmarkstudy comparing the
effect of different improvements on the running time of the algorithms.

We have implemented all algorithms discussed in this work in C++ with interfaces toMatlab,
Octave, R andPython. The source code is freely available at

http://www.fml.tuebingen.mpg.de/raetsch/projects/shogun.

The examples used to generate the figures are implemented inMatlab using theMatlab inter-
face of theSHOGUN toolbox. They can be found together with the data sets used in this paper at
http://www.fml.tuebingen.mpg.de/raetsch/projects/lsmkl.

2. A General and Efficient Multiple Kernel Learning Algorithm

In this section we first derive our MKL formulation for the binary classification case and then show
how it can be extended to general cost functions. In the last subsectionwe will propose algorithms
for solving the resulting semi-infinite linear programs (SILPs).

2.1 Multiple Kernel Learning for Classification Using SILP

In the multiple kernel learning problem for binary classification one is givenN data points(xi ,yi)
(yi ∈ {±1}), wherexi is translated viaK mappingsΦk(x) 7→R

Dk, k= 1, . . . ,K, from the input intoK

1. The results are not shown.
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feature spaces(Φ1(xi), . . . ,ΦK(xi)) whereDk denotes the dimensionality of thek-th feature space.
Then one solves the following optimization problem (Bach et al., 2004), whichis equivalent to the
linear SVM forK = 1:2

MKL Primal for Classification

min
1
2

(
K

∑
k=1

‖wk‖2

)2

+C
N

∑
i=1

ξi (3)

w.r.t. wk ∈ R
Dk,ξ ∈ R

N,b∈ R,

s.t. ξi ≥ 0 andyi

(
K

∑
k=1

〈wk,Φk(xi)〉+b

)

≥ 1−ξi , ∀i = 1, . . . ,N

Note that the problem’s solution can be written aswk = βkw′k with βk ≥ 0, ∀k = 1, . . . ,K and
∑K

k=1 βk = 1 (Bach et al., 2004). Note that therefore theℓ1-norm of β is constrained to one, while
one is penalizing theℓ2-norm ofwk in each blockk separately. The idea is thatℓ1-norm constrained
or penalized variables tend to have sparse optimal solutions, whileℓ2-norm penalized variables do
not (e.g. Rätsch, 2001, Chapter 5.2). Thus the above optimization problemoffers the possibility to
find sparse solutions on the block level with non-sparse solutions within the blocks.

Bach et al. (2004) derived the dual for problem (3). Taking their problem (DK), squaring the
constraints on gamma, multiplying the constraints by1

2 and finally substituting12γ2 7→ γ leads to the
to the followingequivalentmultiple kernel learning dual:

MKL Dual for Classification

min γ−
N

∑
i=1

αi

w.r.t. γ ∈ R,α ∈ R
N

s.t. 0≤ α≤ 1C,
N

∑
i=1

αiyi = 0

1
2

N

∑
i, j=1

αiα jyiy jkk(xi ,x j)≤ γ, ∀k = 1, . . . ,K

wherekk(xi ,x j) = 〈Φk(xi),Φk(x j)〉. Note that we have one quadratic constraint per kernel (Sk(α)≤
γ). In the case ofK = 1, the above problem reduces to the original SVM dual. We will now move
the term−∑N

i=1 αi , into the constraints onγ. This can be equivalently done by adding−∑N
i=1 αi to

both sides of the constraints and substitutingγ−∑N
i=1 αi 7→ γ:

2. We assume tr(Kk) = 1, k = 1, . . . ,K and setd j in Bach et al. (2004) to one.
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MKL Dual ∗ for Classification

min γ (4)

w.r.t. γ ∈ R,α ∈ R
N

s.t. 0≤ α≤ 1C,
N

∑
i=1

αiyi = 0

1
2

N

∑
i, j=1

αiα jyiy jkk(xi ,x j)−
N

∑
i=1

αi

︸ ︷︷ ︸

=:Sk(α)

≤ γ, ∀k = 1, . . . ,K

In order to solve (4), one may solve the following saddle point problem: minimize

L := γ+
K

∑
k=1

βk(Sk(α)− γ) (5)

w.r.t. α ∈R
N,γ ∈R (with 0≤ α≤C1 and∑i αiyi = 0), and maximize it w.r.t.β ∈R

K , where0≤ β.
Setting the derivative w.r.t. toγ to zero, one obtains the constraint∑K

k=1 βk = 1 and (5) simplifies
to: L = S(α,β) := ∑K

k=1 βkSk(α). While oneminimizesthe objective w.r.t.α, at the same time one
maximizesw.r.t. the kernel weightingβ. This leads to a

Min-Max Problem

max
β

min
α

K

∑
k=1

βkSk(α) (6)

w.r.t. α ∈ R
N, β ∈ R

K

s.t. 0≤ α≤C , 0≤ β,
N

∑
i=1

αiyi = 0 and
K

∑
k=1

βk = 1.

This problem is very similar to Equation (9) in Bi et al. (2004) when “compositekernels,“ i.e. linear
combinations of kernels are considered. There the first term ofSk(α) has been moved into the
constraint, stillβ including the∑K

k=1 βk = 1 is missing.3

Assumeα∗ were the optimal solution, thenθ∗ := S(α∗,β) would be minimal and, hence,S(α,β)≥
θ∗ for all α (subject to the above constraints). Hence, finding a saddle-point of (5) is equivalent to
solving the following semi-infinite linear program:

Semi-Infinite Linear Program (SILP)

max θ (7)

w.r.t. θ ∈ R,β ∈ R
K

s.t. 0≤ β, ∑
k

βk = 1 and
K

∑
k=1

βkSk(α)≥ θ (8)

for all α ∈ R
N with 0≤ α≤C1 and∑

i

yiαi = 0

3. In Bi et al. (2004) it is argued that the approximation quality of composite kernels is inferior to mixtures of kernels
where a weight is assigned per exampleand kernel as in Bennett et al. (2002). For that reason and as no efficient
methods were available to solve the composite kernel problem, they only considered mixtures of kernels and in the
experimental validation used a uniform weighting in the composite kernel experiment. Also they did not consider to
use composite kernels as a method to interpret the resulting classifier but looked at classification accuracy instead.
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Note that this is a linear program, asθ and β are only linearly constrained. However there are
infinitely many constraints: one for eachα ∈ R

N satisfying 0≤ α ≤ C and∑N
i=1 αiyi = 0. Both

problems (6) and (7) have the same solution. To illustrate that, considerβ is fixed and we minimize
α in (6). Let α∗ be the solution that minimizes (6). Then we can increase the value ofθ in (7) as
long as none of the infinitely manyα-constraints (8) is violated, i.e. up toθ = ∑K

k=1 βkSk(α∗). On the
other hand as we increaseθ for a fixedα the maximizingβ is found. We will discuss in Section 2.3
how to solve such semi-infinite linear programs.

2.2 Multiple Kernel Learning with General Cost Functions

In this section we consider a more general class of MKL problems, where one is given anarbitrary
strictly convex and differentiable loss function, for which we derive its MKL SILP formulation.
We will then investigate in this general MKL SILP using different loss functions, in particular the
soft-margin loss, theε-insensitive loss and the quadratic loss.

We define the MKL primal formulation for a strictly convex and differentiable loss function
L( f (x),y) as:

MKL Primal for Generic Loss Functions

min
1
2

(
K

∑
k=1

‖wk‖

)2

+
N

∑
i=1

L( f (xi),yi) (9)

w.r.t. w = (w1, . . . ,wK) ∈ R
D1×·· ·×R

DK

s.t. f (xi) =
K

∑
k=1

〈Φk(xi),wk〉+b, ∀i = 1, . . . ,N

In analogy to Bach et al. (2004) we treat problem (9) as a second order cone program (SOCP)
leading to the following dual (see Appendix A for the derivation):

MKL Dual ∗ for Generic Loss Functions

min γ (10)

w.r.t. γ ∈ R, α ∈ RN

s.t.
N

∑
i=1

αi = 0 and

1
2

∥
∥
∥
∥
∥

N

∑
i=1

αiΦk(xi)

∥
∥
∥
∥
∥

2

2

−
N

∑
i=1

L(L′−1(αi ,yi),yi)+
N

∑
i=1

αiL
′−1(αi ,yi)≤ γ, ∀k = 1, . . . ,K

HereL′−1 denotes the inverse of the derivative ofL( f (x),y) w.r.t. the predictionf (x). To derive the
SILP formulation we follow the same recipe as in Section 2.1: deriving the Lagrangian leads to a
max-min problem formulation to be eventually reformulated as a SILP:
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SILP for Generic Loss Functions

max θ (11)

w.r.t. θ ∈ R,β ∈ R
K

s.t. 0≤ β,
K

∑
k=1

βk = 1 and
K

∑
k=1

βkSk(α)≥ θ, ∀α ∈ R
N,

N

∑
i=1

αi = 0,

where

Sk(α) =−
N

∑
i=1

L(L′−1(αi ,yi),yi)+
N

∑
i=1

αiL
′−1(αi ,yi)+

1
2

∥
∥
∥
∥
∥

N

∑
i=1

αiΦk(xi)

∥
∥
∥
∥
∥

2

2

.

We assumed thatL(x,y) is strictly convex and differentiable inx. Unfortunately, the soft margin and
ε-insensitive loss do not have these properties. We therefore considerthem separately in the sequel.

Soft Margin Loss We use the following loss in order to approximate the soft margin loss:

Lσ(x,y) =
C
σ

log(1+exp(σ(1−xy))).

It is easy to verify that

lim
σ→∞

Lσ(x,y) = C(1−xy)+.

Moreover,Lσ is strictly convex and differentiable forσ < ∞. Using this loss and assumingyi ∈
{±1}, we obtain (cf. Appendix B.3):

Sk(α) =−
N

∑
i=1

C
σ

(

log

(
Cyi

αi +Cyi

)

+ log

(

−
αi

αi +Cyi

))

+
N

∑
i=1

αiyi +
1
2

∥
∥
∥
∥
∥

N

∑
i=1

αiΦk(xi)

∥
∥
∥
∥
∥

2

2

.

If σ→ ∞, then the first two terms vanish provided that−C≤ αi ≤ 0 if yi = 1 and 0≤ αi ≤C if
yi =−1. Substitutingαi =−α̃iyi , we obtain

Sk(α̃) =−
N

∑
i=1

α̃i +
1
2

∥
∥
∥
∥
∥

N

∑
i=1

α̃iyiΦk(xi)

∥
∥
∥
∥
∥

2

2

and
N

∑
i=1

α̃iyi = 0,

with 0≤ α̃i ≤C (i = 1, . . . ,N) which is the same as (7).

One-Class Soft Margin Loss The one-class SVM soft margin (e.g. Schölkopf and Smola, 2002)
is very similar to the two-class case and leads to

Sk(α) =
1
2

∥
∥
∥
∥
∥

N

∑
i=1

αiΦk(xi)

∥
∥
∥
∥
∥

2

2

subject to0≤ α≤ 1
νN1 and∑N

i=1 αi = 1.
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ε-insensitive Loss Using the same technique for the epsilon insensitive lossL(x,y) = C(1−|x−
y|)+, we obtain

Sk(α,α∗) =
1
2

∥
∥
∥
∥
∥

N

∑
i=1

(αi−α∗i )Φk(xi)

∥
∥
∥
∥
∥

2

2

−
N

∑
i=1

(αi +α∗i )ε−
N

∑
i=1

(αi−α∗i )yi

and
N

∑
i=1

(αi−α∗i )yi = 0, with 0≤ α,α∗ ≤C1.

It is easy to derive the dual problem for other loss functions such as thequadratic loss or logistic
loss (see Appendix B.1 & B.2). Note that the dual SILP’s only differ in the definition of Sk and the
domains of theα’s.

2.3 Algorithms to Solve SILPs

All semi-infinite linear programsconsidered in this work have the following structure:

max θ (12)

w.r.t. θ ∈ R,β ∈ R
K

s.t. 0≤ β,
K

∑
k=1

βk = 1 and
K

∑
k=1

βkSk(α)≥ θ for all α ∈ C .

They have to be optimized with respect toβ and θ. The constraints depend on definition ofSk

and therefore on the choice of the cost function. Using Theorem 5 in Rätsch et al. (2002) one can
show that the above SILP has a solution if the corresponding primal is feasible and bounded (see also
Hettich and Kortanek, 1993). Moreover, there is no duality gap, ifM = co{[S1(α), . . . ,SK(α)]⊤ |α∈
C } is a closed set. For all loss functions considered in this paper this condition issatisfied.

We propose to use a technique calledColumn Generationto solve (12). The basic idea is to
compute the optimal(β,θ) in (12) for a restricted subset of constraints. It is called therestricted
master problem. Then a second algorithm generates a new, yet unsatisfied constraint determined by
α. In the best case the other algorithm finds the constraint that maximizes the constraint violation
for the given intermediate solution(β,θ), i.e.

αβ := argmin
α∈C

∑
k

βkSk(α). (13)

If αβ satisfies the constraint∑K
k=1 βkSk(αβ) ≥ θ, then the solution(θ,β) is optimal. Otherwise, the

constraint is added to the set of constraints and the iterations continue.
Algorithm 1 is a special case of a set of SILP algorithms known asexchange methods. These

methods are known to converge (cf. Theorem 7.2 in Hettich and Kortanek,1993). However, no
convergence rates for such algorithm are known.4

Since it is often sufficient to obtain an approximate solution, we have to definea suitable con-
vergence criterion. Note that the problem is solved when all constraints are satisfied. Hence, it is a

4. It has been shown that solving semi-infinite problems like (7), using a method related to boosting (e.g.
Meir and Rätsch, 2003) one requires at mostT = O (log(M)/ε̂2) iterations, wherêε is the remaining constraint viola-
tion and the constants may depend on the kernels and the number of examplesN (Rätsch, 2001; Rätsch and Warmuth,
2005; Warmuth et al., 2006). At least for not too small values ofε̂ this technique produces reasonably fast good ap-
proximate solutions.

1538



LARGE SCALE MKL

natural choice to use the normalized maximal constraint violation as a convergence criterion, i.e. the

algorithm stops ifεMKL ≥ εt
MKL :=

∣
∣
∣1− ∑K

k=1 βt
kSk(αt)

θt

∣
∣
∣, whereεMKL is an accuracy parameter,(βt ,θt)

is the optimal solution at iterationt−1 andαt corresponds to the newly found maximally violating
constraint of the next iteration.

In the following we will formulate algorithms that alternately optimize the parametersα andβ.

2.3.1 A WRAPPERALGORITHM

The wrapper algorithm (see Algorithm 1) divides the problem into an inner and an outer subproblem.
The solution is obtained by alternatively solving the outer problem using the results of the inner
problem as input and vice versa until convergence. The outer loop constitutes therestricted master
problemwhich determines the optimalβ for a fixedα using an of-the-shelf linear optimizer. In the
inner loop one has to identify unsatisfied constraints, which, fortunately, turns out to be particularly
simple. Note that (13) is for all considered cases exactly the dual optimizationproblem of the single
kernel case for fixedβ. For instance for binary classification with soft-margin loss, (13) reduces to
the standard SVM dual using the kernelk(xi ,x j) = ∑k βkkk(xi ,x j):

v = min
α∈RN

N

∑
i, j=1

αiα jyiy jk(xi ,x j)−
N

∑
i=1

αi

s.t. 0≤ α≤C1 and
N

∑
i=1

αiyi = 0.

Hence, we can use a standard SVM implementation with a single kernel in orderto identify the most
violated constraintv≤ θ. Since there exists a large number of efficient algorithms to solve the single
kernel problems for all sorts of cost functions, we have therefore found an easy way to extend their
applicability to the problem of Multiple Kernel Learning. Also, if the kernels are computed on-the-
fly within the SVM still only a single kernel cache is required. The wrapper algorithm is very easy to
implement, very generic and already reasonably fast for small to medium sizeproblems. However,
determiningα up to a fixed high precision even for intermediate solutions, whileβ is still far away
from the global optimal is unnecessarily costly. Thus there is room for improvement motivating the
next section.

2.3.2 A CHUNKING ALGORITHM FOR SIMULTANEOUS OPTIMIZATION OF α AND β

The goal is to simultaneously optimizeα andβ in SVM training. Usually it is infeasible to use stan-
dard optimization tools (e.g. MINOS, CPLEX, LOQO) for solving even theSVM trainingproblems
on data sets containing more than a few thousand examples. So-called decomposition techniques as
chunking (e.g. used in Joachims, 1998) overcome this limitation by exploiting the special structure
of the SVM problem. The key idea of decomposition is to freeze all but a small number of opti-
mization variables (working set) and to solve a sequence of constant-size problems (subproblems of
the SVM dual).

Here we would like to propose an extension of the chunking algorithm to optimizethe kernel
weightsβ and the example weightsα at the same time. The algorithm is motivated from an insuf-
ficiency of the wrapper algorithm described in the previous section: If theβ’s are not optimal yet,
then the optimization of theα’s until optimality is not necessary and therefore inefficient. It would

1539



SONNENBURG, RÄTSCH, SCHÄFER AND SCHÖLKOPF

Algorithm 1 The MKL-wrapper algorithm optimizes a convex combination ofK kernels and em-
ploys a linear programming solver to iteratively solve the semi-infinite linear optimization problem
(12). The accuracy parameterεMKL is a parameter of the algorithm.Sk(α) andC are determined by
the cost function.

S0 = 1, θ1 =−∞, β1
k = 1

K for k = 1, . . . ,K
for t = 1,2, . . . do

Computeαt = argmin
α∈C

K

∑
k=1

βt
kSk(α) by single kernel algorithm withk =

K

∑
k=1

βt
kkk

St =
K

∑
k=1

βt
kS

t
k, whereSt

k = Sk(αt)

if

∣
∣
∣
∣
1−

St

θt

∣
∣
∣
∣
≤ εMKL then break

(βt+1,θt+1) = argmaxθ
w.r.t. β ∈ R

K ,θ ∈ R

s.t. 0≤ β,
K

∑
k=1

βk = 1 and
K

∑
k=1

βkS
r
k ≥ θ for r = 1, . . . , t

end for

be considerably faster if for any newly obtainedα in the chunking iterations, we could efficiently
recompute the optimalβ and then continue optimizing theα’s using the new kernel weighting.

Intermediate Recomputation of β Recomputingβ involves solving a linear program and the
problem grows with each additionalα-induced constraint. Hence, after many iterations solving
the LP may become infeasible. Fortunately, there are two facts making it still possible: (a) only
a small number of the added constraints remain active and one may as well remove inactive ones
— this prevents the LP from growing arbitrarily and (b) for Simplex-based LP optimizers such as
CPLEX there exists the so-calledhot-start featurewhich allows one to efficiently recompute the new
solution, if for instance only a few additional constraints are added.

The SVMlight optimizer which we are going to modify, internally needs the output

ĝi =
N

∑
j=1

α jy jk(xi ,x j)

for all training examplesi = 1, . . . ,N in order to select the next variables for optimization (Joachims,
1999). However, if one changes the kernel weights, then the stored ˆgi values become invalid and
need to be recomputed. In order to avoid the full recomputation one has to additionally store aK×N
matrixgk,i = ∑N

j=1 α jy jkk(xi ,x j), i.e. the outputs for each kernel separately. If theβ’s change, then ˆgi

can be quite efficiently recomputed by ˆgi = ∑k βkgk,i . We implemented the final chunking algorithm
for the MKL regression and classification case and display the latter in Algorithm 2.

2.3.3 DISCUSSION

The Wrapper as well as the chunking algorithm have both their merits: The Wrapper algorithm
only relies on the repeated efficient computation of the single kernel solution, for which typically
large scale algorithms exist. The chunking algorithm is faster, since it exploitsthe intermediateα’s
– however, it needs to compute and cache theK kernels separately (particularly important when
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Algorithm 2 Outline of the MKL-chunking algorithm for the classification case (extensionto
SVMlight) that optimizesα and the kernel weightingβ simultaneously. The accuracy parameter
εMKL and the subproblem sizeQ are assumed to be given to the algorithm. For simplicity we omit
the removal of inactive constraints. Also note that from one iteration to the next the LP only differs
by one additional constraint. This can usually be exploited to save computing timefor solving the
LP.

gk,i = 0, ĝi = 0, αi = 0, β1
k = 1

K for k = 1, . . . ,K andi = 1, . . . ,N
for t = 1,2, . . . do

Check optimality conditions and stop if optimal
select Q suboptimal variablesi1, . . . , iQ based on̂g andα
αold = α
solve SVM dual with respect to the selected variables and updateα
gk,i = gk,i +∑Q

q=1(αiq−αold
iq )yiqkk(xiq,xi) for all k = 1, . . . ,M andi = 1, . . . ,N

for k = 1, . . . ,K do
St

k = 1
2 ∑r gk,rαt

ryr −∑r αt
r

end for
St = ∑K

k=1 βt
kS

t
k

if
∣
∣
∣1− St

θt

∣
∣
∣≥ εMKL

(βt+1,θt+1) = argmaxθ
w.r.t. β ∈ R

K ,θ ∈ R

s.t. 0≤ β, ∑k βk = 1 and∑M
k=1 βkSr

k ≥ θ for r = 1, . . . , t
else

θt+1 = θt

end if
ĝi = ∑k βt+1

k gk,i for all i = 1, . . . ,N
end for

N is large). If, on the other hand,K is large, then the amount of memory available for caching
is drastically reduced and, hence, kernel caching is not effective anymore. The same statements
also apply to the SMO-like MKL algorithm proposed in Bach et al. (2004). Inthis case one is left
with the Wrapper algorithm, unless one is able to exploit properties of the particular problem or the
sub-kernels (see next section).

3. Sparse Feature Maps and Parallel Computations

In this section we discuss two strategies to accelerate SVM training. First we consider the case
where the explicit mappingΦ into the kernel feature space is known as well as sparse. For this case
we show that MKL training (and also SVM training in general) can be made drastically faster, in
particular, whenN andK are large. In the second part we discuss a simple, yet efficient way to
parallelize MKL as well as SVM training.

3.1 Explicit Computations with Sparse Feature Maps

We assume that allK sub-kernels are given as

kk(x,x′) = 〈Φk(x),Φk(x′)〉
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and the mappingsΦk are given explicitly (k = 1, . . . ,K). Moreover, we suppose that the mapped
examplesΦk(x) are very sparse. We start by giving examples of such kernels and discuss two
kernels that are often used in biological sequence analysis (Section 3.1.1). In Section 3.1.2 we
discuss several strategies for efficiently storing and computing with high dimensional sparse vectors
(in particular for these two kernels). Finally in Section 3.1.3 we discuss how we can exploit these
properties to accelerate chunking algorithms, such as SVMlight, by a factor of up toQ (the chunking
subproblem size).

3.1.1 STRING KERNELS

The Spectrum Kernel The spectrum kernel (Leslie et al., 2002) implements then-gram or bag-
of-words kernel (Joachims, 1998) as originally defined for text classification in the context of bio-
logical sequence analysis. The idea is to count how often ad-mer (a contiguous string of lengthd)
is contained in the sequencesx andx′. Summing up the product of these counts for every possible
d-mer (note that there are exponentially many) gives rise to the kernel valuewhich formally is de-
fined as follows: LetΣ be an alphabet andu∈ Σd a d-mer and #u(x) the number of occurrences of
u in x. Then the spectrum kernel is defined as the inner product ofk(x,x′) = 〈Φ(x),Φ(x′)〉, where
Φ(x) = (#u(x))u∈Σd . Note that spectrum-like kernels cannot extract any positional informationfrom
the sequence which goes beyond thed-mer length. It is well suited for describing the content of a
sequence but is less suitable for instance for analyzing signals where motifsmay appear in a cer-
tain order or at specific positions. Also note that spectrum-like kernels arecapable of dealing with
sequences with varying length.

The spectrum kernel can be efficiently computed inO (d(|x|+ |x′|)) using tries (Leslie et al.,
2002), where|x| denotes the length of sequencex. An easier way to compute the kernel for two
sequencesx andx′ is to separately extract and sort theN d-mers in each sequence, which can be
done in a preprocessing step. Note that for instance DNAd-mers of lengthd≤ 16 can be efficiently
represented as a 32-bit integer value. Then one iterates over alld-mers of sequencesx and x′

simultaneously and counts whichd-mers appear in both sequences and sums up the product of their
counts. The computational complexity of the kernel computation isO (log(|Σ|)d(|x|+ |x′|)).

The Weighted Degree Kernel The so-calledweighted degree(WD) kernel (Rätsch and Sonnenburg,
2004) efficiently computes similarities between sequences while taking positional information ofk-
mers into account. The main idea of the WD kernel is to count the (exact) co-occurrences ofk-mers
at corresponding positions in the two sequences to be compared. TheWD kernel of order dcom-
pares two sequencesxi andx j of lengthL by summing all contributions ofk-mer matches of lengths
k∈ {1, . . . ,d}, weighted by coefficientsβk:

k(xi ,x j) =
d

∑
k=1

βk

L−k+1

∑
l=1

I(uk,l (xi) = uk,l (x j)). (14)

Here,uk,l (x) is the string of lengthk starting at positionl of the sequencex and I(·) is the indicator
function which evaluates to 1 when its argument istrue and to 0 otherwise. For the weighting
coefficients, Rätsch and Sonnenburg (2004) proposed to useβk = 2d−k+1

d(d+1) . Matching substrings are

thus rewarded with a score depending on the length of the substring.5

5. Note that although in our caseβk+1 < βk, longer matches nevertheless contribute more strongly than shorter ones: this
is due to the fact that each long match also implies several short matches,adding to the value of (14). Exploiting this
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Note that the WD kernel can be understood as a Spectrum kernel wherethek-mers starting at
different positions are treated independently of each other.6 Moreover, it does not only consider
substrings of length exactlyd, but also all shorter matches. Hence, the feature space for each

position has∑d
k=1 |Σ|k = |Σ|d+1−1

|Σ|−1 −1 dimensions and is additionally duplicatedL times (leading to

O (L|Σ|d) dimensions). However, the computational complexity of the WD kernel is in the worst
caseO (dL) as can be directly seen from (14).

3.1.2 EFFICIENT STORAGE OFSPARSEWEIGHTS

The considered string kernels correspond to a feature space that canbe huge. For instance in the
case of the WD kernel on DNA sequences of length 100 withK = 20, the corresponding feature
space is 1014 dimensional. However, most dimensions in the feature space are not used since only
a few of the many differentk-mers actually appear in the sequences. In this section we briefly
discuss three methods to efficiently deal with sparse vectorsv. We assume that the elements of the
vectorv are indexed by some index setU (for sequences, e.g.U = Σd) and that we only need three
operations:clear, add andlookup. The first operation sets the vectorv to zero, theadd operation
increases the weight of a dimension for an elementu∈ U by some amountα, i.e. vu = vu + α and
lookup requests the valuevu. The latter two operations need to be performed as quickly as possible
(whereas the performance of thelookup operation is of higher importance).

Explicit Map If the dimensionality of the feature space is small enough, then one might consider
keeping the whole vectorv in memory and to perform direct operations on its elements. Then each
read or write operation isO (1).7 This approach has expensive memory requirements (O (|Σ|d)), but
is very fast and best suited for instance for the Spectrum kernel on DNA sequences withd≤ 14 and
on protein sequences withd≤ 6.

Sorted Arrays More memory efficient but computationally more expensive are sorted arrays of
index-value pairs(u,vu). Assuming theL indexes are given and sorted in advance, one can effi-
ciently change or look up a singlevu for a correspondingu by employing a binary search procedure
(O (log(L))). When givenL′ look up indexes at once, one may sort them in advance and then si-
multaneously traverse the two arrays in order to determine which elements appear in the first array
(i.e.O (L+L′) operations – omitting the sorting of the second array – instead ofO (log(L)L′)). This
method is well suited for cases whereL andL′ are of comparable size, as for instance for compu-
tations of single Spectrum kernel elements (as proposed in Leslie et al., 2004). If, L≫ L′, then the
binary search procedure should be preferred.

Tries Another way of organizing the non-zero elements aretries (Fredkin, 1960): The idea is to
use a tree with at most|Σ| siblings of depthd. The leaves store a single value: the elementvu, where
u∈ Σd is ad-mer and the path to the leaf corresponds tou.

knowledge allows for aO (L) reformulation of the kernel using “block-weights” as has been done in Sonnenburg et al.
(2005b).

6. It therefore is very position dependent and does not tolerate any positional “shift”. For that reason we proposed in
Rätsch et al. (2005) a WD kernelwith shifts, which tolerates a small number of shifts, that lies in between the WD
and the Spectrum kernel.

7. More precisely, it is logd, but for small enoughd (which we have to assume anyway) the computational effort is
exactly one memory access.
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To add or lookup an element one only needsd operations to reach a leaf of the tree (and to
create necessary nodes on the way in anadd operation). Note that the worst-case computational
complexity of the operations is independent of the number ofd-mers/elements stored in the tree.

While tries are not faster thansorted arraysin lookup and need considerably more storage (e.g.
for pointers to its parent and siblings), they are useful for the previously discussed WD kernel. Here
we not only have to lookup one substringu∈ Σd, but also all prefixes ofu. For sorted arraysthis
amounts tod separatelookup operations, while for tries all prefixes ofu are already known when
the bottom of the tree is reached. In this case the trie has to store weights also on the internal nodes.
This is illustrated for the WD kernel in Figure 1.

α1

α2

α3

α1 + α2

α3

α3

α1 α2

Figure 1: Three sequences AAA, AGA, GAA with weightsα1,α2 & α3 are added to the trie. The
figure displays the resulting weights at the nodes.

3.1.3 SPEEDINGUP SVM TRAINING

As it is not feasible to use standard optimization toolboxes for solving large scale SVM train-
ing problem, decomposition techniques are used in practice. Most chunkingalgorithms work by
first selectingQ variables (working setW ⊆ {1, . . . ,N}, Q := |W|) based on the current solution
and then solve the reduced problem with respect to the working set variables. These two steps
are repeated until some optimality conditions are satisfied (see e.g. Joachims (1998)). For se-
lecting the working set and checking the termination criteria in each iteration, thevectorg with
gi = ∑N

j=1 α jy jk(xi ,x j), i = 1, . . . ,N is usually needed. Computingg from scratch in every iter-
ation which would requireO (N2) kernel computations. To avoid recomputation ofg one typically
starts withg = 0 and only computes updates ofg on the working setW

gi ← gold
i + ∑

j∈W

(α j −αold
j )y jk(xi ,x j), ∀i = 1, . . . ,N.
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As a result the effort decreases toO (QN) kernel computations, which can be further speed up by
using kernel caching (e.g. Joachims, 1998). However kernel caching is not efficient enough for
large scale problems8 and thus most time is spend computing kernel rows for the updates ofg on
the working setW. Note however that this update as well as computing theQ kernel rows can be
easily parallelized; cf. Section 4.2.1.

Exploitingk(xi ,x j) = 〈Φ(xi),Φ(x j)〉 andw = ∑N
i=1 αiyiΦ(xi) we can rewrite the update rule as

gi ← gold
i + ∑

j∈W

(α j −αold
j )y j〈Φ(xi),Φ(x j)〉= gold

i + 〈wW,Φ(xi)〉, (15)

wherewW = ∑ j∈W(α j −αold
j )y jΦ(x j) is the normal (update) vector on the working set.

If the kernel feature map can be computed explicitly and is sparse (as discussed before), then
computing the update in (15) can be accelerated. One only needs to compute and storewW (using
theclear and∑q∈W |{Φ j(xq) 6= 0}| add operations) and performing the scalar product〈wW,Φ(xi)〉
(using|{Φ j(xi) 6= 0}| lookup operations).

Depending on the kernel, the way the sparse vectors are stored Section 3.1.2 and on the sparse-
ness of the feature vectors, the speedup can be quite drastic. For instance for the WD kernel one
kernel computation requiresO (Ld) operations (L is the length of the sequence). Hence, computing
(15) N times requires O(NQLd) operations. When using tries, then one needsQL add operations
(eachO (d)) andNL lookup operations (eachO (d)). Therefore onlyO (QLd+ NLd) basic opera-
tions are needed in total. WhenN is large enough it leads to a speedup by a factor ofQ. Finally note
that kernel caching is no longer required and asQ is small in practice (e.g.Q= 42) the resulting trie
has rather few leaves and thus only needs little storage.

The pseudo-code of ourlinadd SVM chunking algorithm is given in Algorithm 3.

Algorithm 3 Outline of the chunking algorithm that exploits the fast computations of linear combi-
nations of kernels (e.g. by tries).

{INITIALIZATION}
gi = 0, αi = 0 for i = 1, . . . ,N
{LOOP UNTIL CONVERGENCE}
for t = 1,2, . . . do

Check optimality conditions and stop if optimal
select working set W based ong andα, storeαold = α
solve reduced problemW and updateα

clear w
w← w+(α j −αold

j )y jΦ(x j) for all j ∈W (usingadd)
updategi = gi + 〈w,Φ(xi)〉 for all i = 1, . . . ,N (usinglookup)

end for

MKL Case As elaborated in Section 2.3.2 and Algorithm 2, for MKL one storesK vectors
gk, k = 1, . . . ,K: one for each kernel in order to avoid full recomputation ofĝ if a kernel weightβk

is updated. Thus to use the idea above in Algorithm 2 all one has to do is to storeK normal vectors

8. For instance when using a million examples one can only fit 268 rows into 1GB. Moreover, caching 268 rows is
insufficient when for instance having many thousands of active variables.
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(e.g. tries)
wW

k = ∑
j∈W

(α j −αold
j )y jΦk(x j), k = 1, . . . ,K

which are then used to update theK×N matrix gk,i = gold
k,i + 〈wW

k ,Φk(xi)〉 (for all k = 1. . .K and
i = 1. . .N) by whichĝi = ∑k βkgk,i , (for all i = 1. . .N) is computed.

3.2 A Simple Parallel Chunking Algorithm

As still most time is spent in evaluatingg(x) for all training examples further speedups are gained
when parallelizing the evaluation ofg(x). When using thelinadd algorithm, one first constructs
the trie (or any of the other possible more appropriate data structures) andthen performs parallel
lookup operations using several CPUs (e.g. using shared memory or several copies of the data
structure on separate computing nodes). We have implemented this algorithm based on multiple
threads(using shared memory) and gain reasonable speedups (see next section).

Note that this part of the computations is almost ideal to distribute to many CPUs, asonly the
updatedα (or w depending on the communication costs and size) have to be transfered before each
CPU computes a large chunkIk ⊂ {1, . . . ,N} of

h(k)
i = 〈w,Φ(xi)〉, ∀i ∈ Ik, ∀k = 1, . . . ,N, where(I1∪·· ·∪ In) = (1, . . . ,N)

which is transfered to a master node that finally computesg← g+h, as illustrated in Algorithm 4.

4. Results and Discussion

In the following subsections we will first apply multiple kernel learning to knowledge discovery
tasks, demonstrating that it can be used for automated model selection and to interpret the learned
model (Section 4.1), followed by a benchmark comparing the running times of SVMs and MKL
using any of the proposed algorithmic optimizations (Section 4.2).

4.1 MKL for Knowledge Discovery

In this section we will discuss toy examples for binary classification and regression, showing that
MKL can recover information about the problem at hand, followed by a brief review on problems
for which MKL has been successfully used.

4.1.1 CLASSIFICATION

The first example we deal with is a binary classification problem. The task is to separate two
concentric classes shaped like the outline of stars. By varying the distancebetween the boundary of
the stars we can control the separability of the problem. Starting with a non-separable scenario with
zero distance, the data quickly becomes separable as the distance betweenthe stars increases, and
the boundary needed for separation will gradually tend towards a circle.In Figure 2 three scatter
plots of data sets with varied separation distances are displayed.

We generate several training and test sets for a wide range of distances(the radius of the inner
star is fixed at 4.0, the outer stars radius is varied from 4.1. . .9.9). Each data set contains 2,000
observations (1,000 positive and 1,000 negative) using a moderate noiselevel (Gaussian noise with
zero mean and standard deviation 0.3). The MKL-SVM was trained for different values of the
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Algorithm 4 Outline of the parallel chunking algorithm that exploits the fast computations oflinear
combinations of kernels.

{ Master node}
{INITIALIZATION}
gi = 0, αi = 0 for i = 1, . . . ,N
{LOOP UNTIL CONVERGENCE}
for t = 1,2, . . . do

Check optimality conditions and stop if optimal
select working set W based ong andα, storeαold = α
solve reduced problemW and updateα
transfer to Slave nodes:α j −αold

j for all j ∈W

fetch fromn Slave nodes:h = (h(1), . . . ,h(n))
updategi = gi +hi for all i = 1, . . . ,N

end for
signal convergence to slave nodes

{ Slave nodes}
{LOOP UNTIL CONVERGENCE}
while not convergeddo

fetch from Master nodeα j −αold
j for all j ∈W

clear w
w← w+(α j −αold

j )y jΦ(x j) for all j ∈W (usingadd)

nodek computesh(k)
i = 〈w,Φ(xi)〉

for all i = (k−1)N
n , . . . ,kN

n −1 (usinglookup)
transfer to master:h(k)

end while

regularization parameterC, where we setεMKL = 10−3. For every value ofC we averaged the test
errors of all setups and choose the value ofC that led to the smallest overall error (C = 0.5).9

The choice of the kernel width of the Gaussian RBF (below, denoted by RBF) kernel used
for classification is expected to depend on the separation distance of the learning problem: An
increased distance between the stars will correspond to a larger optimal kernel width. This effect
should be visible in the results of the MKL, where we used MKL-SVMs with fiveRBF kernels with
different widths (2σ2 ∈ {0.01,0.1,1,10,100}). In Figure 2 we show the obtained kernel weightings
for the five kernels and the test error (circled line) which quickly drops tozero as the problem
becomes separable. Every column shows one MKL-SVM weighting. The courses of the kernel
weightings reflect the development of the learning problem: as long as the problem is difficult the
best separation can be obtained when using the kernel with smallest width. The low width kernel
looses importance when the distance between the stars increases and larger kernel widths obtain a
larger weight in MKL. Increasing the distance between the stars, kernelswith greater widths are
used. Note that the RBF kernel with largest width was not appropriate andthus never chosen. This
illustrates that MKL can indeed recover information about the structure of the learning problem.

9. Note that we are aware of the fact that the test error might be slightly underestimated.
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Figure 2: A 2-class toy problem where the dark gray (or green) star-like shape is to be distinguished
from the light gray (or red) star inside of the dark gray star. The distance between the dark
star-like shape and the light star increases from the left to the right.

4.1.2 REGRESSION

We applied the newly derived MKL support vector regression formulationto the task of learning a
sine function using three RBF-kernels with different widths (2σ2∈ {0.005,0.05,0.5,1,10}). To this
end, we generated several data sets with increasing frequency of the sine wave. The sample size was
chosen to be 1,000. Analogous to the procedure described above we choose the value ofC = 10,
minimizing the overall test error. In Figure 3 exemplarily three sine waves aredepicted, where the
frequency increases from left to right. For every frequency the computed weights for each kernel
width are shown. One can see that MKL-SV regression switches to the widthof the RBF-kernel
fitting the regression problem best.

In another regression experiment, we combined a linear function with two sinewaves, one
of lower frequency and one of high frequency, i.e.f (x) = sin(ax)+ sin(bx)+ cx. Furthermore we
increase the frequency of the higher frequency sine wave, i.e. we varieda leavingb andc unchanged.
The MKL weighting should show a combination of different kernels. Using ten RBF-kernels of
different width (see Figure 4) we trained a MKL-SVR and display the learned weights (a column
in the figure). Again the sample size is 1,000 and one value forC = 5 is chosen via a previous
experiment (εMKL = 10−5). The largest selected width (100) models the linear component (since
RBF kernels with large widths are effectively linear) and the medium width (1)corresponds to
the lower frequency sine. We varied the frequency of the high frequency sine wave from low to
high (left to right in the figure). One observes that MKL determines an appropriate combination of
kernels of low and high widths, while decreasing the RBF kernel width with increased frequency.
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Figure 3: MKL-Support Vector Regression for the task of learning a sine wave (please see text for
details).

Additionally one can observe that MKL leads to sparse solutions since most of the kernel weights
in Figure 4 are depicted in blue, that is they are zero.10

4.1.3 REAL WORLD APPLICATIONS IN BIOINFORMATICS

MKL has been successfully used on real-world data sets in the field of computational biology
(Lanckriet et al., 2004; Sonnenburg et al., 2005a). It was shown to improve classification perfor-
mance on the task of ribosomal and membrane protein prediction (Lanckriet et al., 2004), where a
weighting over different kernels each corresponding to a different feature set was learned. In their
result, the included random channels obtained low kernel weights. However, as the data sets was
rather small (≈ 1,000 examples) the kernel matrices could be precomputed and simultaneously kept
in memory, which was not possible in Sonnenburg et al. (2005a), where asplice site recognition task
for the wormC. eleganswas considered. Here data is available in abundance (up to one million ex-
amples) and larger amounts are indeed needed to obtain state of the art results (Sonnenburg et al.,
2005b).11 On that data set we were able to solve the classification MKL SILP forN = 1,000,000
examples andK = 20 kernels, as well as forN = 10,000 examples andK = 550 kernels, using the
linadd optimizations with the weighted degree kernel. As a result we a) were able to learn the
weightingβ instead of choosing a heuristic and b) were able to use MKL as a tool for interpreting
the SVM classifier as in Sonnenburg et al. (2005a); Rätsch et al. (2005).

As an example we learned the weighting of a WD kernel of degree 20, whichconsist of a
weighted sum of 20 sub-kernels each counting matchingd-mers, ford = 1, . . . ,20. The learned

10. The training time for MKL-SVR in this setup but with 10,000 examples wasabout 40 minutes, when kernel caches
of size 100MB are used.

11. In Section 4.2 we will use ahumansplice data set containing 15 million examples, and train WD kernel based SVM
classifiers on up to 10 million examples using the parallelizedlinadd algorithm.
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Figure 4: MKL support vector regression on a linear combination of threefunctions: f (x) =
sin(ax)+sin(bx)+cx. MKL recovers that the original function is a combination of func-
tions of low and high complexity. For more details see text.
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Figure 5: The learned WD kernel weighting on a million of examples.

weighting is displayed in Figure 5 and shows a peak for 6-mers and 9&10-mers. It should be noted
that the obtained weighting in this experiment is only partially useful for interpretation. In the case
of splice site detection, it is unlikely thatk-mers of length 9 or 10 are playing the most important
role. More likely to be important are substrings of length up to six. We believe that the large weights
for the longestk-mers are an artifact which comes from the fact that we are combining kernels with
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quite different properties, i.e. the 9th and 10th kernel leads to a combined kernel matrix that is most
diagonally dominant (since the sequences are only similar to themselves but not to other sequences),
which we believe is the reason for having a large weight.12

In the following example we consider one weight per position. In this case thecombined ker-
nels are more similar to each other and we expect more interpretable results. Figure 6 shows an
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Figure 6: The figure shows an importance weighting for each position in a DNA sequence (around
a so called splice site). MKL was used to determine these weights, each corresponding
to a sub-kernel which uses information at that position to discriminate splice sites from
non-splice sites. Different peaks correspond to different biologicallyknown signals (see
text for details). We used 65,000 examples for training with 54 sub-kernels.

importance weighting for each position in a DNA sequence (around a so called acceptor splice site,
the start of an exon). We used MKL on 65,000 examples to compute these 54 weights, each cor-
responding to a sub-kernel which uses information at that position to discriminate true splice sites
from fake ones. We repeated that experiment on ten bootstrap runs of the data set. We can iden-
tify several interesting regions that we can match to current biological knowledge about splice site
recognition: a) The region−50 nucleotides (nt) to−40nt, which corresponds to the donor splice
site of the previous exon (many introns inC. elegansare very short, often only 50nt), b) the region
−25nt to−15nt that coincides with the location of the branch point, c) the intronic regionclosest
to the splice site with greatest weight (−8nt to−1nt; the weights for theAG dimer are zero, since
it appears in splice sites and decoys) and d) the exonic region (0nt to+50nt). Slightly surprising
are the high weights in the exonic region, which we suspect only model tripletfrequencies. The

12. This problem might be partially alleviated by including the identity matrix in the convex combination. However as
2-norm soft margin SVMs can be implemented by adding a constant to the diagonal of the kernel (Cortes and Vapnik,
1995), this leads to an additional 2-norm penalization.
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decay of the weights seen from+15nt to+45nt might be explained by the fact that not all exons are
actually long enough. Furthermore, since the sequence ends in our caseat +60nt, the decay after
+45nt is an edge effect as longer substrings cannot be matched.

4.2 Benchmarking the Algorithms

Experimental Setup To demonstrate the effect of the several proposed algorithmic optimiza-
tions, namely thelinadd SVM training (Algorithm 3) and for MKL the SILP formulation with
and without thelinadd extension for single, four and eight CPUs, we applied each of the algo-
rithms to ahumansplice site data set,13 comparing it to the original WD formulation and the case
where the weighting coefficients were learned using multiple kernel learning. The splice data set
contains 159,771 true acceptor splice site sequences and 14,868,555 decoys, leading to a total of
15,028,326 sequences each 141 base pairs in length. It was generatedfollowing a procedure similar
to the one in Sonnenburg et al. (2005a) forC. eleganswhich however contained “only” 1,026,036
examples. Note that the data set is very unbalanced as 98.94% of the examples are negatively la-
beled. We are using this data set in all benchmark experiments and trained (MKL-)SVMs using
the SHOGUN machine learning toolbox which contains a modified version of SVMlight (Joachims,
1999) on 500, 1,000, 5,000, 10,000, 30,000, 50,000, 100,000, 200,000, 500,000, 1,000,000,
2,000,000, 5,000,000 and 10,000,000 randomly sub-sampled examples and measured the time
needed in SVM training. For classification performance evaluation we always use the same re-
maining 5,028,326 examples as a test data set. We set the degree parameter tod = 20 for the WD
kernel and tod = 8 for the spectrum kernel fixing the SVMs regularization parameter toC = 5.
Thus in the MKL case alsoK = 20 sub-kernels were used. SVMlight’s subproblem size (parameter
qpsize), convergence criterion (parameterepsilon) and MKL convergence criterion were set to
Q = 112, εSVM = 10−5 andεMKL = 10−5, respectively. A kernel cache of 1GB was used for all
kernels except the precomputed kernel and algorithms using thelinadd-SMO extension for which
the kernel-cache was disabled. Later on we measure whether changing the quadratic subproblem
size Q influences SVM training time. Experiments were performed on a PC powered by eight
2.4GHz AMD Opteron(tm) processors running Linux. We measured the training time for each of
the algorithms (single, quad or eight CPU version) and data set sizes.

4.2.1 BENCHMARKING SVM

The obtained training times for the different SVM algorithms are displayed in Table 1 and in Figure
7. First, SVMs were trained using standard SVMlight with the Weighted Degree Kernel precomputed
(WDPre), the standard WD kernel (WD1) and the precomputed (SpecPre) and standard spectrum
kernel (Spec). Then SVMs utilizing thelinadd extension14 were trained using the WD (LinWD)
and spectrum (LinSpec) kernel. Finally SVMs were trained on four and eight CPUs using the
parallel version of thelinadd algorithm (LinWD4, LinWD8). WD4 andWD8 demonstrate the
effect of a simple parallelization strategy where the computation of kernel rows and updates on the
working set are parallelized, which works withanykernel.

The training times obtained when precomputing the kernel matrix (which includesthe time
needed to precompute the full kernel matrix) is lower when no more than 1,000 examples are used.

13. The splice data set can be downloaded fromhttp://www.fml.tuebingen.mpg.de/raetsch/projects/lsmkl.
14. More precisely thelinadd andO (L) block formulation of the WD kernel as proposed in Sonnenburg et al. (2005b)

was used.
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Note that this is a direct cause of the relatively large subproblem sizeQ = 112. The picture is
different for, say,Q = 42 (data not shown) where theWDPre training time is in all cases larger
than the times obtained using the original WD kernel demonstrating the effectiveness of SVMlight’s
kernel cache. The overhead of constructing a trie onQ= 112 examples becomes even more visible:
only starting from 50,000 exampleslinadd optimization becomes more efficient than the original
WD kernel algorithm as the kernel cache cannot hold all kernel elementsanymore.15 Thus it would
be appropriate to lower the chunking sizeQ as can be seen in Table 3.

The linadd formulation outperforms the original WD kernel by a factor of 3.9 on a million
examples. The picture is similar for the spectrum kernel, here speedups offactor 64 on 500,000
examples are reached which stems from the fact that explicit maps (and nottries as in the WD
kernel case) as discussed in Section 3.1.2 could be used leading to alookup cost ofO (1) and a
dramatically reduced map construction time. For that reason the parallelization effort benefits the
WD kernel more than the Spectrum kernel: on one million examples the parallelization using 4
CPUs (8 CPUs) leads to a speedup of factor 3.25 (5.42) for the WD kernel, but only 1.67 (1.97) for
the Spectrum kernel. Thus parallelization will help more if the kernel computation is slow. Training
with the original WD kernel with a sample size of 1,000,000 takes about 28 hours, thelinadd
version still requires 7 hours while with the 8 CPU parallel implementation only about 6 hours and
in conjunction with thelinadd optimization a single hour and 20 minutes are needed. Finally,
training on 10 million examples takes about 4 days. Note that this data set is already 2.1GB in size.

Classification Performance Figure 8 and Table 2 show the classification performance in terms of
classification accuracy, area under the Receiver Operator Characteristic (ROC) Curve (Metz, 1978;
Fawcett, 2003) and the area under the Precision Recall Curve (PRC) (see e.g. Davis and Goadrich
(2006)) of SVMs on the human splice data set for different data set sizes using the WD kernel.

Recall the definition of the ROC and PRC curves: The sensitivity (or recall)is defined as
the fraction of correctly classified positive examples among the total number of positive exam-
ples, i.e. it equals the true positive rateTPR= TP/(TP+ FN). Analogously, the fractionFPR=
FP/(TN+ FP) of negative examples wrongly classified positive is called the false positiverate.
Plotting FPR against TPR results in the Receiver Operator Characteristic Curve (ROC) Metz (1978);
Fawcett (2003). Plotting the true positive rate against the positive predictive value (also precision)
PPV= TP/(FP+TP), i.e. the fraction of correct positive predictions among all positively predicted
examples, one obtains the Precision Recall Curve (PRC) (see e.g. Davis and Goadrich (2006)). Note
that as this is a very unbalanced data set the accuracy and the area under the ROC curve are almost
meaningless, since both measures are independent of class ratios. The more sensible auPRC, how-
ever, steadily increases as more training examples are used for learning.Thus one should train using
all available data to obtain state-of-the-art results.

Varying SVM light’s qpsize parameter As discussed in Section 3.1.3 and Algorithm 3, using the
linadd algorithm for computing the output for all training examples w.r.t. to some workingset can
be speed up by a factor ofQ (i.e. the size of the quadratic subproblems, termedqpsize in SVMlight).
However, there is a trade-off in choosingQ as solving larger quadratic subproblems is expensive
(quadratic to cubic effort). Table 3 shows the dependence of the computingtime from Q andN.
For example the gain in speed between choosingQ = 12 andQ = 42 for 1 million of examples is
54%. Sticking with a mid-rangeQ (hereQ = 42) seems to be a good idea for this task. However,

15. When single precision 4-byte floating point numbers are used, caching all kernel elements is possible when training
with up to 16384 examples.

1553



SONNENBURG, RÄTSCH, SCHÄFER AND SCHÖLKOPF

1000 10000 100000 1000000 10000000

100

1000

10000

100000

Number of training examples (logarithmic)

S
V

M
 t

ra
in

in
g

 t
im

e
 in

 s
e

co
n

d
s 

(l
o

g
ar

it
h

m
ic

)

WD−Precompute

WD 1CPU

WD 4CPU

WD 8CPU

WD−Linadd 1CPU

WD−Linadd 4CPU

WD−Linadd 8CPU

1000 10000 100000 1000000

1

10

100

1000

10000

Number of training examples (logarithmic)

S
V

M
 t

ra
in

in
g

 t
im

e
 in

 s
e

co
n

d
s 

(l
o

g
a

ri
th

m
ic

)

Spec−Precompute

Spec−orig

Spec−linadd 1CPU

Spec−linadd 4CPU

Spec−linadd 8CPU

Figure 7: Comparison of the running time of the different SVM training algorithms using the
weighted degree kernel. Note that as this is a log-log plot small appearing distances are
large for largerN and that each slope corresponds to a different exponent. In the upper
figure the Weighted Degree kernel training times are measured, the lower figure displays
Spectrum kernel training times.

a large variance can be observed, as the SVM training time depends to a large extend on whichQ
variables are selected in each optimization step. For example on the relatedC. eleganssplice data
setQ = 141 was optimal for large sample sizes while a midrangeQ = 71 lead to the overall best
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N WDPre WD1 WD4 WD8 LinWD1 LinWD4 LinWD8

500 12 17 17 17 83 83 80
1,000 13 17 17 17 83 78 75
5,000 40 28 23 22 105 82 80

10,000 102 47 31 30 134 90 87
30,000 636 195 92 90 266 139 116
50,000 - 441 197 196 389 179 139

100,000 - 1,794 708 557 740 294 212
200,000 - 5,153 1,915 1,380 1,631 569 379
500,000 - 31,320 10,749 7,588 7,757 2,498 1,544

1,000,000 - 102,384 33,432 23,127 26,190 8,053 4,835
2,000,000 - - - - - - 14,493
5,000,000 - - - - - - 95,518

10,000,000 - - - - - - 353,227

N SpecPre Spec LinSpec1 LinSpec4 LinSpec8

500 1 1 1 1 1
1,000 2 2 1 1 1
5,000 52 30 19 21 21

10,000 136 68 24 23 24
30,000 957 315 36 32 32
50,000 - 733 54 47 46

100,000 - 3,127 107 75 74
200,000 - 11,564 312 192 185
500,000 - 91,075 1,420 809 728

1,000,000 - - 7,676 4,607 3,894

Table 1: (top) Speed Comparison of the original single CPU Weighted Degree Kernel algorithm
(WD1) in SVMlight training, compared to the four (WD4)and eight (WD8) CPUs par-
allelized version, the precomputed version (Pre) and thelinadd extension used in con-
junction with the original WD kernel for 1,4 and 8 CPUs (LinWD1, LinWD4, LinWD8).
(bottom) Speed Comparison of the spectrum kernel without (Spec) and withlinadd (Lin-
Spec1, LinSpec4, LinSpec8using 1,4 and 8 processors).SpecPredenotes the precomputed
version. The first column shows the sample sizeN of the data set used in SVM training
while the following columns display the time (measured in seconds) needed in the training
phase.

performance. Nevertheless, one observes the trend that for larger training set sizes slightly larger
subproblems sizes decrease the SVM training time.
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Figure 8: Comparison of the classification performance of the Weighted Degree kernel based SVM
classifier for different training set sizes. The area under the Receiver Operator Charac-
teristic (ROC) Curve, the area under the Precision Recall Curve (PRC) as well as the
classification accuracy are displayed (in percent). Note that as this is a very unbalanced
data set, the accuracy and the area under the ROC curve are less meaningful than the area
under the PRC.

4.2.2 BENCHMARKING MKL

The WD kernel of degree 20 consist of a weighted sum of 20 sub-kernels each counting matchingd-
mers, ford = 1, . . . ,20. Using MKL we learned the weighting on the splice site recognition task for
one million examples as displayed in Figure 5 and discussed in Section 4.1.3. Focusing on a speed
comparison we now show the obtained training times for the different MKL algorithms applied
to learning weightings of the WD kernel on the splice site classification task. Todo so, several
MKL-SVMs were trained using precomputed kernel matrices (PreMKL), kernel matrices which
are computed on the fly employing kernel caching (MKL 16), MKL using thelinadd extension
(LinMKL1 ) andlinadd with its parallel implementation17 (LinMKL4 andLinMKL8 - on 4 and 8
CPUs). The results are displayed in Table 4 and in Figure 9. While precomputing kernel matrices
seems beneficial, it cannot be applied to large scale cases (e.g.> 10,000 examples) due to the
O (KN2) memory constraints of storing the kernel matrices.18 On-the-fly-computation of the kernel
matrices is computationally extremely demanding, but since kernel caching19 is used, it is still
possible on 50,000 examples in about 57 hours. Note that no WD-kernel specific optimizations are
involved here, so one expects a similar result for arbitrary kernels.

16. Algorithm 2.
17. Algorithm 2 with thelinadd extensions including parallelization of Algorithm 4.
18. Using 20 kernels on 10,000 examples requires already 7.5GB, on30,000 examples 67GB would be required (both

using single precision floats).
19. Each kernel has a cache of 1GB.
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N Accuracy auROC auPRC

500 98.93 75.61 3.97
1,000 98.93 79.70 6.12
5,000 98.93 90.38 14.66

10,000 98.93 92.79 24.95
30,000 98.93 94.73 34.17
50,000 98.94 95.48 40.35

100,000 98.98 96.13 47.11
200,000 99.05 96.58 52.70
500,000 99.14 96.93 58.62

1,000,000 99.21 97.20 62.80
2,000,000 99.26 97.36 65.83
5,000,000 99.31 97.52 68.76

10,000,000 99.35 97.64 70.57

10,000,000 - 96.03∗ 44.64∗

Table 2: Comparison of the classification performance of the Weighted Degree kernel based SVM
classifier for different training set sizes. The area under the ROC curve (auROC), the area
under the Precision Recall Curve (auPRC) as well as the classification accuracy (Accuracy)
are displayed (in percent). Larger values are better. A optimal classifierwould achieve
100% Note that as this is a very unbalanced data set the accuracy and the area under
the ROC curve are almost meaningless. For comparison, the classification performance
achieved using a 4th order Markov chain on 10 million examples (order 4 waschosen
based on model selection, where order 1 to 8 using several pseudo-counts were tried) is
displayed in the last row (marked∗).

Thelinadd variants outperform the other algorithms by far (speedup factor 53 on 50,000 exam-
ples) and are still applicable to data sets of size up to one million. Note that withoutparallelization
MKL on one million examples would take more than a week, compared with 2.5 (2) days in the
quad-CPU (eight-CPU) version. The parallel versions outperform thesingle processor version from
the start achieving a speedup for 10,000 examples of 2.27 (2.75), quicklyreaching a plateau at a
speedup factor of 2.98 (4.49) at a level of 50,000 examples and approaching a speedup factor of
3.28 (5.53) on 500,000 examples (efficiency: 82% (69%)). Note that the performance gain using 8
CPUs is relatively small as e.g. solving the QP and constructing the tree is not parallelized.

5. Conclusion

In the first part of the paper we have proposed a simple, yet efficient algorithm to solve the multiple
kernel learning problem for a large class of loss functions. The proposed method is able to exploit
the existing single kernel algorithms, thereby extending their applicability. In experiments we have
illustrated that MKL for classification and regression can be useful for automatic model selection
and for obtaining comprehensible information about the learning problem athand. It would be of
interest to develop and evaluate MKL algorithms for unsupervised learningsuch as Kernel PCA
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Q
N 112 12 32 42 52 72

500 83 4 1 22 68 67
1,000 83 7 7 11 34 60
5,000 105 15 21 33 31 68

10,000 134 32 38 54 67 97
30,000 266 128 128 127 160 187
50,000 389 258 217 242 252 309

100,000 740 696 494 585 573 643
200,000 1,631 1,875 1,361 1,320 1,417 1,610
500,000 7,757 9,411 6,558 6,203 6,583 7,883

1,000,000 26,190 31,145 20,831 20,136 21,591 24,043

Table 3: Influence on training time when varying the size of the quadratic programQ in SVMlight,
when using thelinadd formulation of the WD kernel. While training times do not vary
dramatically one still observes the tendency that with larger sample size a larger Qbecomes
optimal. TheQ = 112 column displays the same result as columnLinWD1 in Table 1.
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Figure 9: Comparison of the running time of the different MKL algorithms whenused with the
weighted degree kernel. Note that as this is a log-log plot, small appearing distances are
large for largerN and that each slope corresponds to a different exponent.

and one-class classification and to try different losses on the kernel weighting β (such asL2). In
the second part we proposed performance enhancements to make large scale MKL practical: the
SILP wrapper, SILP chunking and (for the special case of kernels that can be written as an inner
product of sparse feature vectors, e.g., string kernels) thelinadd algorithm, which also speeds up

1558



LARGE SCALE MKL

N PreMKL MKL LinMKL1 LinMKL4 LinMKL8

500 22 22 11 10 80
1,000 56 64 139 116 116
5,000 518 393 223 124 108

10,000 2,786 1,181 474 209 172
30,000 - 25,227 1,853 648 462
50,000 - 204,492 3,849 1292 857

100,000 - - 10,745 3,456 2,145
200,000 - - 34,933 10,677 6,540
500,000 - - 185,886 56,614 33,625

1,000,000 - - - 214,021 124,691

Table 4: Speed Comparison when determining the WD kernel weight by multiple kernel learn-
ing using the chunking algorithm (MKL) and MKL in conjunction with the (parallelized)
linadd algorithm using 1, 4, and 8 processors (LinMKL1, LinMKL4, LinMKL8 ). The
first column shows the sample sizeN of the data set used in SVM training while the fol-
lowing columns display the time (measured in seconds) needed in the training phase.

standalone SVM training. For the standalone SVM using the spectrum kernel we achieved speedups
of factor 64 (for the weighted degree kernel, about 4). For MKL we gained a speedup of factor 53.
Finally we proposed a parallel version of thelinadd algorithm running on a 8 CPU multiprocessor
system which lead toadditional speedups of factor up to 5.5 for MKL, and 5.4 for vanilla SVM
training.
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Appendix A. Derivation of the MKL Dual for Generic Loss Functio ns

We start from the MKL primal problem Equation (9):

min
1
2

(
K

∑
k=1

‖wk‖

)2

+
N

∑
i=1

L( f (xi),yi)

w.r.t. w = (w1, . . . ,wK) ∈ R
D1×·· ·×R

DK

s.t. f (xi) =
K

∑
k=1

〈Φk(xi),wk〉+b, ∀i = 1, . . . ,N
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Introducingu ∈ R allows us to move∑K
k=1‖wk‖ into the constraints and leads to the following

equivalent problem

min
1
2

u2 +
N

∑
i=1

L( f (xi),yi)

w.r.t. u∈ R, (w1, . . . ,wK) ∈ R
D1×·· ·×R

DK

s.t. f (xi) =
K

∑
k=1

〈Φk(xi),wk〉+b, ∀i = 1, . . . ,N

K

∑
k=1

‖wk‖ ≤ u

Usingtk ∈ R, k = 1, . . . ,K, it can be equivalently transformed into

min
1
2

u2 +
N

∑
i=1

L( f (xi),yi)

w.r.t. u∈ R, tk ∈ R,wk ∈ R
Dk, ∀k = 1, . . . ,K

s.t. f (xi) =
K

∑
k=1

〈Φk(xi),wk〉+b, ∀i = 1, . . . ,N

‖wk‖ ≤ tk,
K

∑
k=1

tk ≤ u.

Recall that the second-order cone of dimensionalityD is defined as

KD = {(x,c) ∈ R
D×R, ‖x‖2≤ c}.

We can thus reformulate the original MKL primal problem (Equation (9)) using the followingequiv-
alentsecond-order cone program, as the norm constraint onwk is implicitly taken care of:

Conic Primal

min
1
2

u2 +
N

∑
i=1

L( f (xi),yi)

w.r.t. u∈ R, tk ∈ R,(wk, tk) ∈ KDk, ∀k = 1, . . . ,K

s.t. f (xi) =
K

∑
k=1

〈Φk(xi),wk〉+b, ∀i = 1, . . . ,N

K

∑
k=1

tk ≤ u

We are now going to derive the conic dual following the recipe of Boyd andVandenberghe
(2004) (see p. 266). First we derive the conic Lagrangian and then using the infimum w.r.t. the
primal variables in order to obtain the conic dual. We therefore introduce Lagrange multipliers
α ∈ R

K , γ ∈ R, γ ≥ 0 and(λk,µk) ∈ K
∗

D living on the self dual coneK ∗D = KD. Then the conic
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Lagrangian is given as

L (w,b, t,u,α,γ,λ,µ) =
1
2

u2 +
N

∑
i=1

L( f (xi),yi)−
N

∑
i=1

αi f (xi)+

+
N

∑
i=1

αi

K

∑
k=1

(〈Φk(xi),wk〉+b)+ γ

(
K

∑
k=1

tk−u

)

−
K

∑
k=1

(〈λk,wk〉+µktk) .

To obtain the dual, the derivatives of the Lagrangian w.r.t. the primal variables, w,b, t,u have to
vanish which leads to the following constraints

∂wkL =
N

∑
i=1

αiΦk(xi)−λk ⇒ λk =
N

∑
i=1

αiΦk(xi)

∂bL =
N

∑
i=1

αi ⇒
N

∑
i=1

αi = 0

∂tkL = γ−µk ⇒ γ = µk

∂uL = u− γ⇒ γ = u

∂ f (xi)L = L′( f (xi),yi)−αi ⇒ f (xi) = L′−1(αi ,yi).

In the equationL′ is the derivative of the loss function w.r.t.f (x) andL′−1 is the inverse ofL′ (w.r.t.
f (x)) for which to existL is required to be strictly convex and differentiable. We now plug in what
we have obtained above, which makesλk, µk and all of the primal variables vanish. Thus the dual
function is

D(α,γ) = −
1
2

γ2 +
N

∑
i=1

L(L′−1(αi ,yi),yi)−
N

∑
i=1

αiL
′−1(αi ,yi)+

+
N

∑
i=1

αi

K

∑
k=1

〈Φk(xi),wk〉−
K

∑
k=1

N

∑
i=1

αi〈Φk(xi),wk〉

= −
1
2

γ2 +
N

∑
i=1

L(L′−1(αi ,yi),yi)−
N

∑
i=1

αiL
′−1(αi ,yi).

As constraints remainγ≥ 0, due to the bias∑N
i=1 αi = 0 and the second-order cone constraints

‖λk‖=

∥
∥
∥
∥
∥

N

∑
i=1

αiΦk(xi)

∥
∥
∥
∥
∥

2

≤ γ, ∀k = 1, . . . ,K.

This leads to:

max −
1
2

γ2 +
N

∑
i=1

L(L′−1(αi ,yi),yi)−
N

∑
i=1

αiL
′−1(αi ,yi)

w.r.t. γ ∈ R, α ∈ RN

s.t. γ≥ 0,
N

∑
i=1

αi = 0

∥
∥
∥
∥
∥

N

∑
i=1

αiΦk(xi)

∥
∥
∥
∥
∥

2

≤ γ, ∀k = 1, . . . ,K
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Squaring the latter constraint, multiplying by1
2, relabeling1

2γ2 7→ γ and dropping theγ≥ 0 constraint
as it is fulfilled implicitly, we obtain the MKL dual for arbitrary strictly convex lossfunctions.

Conic Dual

min γ−
N

∑
i=1

L(L′−1(αi ,yi),yi)+
N

∑
i=1

αiL
′−1(αi ,yi)

︸ ︷︷ ︸

:=T

w.r.t. γ ∈ R, α ∈ RN

s.t.
N

∑
i=1

αi = 0

1
2

∥
∥
∥
∥
∥

N

∑
i=1

αiΦk(xi)

∥
∥
∥
∥
∥

2

2

≤ γ, ∀k = 1, . . . ,K.

Finally adding the second term in the objective (T) to the constraint onγ and relabelingγ+T 7→ γ
leads to the reformulated dual Equation (10), the starting point from which one can derive the SILP
formulation in analogy to the classification case.

Appendix B. Loss Functions

B.1 Quadratic Loss

For the quadratic loss caseL(x,y) = C(x−y)2 we obtain as the derivativeL′(x,y) = 2C(x−y) =: z
andL′−1(z,y) = 1

2Cz+y for the inverse of the derivative. Recall the definition of

Sk(α) =−
N

∑
i=1

L(L′−1(αi ,yi),yi)+
N

∑
i=1

αiL
′−1(αi ,yi)+

1
2

∥
∥
∥
∥
∥

N

∑
i=1

αiΦk(xi)

∥
∥
∥
∥
∥

2

2

.

Plugging inL,L′−1 leads to

Sk(α) = −
N

∑
i=1

(
1

2C
αi +yi−yi)

2 +
N

∑
i=1

αi(
1

2C
αi +yi)+

1
2

∥
∥
∥
∥
∥

N

∑
i=1

αiΦk(xi)

∥
∥
∥
∥
∥

2

2

=
1

4C

N

∑
i=1

α2
i +

N

∑
i=1

αiyi +
1
2

∥
∥
∥
∥
∥

N

∑
i=1

αiΦk(xi)

∥
∥
∥
∥
∥

2

2

.

B.2 Logistic Loss

Very similar to the Hinge loss the derivation for the logistic lossL(x,y) = log(1+e−xy) will be given
for completeness.

L′(x,y) =
−ye−xy

1+e−xy =−
ye(1−xy)

1+e(1−xy)
=: z.

The inverse function fory 6= 0 andy+z 6= 0 is given by

L′−1(z,y) =−
1
y

log

(

−
z

y+z

)
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and finally we obtain

Sk(α) =
N

∑
i=1

log

(

1−
αi

yi +αi

)

−
N

∑
i=1

αi

yi
log

(

−
αi

yi +αi

)

+
1
2

∥
∥
∥
∥
∥

N

∑
i=1

αiΦk(xi)

∥
∥
∥
∥
∥

2

2

.

B.3 Smooth Hinge Loss

Using the Hinge LossL(x,y) = C
σ log(1+ eσ(1−xy)) with σ > 0, y∈ R fixed, x ∈ R one obtains as

derivative

L′(x,y) =
−σCyeσ(1−xy)

σ(1+eσ(1−xy))
=−

Cyeσ(1−xy)

1+eσ(1−xy)
=: z.

Note that withy fixed, z is bounded: 0≤ abs(z) ≤ abs(Cy) and sign(y) = −sign(z) and therefore
− z

Cy+z > 0 for Cy+z 6= 0. The inverse function is derived as

z+zeσ(1−xy) = −Cyeσ(1−xy)

(Cy+z)eσ(1−xy) = −z

eσ(1−xy) = −
z

Cy+z

σ(1−xy) = log(−
z

Cy+z
)

1−xy =
1
σ

log(−
z

Cy+z
)

x =
1
y
(1−

1
σ

log(−
z

Cy+z
)), y 6= 0

L′−1(z,y) =
1
y
(1−

1
σ

log(−
z

Cy+z
))

DefineC1 = 1
2

∥
∥∑N

i=1 αiΦk(xi)
∥
∥

2
2 andC2 = ∑N

i=1 αi
1
yi

(

1− 1
σ log(− αi

Cyi+αi
)
)

Using these ingredients it follows forSk(α)

Sk(α) = −
N

∑
i=1

L

(
1
yi

(

1−
1
σ

log(−
αi

Cyi +αi
)

)

,yi

)

+C2 +C1

= −
N

∑
i=1

1
σ

log

(

1+e
σ
(

1−
(

yi
yi

(

1− 1
σ log(−

αi
Cyi+αi

)
))))

+C2 +C1

= −
N

∑
i=1

1
σ

log

(

1−
αi

Cyi +αi

)

+
N

∑
i=1

αi

yi

(

1−
1
σ

log(−
αi

Cyi +αi
)

)

+C1.
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