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Abstract
Many classification tasks require estimation of output class probabilities for use as confidence
scores or for inference integrated with other models. Probability estimates derived from large mar-
gin classifiers such as support vector machines (SVMs) are often unreliable. We extend SVM large
margin classification to GiniSVM maximum entropy multi-class probability regression. GiniSVM
combines a quadratic (Gini-Simpson) entropy based agnostic model with a kernel based similar-
ity model. A form of Huber loss in the GiniSVM primal formulation elucidates a connection
to robust estimation, further corroborated by the impulsive noise filtering property of the reverse
water-filling procedure to arrive at normalized classification margins. The GiniSVM normalized
classification margins directly provide estimates of class conditional probabilities, approximating
kernel logistic regression (KLR) but at reduced computational cost. As with other SVMs, GiniSVM
produces a sparse kernel expansion and is trained by solving a quadratic program under linear con-
straints. GiniSVM training is efficiently implemented by sequential minimum optimization or by
growth transformation on probability functions. Results on synthetic and benchmark data, includ-
ing speaker verification and face detection data, show improved classification performance and
increased tolerance to imprecision over soft-margin SVM and KLR.

Keywords: support vector machines, large margin classifiers, kernel regression, probabilistic
models, quadratic entropy, Gini index, growth transformation

1. Introduction

Support vector machines (SVMs) have gained much popularity in the machine learning community
as versatile tools for classification and regression from sparse data (Boser et al., 1992; Vapnik, 1995;
Burges, 1998; Schölkopf et al., 1998). The foundations of SVMs are rooted in statistical learning
theory (Vapnik, 1995) with also connections to regularization theory (Girosi et al., 1995; Pontil
and Verri, 1998a). The principle of structural risk minimization provides bounds on generalization
performance which make SVMs well suited for applications with sparse training data (Joachims,
1997; Oren et al., 1997; Pontil and Verri, 1998b).

Several classification problems in machine learning require estimation of multi-class output
probabilities. Besides their use as confidence scores in classification, the class probability estimates
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can also be used in combination with other probabilistic models such as hidden Markov models for
inference across graphs. For instance text-independent speaker verification systems require normal-
ized classifier scores to be integrated over several speech frames in an utterance (Auckenthaler et
al., 2000) to arrive at global acceptance/rejection scores. Even though SVMs have been success-
fully applied for the task of speaker verification (Schmidt and Gish, 1996; Gu and Thomas, 2001),
the cumulative scores generated by SVMs are susceptible to corruption by impulse noise, which
increases false acceptance rate.

Multi-class extensions to SVM classification have been formulated, based on ‘one vs. all’ (We-
ston and Watkins, 1998; Crammer and Singer, 2000) or ‘one vs. one’ (Schölkopf et al., 1998; Di-
etterich and Bakiri, 1995; Allewin et al., 2000; Hsu and Lin, 2002) methods. In its general setting
multi-class SVMs generate unnormalized and biased estimates of class conditional probabilities
(Platt, 1999a). Calibration and moderation methods have been proposed to arrive at class prob-
ability estimates from the trained SVM classifier (Kwok, 1999; Platt, 1999a). For instance Platt
(1999a) applied sigmoidal regression to the output of an SVM and showed a performance compa-
rable to regularized maximum likelihood kernel methods (Jaakkola and Haussler, 1999; Zhu and
Hastie, 2002). Vapnik has proposed a probability regression technique based on mixture of cosine
functions (Vapnik, 1995), where the coefficients of the cosine expansion minimize a regularized
function. A drawback of these methods is their difficulty in embedding other inference models
like graphical models where re-estimation of SVM parameters can be naturally performed. Kernel
logistic regression (KLR) (Jaakkola and Haussler, 1999) provides such a framework to estimate
probabilities and can be easily embedded into graphical models with its parameters estimated us-
ing an expectation-maximization (EM) like procedure (Jordan and Jacobs, 1994). However, one of
the disadvantages of KLR is that the kernel expansion is non-sparse in the data making regression
infeasible for large classification problems. A Bayesian learning framework using relevance de-
termination on linear models more general than kernel regression (Tipping, 2001) produces a very
sparse expansion but involves significant computation during training that does not scale well to
very large data. Recently sparse Gaussian process based methods have been reported (Lawrence
et al., 2003), that alleviate scalability problems of relevance determination through use of greedy
optimization techniques.

The purpose of this paper is to describe a unifying framework for SVM based classification
that directly produces probability scores. Previous work in this area used Shannon entropy in a
large margin framework (Jebara, 2001) which led directly to KLR and hence inherited its potential
disadvantages of non-sparsity. One of the important contributions of the paper is exploration of
links between maximum entropy based learning techniques and large margin classifiers with exten-
sions to quadratic based impurity functions. Within this framework the paper introduces the Gini
Support Vector Machine (GiniSVM) (Chakrabartty and Cauwenberghs, 2002), a large margin clas-
sifier based on a quadratic entropy formulation combined with kernel based quadratic distance. At
the core of GiniSVM is a margin normalization procedure that moderates the output of the classi-
fier. Training GiniSVM entails solving a quadratic programming problem analogous to soft-margin
SVM. We also present algorithms for training GiniSVM classifiers with multiplicative updates, and
by growth transformation on polynomial objective functions.

The paper is organized as follows: Section 2 introduces a supervised discriminative frame-
work for obtaining classifiers that produce conditional probability scores. Section 4 introduces
GiniSVM and derives its normalization properties based on a reverse water-filling algorithm. Sec-
tion 5 presents algorithms for GiniSVM training based on conventional sequential minimum opti-
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mization (SMO) and a novel multiplicative update algorithm. Section 6 compares the performance
of GiniSVM for benchmark UCI databases, a face detection and a text-independent speaker verifi-
cation task. Section 7 provides concluding remarks with future directions.

2. Generalized Maximum Entropy Based Supervised Learning

In the framework of supervised learning, the learner is provided with a training set of feature vectors
T ⊂X : T = {xi}, i = 1, ..,N drawn independently from a fixed distribution P(x),x∈X . The formu-
lation presented here assumes a countable set X even though it generalizes to uncountable sets. Also
provided to the learner is a set of soft (or possibly hard) labels that represent conditional probability
measures yik = P(Ck|xi) defined over a discrete set of classes Ck,k = 1, ..,M. The labels therefore
are normalized and satisfy ∑M

k=1 yik = 1. The aim of the learner is to choose a finite set of regression
functions P = {Pk(x)},k = 1, ..,M that accurately predict the true conditional probabilities P(Ck|x).
For this purpose the learner uses a distance metric DQ : RM×RM→ R that embeds prior knowledge
about the topology of the feature space. Since the prior labels yik are available only for the training
set, the learner also defines an agnostic (non-informative) distance metric DI : RM×RM→ R which
does not assume any knowledge of the training set. The embedded agnostic prior is consistent with
maximum entropy principles (Jaynes, 1957; Pietra and Pietra, 1993) and enforces smoothness con-
straints on the the function Pk(x) by avoiding solutions that over-fit to the training set. Estimating
the probability functions P = {Pk(x)} entails a training procedure involving minimization of a joint
distance metric and is given by

min
P

G(P) = min
P

[DQ(Y,P)+ γDI(P,U)]. (1)

Here Y : R|T |×RM is a matrix of prior labels yik, i = 1, ..,N, k = 1, ..,M, and U denotes a uniform
distribution given by Uk(x) = 1/M, ∀k = 1, ..,M. γ > 0 is a hyper-parameter that determines a
trade-off between the prior and agnostic distance metrics. Minimizing the cost function (1) leads to
a solution P that is not only close to a prior distribution with respect to the distance metric DQ(., .)
but is also close to the non-informative (agnostic) uniform distribution U . In addition, the maximum
entropy framework (Pietra and Pietra, 1993) allows to impose linear constraints on the optimization
problem (1) based on cumulative statistics defined on the training set. One linear constraint equates
the frequency of occurrence of a class k = 1, ..,M under the distribution P to an equivalent measure
under the prior distribution yik. This first constraint can be written to express equivalence between
average estimated probabilities and empirical frequencies for each class over the training set

N

∑
i=1

Pk(xi) =
N

∑
i=1

yik, k = 1, . . .M (2)

under the assumption that all features x ∈ X are equally likely. A second set of linear constraints
expresses boundary and normalization conditions for valid probability distributions

Pk(x)≥ 0, k = 1, . . .M, (3)
M

∑
k=1

Pk(xi) = 1 (4)

where the additional inequality constraint Pk(x) ≤ 1, k = 1, . . .M is subsumed by the normalizing
equality constraint.
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Figure 1: Generalized framework for maximum entropy probability regression. (a): Solution P lies
in the constraint space shown as a sphere such that the total distance to the distribution Y
and U is minimized. (b): Solution for γ = 0, where P coincides with Y . (c): Solution for
γ→ ∞, projecting U onto the constraint space.

Pictorially the solution to the optimization problem (1) is shown in Figure 1. For illustration
purposes the linear constraints (2), (3) and (4) are represented by the shaded circle. The distance
DQ(Y,P) determines the proximity of distribution P to a prior empirical distribution Y . DI(P,U) is a
distance that defines an agnostic model when any prior knowledge about prior distribution is absent.
This framework is similar to the maximum entropy approach (Jaynes, 1957; Pietra and Pietra, 1993;
Jebara, 2001). The possible solutions to minimizing the cost function (1) with constraints (2)-(4) are
shown in Figure 1 where the solution P lies within or at the boundary of the constraint space. Note
that the constraint space also includes the prior distribution Y . Under non-degenerate conditions the
agnostic U distribution will lie outside the constraint space. The value of the hyper-parameter γ > 0
influences the location of the solution P with respect to the prior Y and agnostic U distributions.
As we will see further below, the parameters also determine the sparsity and generalization perfor-
mance of classifiers defined by parameters P. As shown in Figure 1, for γ = 0, the solution is the
prior distribution Y and thus over-fits to the training set. For the case when γ→ ∞, the solution is
equivalent to maximum entropy, which is the projection of U on the constraint space.

The solution to the optimization (1) is obtained by first order Karush-Kuhn-Tucker (KKT) con-
ditions (Bertsekas, 1995) with respect to the probability functions P = {Pk(x)} and is given by

γ
∂DI(P,U)

∂Pk(x)
=−

∂DQ(Y,P)

∂Pk(x)
+bk− z(x)+βk(x). (5)

Here bk represent Lagrange multipliers corresponding to frequency constraints (2), βk(x) ≥ 0 are
Lagrange multipliers for the inequality constraints (3), and Lagrange multipliers z(x) correspond to
the normalization constraint (4). For the sake of simplicity we will assume a form of DI(P,U) that
can be decomposed into independent, identically distributed (i.i.d.) components as

DI(P,U) =
M

∑
k=1

∑
x∈T

Ψ(Pk(x),Uk(x)), (6)

where Ψ : R×R→R is a concave function. The first order condition (5) can be written as a Legendre
transform (Rockefeller, 1970) with respect to Ψ(.) as

Pk(x) = ∇Ψ−1
(

1
γ

[
−

∂DQ(Y,P)

∂Pk(x)
+bk− z(x)+βk(x)

])
. (7)
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where ∇Ψ−1(.) denotes the Legendre transform with respect to Pk(x) for the bivariate function Ψ(.).
The Legendre transformation is commonly used in the dual formulation of support vector machines
and other kernel machines (Vapnik, 1995; Schölkopf and Smola, 2001), and we refer to ∇Ψ−1(.) as
the dual potential function. Note that ∇Ψ−1(.) is monotonic due to the concavity of Ψ(.).

Several choices exist for the prior distance metric DQ(., .). A popular metric is a quadratic
distance extensively used in kernel methods (Schölkopf et al., 1998) and as covariance functions in
Bayesian methods (Jordan and Jacobs, 1994). In its general form the quadratic distance between
two conditional distributions P̂ = {P̂k(x)} and P = {Pk(x)} is given by

DQ(P̂,P) =
C
2

M

∑
k=1

∑
x,v∈T

K(x,v)
[
P̂k(x)−Pk(x)

][
P̂k(v)−Pk(v)

]
. (8)

Here K : RM × RM → R represents a symmetric, positive definite kernel satisfying the Mercer’s
criterion,1 such as a Gaussian radial basis function or a polynomial spline (Schölkopf et al., 1998;
Wahba, 1998). The distance DQ(., .) embeds prior knowledge induced by the kernel K(x,v) and
therefore quantifies a topology of a metric space for points x,v ∈ X .

For the quadratic form DQ(., .) given by Equation (8) the first order conditions (7) can be written
as

Pk(x) = ∇Ψ−1
(

1
γ
[ fk(x)− z(x)+βk(x)]

)
(9)

where

fk(x) =
N

∑
i=1

λi
kK(xi,x)+bk

with inference parameters
λi

k = C[yik−Pk(xi)].

The Lagrange parameter function βk(x) in Equation (9) needs to ensure that the probability scores
Pk(x) ≥ 0 ∀x ∈ X according to (3), and the Lagrange parameter function z(x) needs to ensure
normalized probabilities ∑M

k=1 Pk(x) = 1 according to (4).
The set of inference parameters Λ = {λi

k}, i = 1, ..,N, k = 1, ..,M is obtained by solving (1)
over the training set T . Expressing the general form (6) for the agnostic distance DI(P,U) and the
quadratic distance (8) for the prior distance DQ(Y,P) in terms of the inference parameters λi

k in the
cost function (1) leads to a dual formulation Hd

Hd =
M

∑
k=1

[
1

2C

N

∑
i=1

N

∑
j=1

λi
kQi jλ

j
k + γ

N

∑
i=1

Ψ(yik−λi
k/C)

]
(10)

where Qi j = K(xi,x j) denote elements of the kernel matrix Q. Like the primal (1), minimization of
the dual Hd is subject to linear constraints (2)-(4) rewritten in terms of the inference parameters as

M

∑
k=1

λi
k = 0, i = 1, . . .N,

N

∑
i=1

λi
k = 0, k = 1, . . .M, (11)

λi
k ≤ Cyik.

1. K(x,v) = Φ(x) ·Φ(v). The map Φ(·) need not be computed explicitly, as it only appears in inner-product form.
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3. Kernel Logistic Regression

For a frame of reference in the comparison between different formulations of cost functions, the
optimization framework given by the dual (10) subject to constraints (11) is first applied to kernel
logistic regression (KLR) (Jaakkola and Haussler, 1999), with agnostic distance

DI(P,U) =
M

∑
k=1

∑
x∈T

Pk(x) log
Pk(x)

Uik

=
M

∑
k=1

∑
x∈T

Pk(x) logPk(x)+ cst (12)

derived from the Kullback-Leibler (KL) divergence ΨKL(P,U) = P log(P/U) for a uniform agnostic
distribution Uik ≡ 1/M. The constant term cst = N logM in (12) drops in the minimization and is
subsequently ignored. The probability function according to (9) is then given by

Pk(x) = exp

(
1
γ
[ fk(x)− z(x)+βk(x)]

)
. (13)

By property of exp(.), Pk(x)≥ 0 ∀x ∈ X , and so the Lagrange multiplier βk(x) in (13) is arbitrary
and can be eliminated, βk(x) ≡ 0. The other Lagrange multiplier z(x) in (13) is determined by
expressing the normalization condition ∑M

k=1 Pk(x) = 1 which leads to a logistic model

Pk(x) = exp

(
1
γ

fk(x))/
M

∑
p=1

exp(
1
γ

fp(x)

)
. (14)

Substituting the KL distance ΨKL(., .) for Ψ(., .) in the general form (10) directly leads to the dual
cost function

He =
M

∑
k=1

[
1

2C

N

∑
i=1

N

∑
j=1

λi
kQi jλ

j
k + γ

N

∑
i=1

(yik−λi
k/C) log(yik−λi

k/C)

]
(15)

subject to the dual constraints (11).

3.1 KLR Primal Reformulation

The dual (15) derived from the general maximum entropy form (1) is identical to the dual formu-
lation of another, closely related primal cost function for kernel logistic regression as formulated
in Jaakkola and Haussler (1999). The purpose of this section is to establish the equivalence with a
connection to large margin kernel machines and their interpretation in feature space (Schölkopf and
Smola, 2001).

Expressing the kernel function K(x,v) = Φ(x) ·Φ(v) as an inner-product in a transformed fea-
ture space Φ(.), the decision functions fk(x) are linked to a set of M hyperplanes

fk(x) =
N

∑
i=1

λi
k K(xi,x)+bk (16)

=
N

∑
i=1

λi
k Φ(xi) ·Φ(x)+bk (17)

= wk ·Φ(x)+bk
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where wk = ∑N
i=1 λi

kΦ(xi) represent the parameters of the hyperplanes. The following proposition
links the kernel logistic regression dual (15) with its equivalent primal formulation (Jaakkola and
Haussler, 1999).

Proposition I: The kernel logistic regression objective function (15) is the dual derived from a
primal objective function with regularized loss function

Le =
M

∑
k=1

1
2
|wk|

2 +C
N

∑
i=1

M

∑
k=1

yik log
yik

Pk(xi)

= ∑
k=1

1
2
|wk|

2−C
N

∑
i=1

[
M

∑
k=1

yik fk(xi)− log(e f1(xi) + ...+ e fM(xi))] . (18)

where additional constant terms in (18) have been ignored and a unity value for γ has been assumed
in the probability model (14). The proof of the proposition is provided in Appendix A.

The primal uses the Kullback-Leibler (KL) divergence ΨKL(P,U) = P log(P/U) between distri-
butions yik and Pk(xi) as loss function in the regularized form (18) (Wahba, 1998; Zhu and Hastie,
2002). One of the disadvantages of the kernel logistic dual is that the KL divergence distance metric
strongly penalizes solutions far away from the agnostic distribution U , leading to a non-sparse ker-
nel expansion. A sparser kernel expansion is obtained in soft-margin support vector machines for
classification. A Gini form of entropy as agnostic distance metric provides the connection between
support vector machines and probability regression, studied next.

4. GiniSVM and Margin Normalization

Instead of KL divergence, a natural choice for an agnostic distance metric DI is a quadratic form
of entropy similar to the quadratic form of the prior distance metric DQ. A Gini quadratic form of
entropy, or impurity function, has been used extensively in natural language processing for growing
decision trees (Breiman et al., 1984). The Gini quadratic entropy forms the basis of the Gini-support
vector machine (GiniSVM) for probability regression (Chakrabartty and Cauwenberghs, 2002).

The Gini quadratic form of entropy ΨGini(P,U) = 1
2(P−U)2 with uniform agnostic distribution

Uik ≡ 1/M leads to an agnostic distance metric

DI(P,U) =
1
2

M

∑
k=1

∑
x∈T

(Pk(x)−Uik)
2

=
1
2

M

∑
k=1

∑
x∈T

Pk(x)2 + cst

where the constant term cst = −N/2M drops in the minimization. Substituting the Gini distance
ΨGini(., .) for Ψ(., .) in the general form (10) leads to the dual GiniSVM cost function

Hg =
M

∑
k=1

[
1

2C

N

∑
i=1

N

∑
j=1

λi
kQi jλ

j
k +

γ
2

N

∑
i=1

(yik−λi
k/C)2

]
(19)

under constraints (11).
In contrast to the KL distance in the KLR dual (15), the quadratic distance in the GiniSVM

dual (19) allows sparse kernel expansions, where several of the inference parameters λi
k are driven
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Figure 2: Illustration of reverse water-filling procedure. The level z is adjusted as to maintain the
net fi in excess of z (shaded area) at γ.

to zero by the inequality constraints in (11) corresponding to a majority of labels for which yik = 0.
Even sparser kernel expansions could be obtained with soft-margin support vector machines for
classification, owing to its slightly different quadratic cost function under linear constraints which
further favors sparsity. More significantly, GiniSVM produces conditional probability estimates
that are based on maximum entropy (1). The probability estimates themselves could be sparse, with
Pk(x) = 0 for a number of classes k depending on γ and x, as we show next.

4.1 Margin Normalization and Reverse Waterfilling

The quadratic entropy form of ΨGini(., .) leads to a linear Legendre transform ∇Ψ−1(.) and thus a
linear, rather than exponential, form of the conditional probability estimates Pk(x) = 1/γ/[ fk(x)−
z(x)+βk(x)],k = 1, ..,M. To ensure positive probabilities according to constraints (3), the Lagrange
parameters βk(x) produce rectified linear probability estimates

Pk(x) =
1
γ
[ fk(x)− z(x)]+ (20)

where [x]+ = max(x,0) denotes a hinge function. The remaining Lagrange parameter z(x) is de-
termined through a subtractive normalization procedure which solves for the normalization con-
straint (4)

M

∑
k=1

[ fk(x)− z(x)]+ = γ. (21)

The conditions (20) and (21) are jointly satisfied by applying a reverse water-filling algorithm com-
monly found in communication systems (Cover and Thomas, 1991), listed in Algorithm 1 and illus-
trated in Figure 2. The algorithm recursively computes the normalization factor z(x) such that the
net balance of class confidence levels fk(x) in excess of z(x) equals γ.

We refer to the procedure solving for z(x) given confidence scores fk(x) in (21) as margin
normalization, because of similarities between the normalization parameter γ and the margin of
multi-class soft-margin support vector machines (Weston and Watkins, 1998). Unlike the divisive
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Algorithm 1 Reverse water-filling procedure to compute normalization parameter z
Require: Set of confidence values { fk(x)},k = 1, ..,M.
Ensure: z = 0,N = 1,T = 0

a = max{ fk(x)}
{s}← { fk(x)}−{a}
while T < γ & N < M do

b = max{s}
T ← T +N(a−b)
a← b
{s}← {s}−{b}
N← N +1

end while
z← b+N(γ−T )

normalization (14) of probabilities in kernel logistic regression, the subtractive margin normal-
ization (20)-(21) in GiniSVM offers several distinct properties in connection with margin based
classifiers:

Monotonicity: Let fk(x),k = 1, ..,M a set of GiniSVM decision functions satisfying the reverse
water-filling conditions ∑M

k=1[ fk(x)− z1(x)]+ = γ1 and ∑M
k=1[ fk(x)− z2(x)]+ = γ2. If γ1 ≥ γ2 > 0,

then z1(x)≤ z2(x).
Proof: The two reverse water-filling conditions lead to

M

∑
k=1

([ fk(x)− z1(x)]+− [ fk(x)− z2(x)]+) = γ1− γ2 > 0.

The convexity of the hinge function [a−b]+ ≥ [a]+− [b]+;a,b ∈ R leads to

[z2(x)− z1(x)]+ ≥ (γ1− γ2)/M > 0

which is equivalent to z2(x) > z1(x).

Sparsity: The effect of rectification (20) in the subtractive normalization (21) is to produce a
number 0 ≤ m < M of classes k1, . . .km ∈ {1, . . .M} with zero probabilities Pk j(z) = 0, for which
the normalization level z(x) exceeds the confidence level fk j(x). As a direct consequence of the
monotonicity property, decreasing the margin parameter γ leads to a larger number m of classes
with zero probabilities. Therefore the margin parameter γ directly controls the sparsity m of the
probability estimates, assigning the probability mass to a smaller fraction of more confident classes
with larger fk(x) as γ is decreased. Besides the dependence on γ, the number of zero probability
classes m depends on the actual values of fk(x), and hence on the inputs x.

Margin: In the limit γ→ 0, the normalization factor z(x)→ maxk fk(x). Thus as γ→ 0, margin
normalization acts as ‘winner-take-all’, m→ M− 1, and strongly favors the highest class score.
Based on this principle a multi-class probability margin can be defined based on the multi-class
decision functions fk(x) as fk(x) = z(x) + γ. The effect of the hyper-parameter γ can be seen on
a synthetic three-class classification problem and is shown in Figure 3. The hyper-parameter γ
determines the smoothness of the decision boundary and controls the location of the margin (shown
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Figure 3: Equal probability contour plots for a three-class problem with the GiniSVM solution
obtained for (a) γ = 8 and (b) γ = 0.08.

by ’white’ region). Similar to soft-margin SVM the location of the margin determines the sparsity
of the GiniSVM solution. This is illustrated in Figure 3(a)-(b). Shades in the figure represent equal
probability contours, and the extent of ’white’ regions around the decision boundaries illustrates
the margin of separation. It can be seen from Figure 3(a)-(b) that reduction in γ has the effect of
increasing the size of the margin, and thereby controls the sparsity of the GiniSVM solution.

Robustness: The subtractive margin normalization (20) and (21) is inherently robust to impulsive
noise, since components fk(z) in the kernel expansion smaller than a threshold z(x) (at most a
margin γ below the largest value) do not contribute to the output.2 In a physical implementation of
margin decoding, adjusting the level γ according to the noise floor leads to significant improvements
in decoding performance (Chakrabartty and Cauwenberghs, 2004). The robustness properties of
GiniSVM in relation to the threshold γ are further analyzed in Section 4.4.

4.2 GiniSVM Primal Reformulation

In this section we derive an equivalent primal reformulation of the GiniSVM dual (19), analogous
to the derivation in Section 3.1. As for the multi-class logistic primal (18), decision functions for
classes k = 1, ..,M are expressed in terms of a set of M hyperplanes fk(x) = wk˙Φ(x)+ bk. Given
a set of training vectors xi ∈ R D, i = 1, ..,N and its corresponding prior probability distributions
yik ∈ R : yik ≥ 0;∑M

k=1 yik = 1, GiniSVM in its primal reformulation of minimizes a regularization
factor proportional to the L2 norm of the weight vectors wk,k = 1, ..,M and a quadratic loss function

2. The subtractive normalization is insensitive only to negative impulsive noise in fk(z). Typically, a choice of kernel
indicating a match rather than a mismatch in feature space will avoid positive impulsive noise, since random error is
much more likely to activate further mismatch rather than an accidental match.
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lg according to

Lg =
1
2

M

∑
k=1

|wk|
2 +

N

∑
i=1

M

∑
k=1

lg(wk,bk,zi) (22)

with loss function lg(xi) for each training vector xi given by

lg(xi) =
γC
2

(
yik−

1
γ
[ fk(xi)− zi]+

)2

,

and where zi, i = 1, . . .N are free parameters entering the minimization of Lg, along with the hyper-
plane parameters wk and bk, k = 1, . . .M.

Proposition II: Denote the solution to the minimization of Lg as

(w∗k ,b
∗
k ,z
∗
i ) = argminwk,bk,zi

Lg,

then

1. Pk(xi) = 1
γ [ f ∗k (xi)− z∗i ]+ with f ∗k (xi) = w∗k · xi + b∗k for a given data xi is a valid condi-

tional probability measure over classes k ∈ 1, ..,M, where zi performs the normalization
∑M

k=1 Pk(xi) = 1.

2. The dual cost function corresponding to the primal cost function (22) is the GiniSVM dual (19).

The proof of the proposition is given in Appendix B.

4.3 Binary GiniSVM and Quadratic SVM

In one case of interest the multi-class GiniSVM solution simplifies to a binary class problem, where
the learner is provided with binary labels yi ∈ {−1,+1} representing class membership of a feature
vector xi ∈ T . Binary GiniSVM entails regression of a single probability P+1(x) = 1−P−1(x) as a
function of a single margin variable f (x) = 1

2( f+1(x)− f−1(x)). Elimination of the normalization
parameter z from the binary version of (20) constrained by (21) yields

P+1(x) =

[
f (x)

γ
+

1
2

]1

0
(23)

where [.]10 denotes a limiter function confining the probability to the [0,1] interval, [a]1
0 = [a]+− [a−

1]+. With the kernel expansion of f (x) expressed in reduced form3

f (x) =
N

∑
i=1

λiyiK(xi,x)+b, (24)

the GiniSVM dual objective function (19) and linear constraints (11) reduce to

Hb = min
λi

1
C

[
N

∑
i=1

N

∑
j=1

λiλ jyiy jK(xi,x j)−
N

∑
i=1

G(λi)

]
(25)

3. This choice of kernel expansion is consistent with binary soft-margin SVM and binary KLR, with identical dual
formulation under constraints, and with the only difference in the form of the dual potential function G(λ) (26).
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Figure 4: Graphical illustration of the relation between binary GiniSVM dual potential function G,
inference parameters λi, probability estimates Pi, and primal loss function lg.

under constraints
M

∑
i=1

λiyi = 0,

0≤ λi ≤C

with dual potential function

G(λ) = γC
λ
C

(1−
λ
C

). (26)

The derivation is given in Appendix C.
Figure 4 graphically illustrates the relationship between the binary GiniSVM dual potential

function G, inference parameters λi, probability estimates Pi, and primal reformulation loss function
lg. The dual potential is linked to the probability estimate through the Legendre transform ∇Ψ−1(.)
as described by Equations (5)-(7). Since the dual potential function is symmetric Ψ(P+1) = Ψ(1−
P+1) = Ψ(P−1), it follows that the Legendre transform ∇Ψ−1(.) is antisymmetric and hence the
probability estimates are centered around the discrimination boundary, P+1( f (x)) = 1−P+1(− f (x))
consistent with the functional form (23). Symmetry in the dual potential function thus leads to
unbiased probability estimates that are centered around the discrimination boundary, P+1 = P−1 =
1/2 for f (x) = 0.

The Legendre transform also links the dual potential function to the primal reformulation cost
function. Note the relationship between the parameter γ scaling the dual potential function, and
the location of the margin in the loss function and probability estimate indicated by M in Figure 4.
Hence the parameter γ can be seen both to control the strength of the agnostic metric DI , and to
control a measure of margin in the probability regression. The regularization parameter C also
scales the dual potential function, but controls regularization by scaling the primal loss function by
the same factor C without affecting margin, as in soft-margin SVM classification.
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Figure 5: Primal and dual formulation of logistic regression, GiniSVM regression and soft-margin
SVM classification. (a): Loss function in the primal formulation. (b): Potential function
in the dual formulation. The GiniSVM loss function and potential function closely ap-
proximate those for logistic regression, while offering the sparseness of soft-margin SVM
classification. C = 1, and γ = 8log2 for GiniSVM and γ = 1 for logistic regression.

A direct comparison can be made between the binary GiniSVM formulation and other binary
classifiers by inspecting differences in their potential functions G(u), shown in Figure 5(b). The
GiniSVM potential function is symmetric around the center of the agnostic, uniform distribution
U = 1/2 where it reaches its maximum. The center corresponds to the origin of the margin variable
yi f (xi) in Figure 5(a) which represents the separating hyperplane. Figure 5(b) also shows the binary
KLR dual potential function given by Shannon’s binary entropy (Jaakkola and Haussler, 1999)

G(λ) = γC
(

λ
C

log(
λ
C

)+(1−
λ
C

) log(1−
λ
C

)

)
.

Like GiniSVM, the binary KLR dual potential function is symmetric with respect to the separating
hyperplane in Figure 5(a), and hence also produces unbiased estimates of conditional probabilities.
In contrast, the soft-margin SVM potential function G(λ) = λ is asymmetric with respect to the
separating hyperplane and produces biased or skewed conditional probability estimates. The binary
GiniSVM dual bears similarity to the quadratic SVM dual (Schölkopf et al., 1998), but the quadratic
SVM lacks the symmetry of the potential function around the separating hyperplane.

4.4 Relation to Robust Estimation and Logistic Regression

The GiniSVM dual (19) relates to the kernel logistic regression dual (15) through a lower-bound
on Shannon entropy. Using the inequality logx ≤ x− 1,x ≥ 0, the Shannon entropy term Ge(P) =
−∑M

k=1 Pk logPk is everywhere larger than the Gini entropy Ge(P)≥ 1−∑ik P2
ik. This is illustrated in

Figure 5(b) which compares the potential functions for KLR and GiniSVM in the binary case. Both
expressions of entropy reach their maximum for a uniform distribution, P = 1

2 . It can be shown
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that the solution obtained by minimizing the GiniSVM dual Hg in Equation (19) is an over-estimate
of the solution obtained by minimizing kernel logistic dual He given by Equation (15). In fact we
found that initial iterations decreasing the cost Hg also resulted in a decrease of He with deviations
evident only near convergence. Thus the GiniSVM dual Hg can also be used for approximately
solving the kernel logistic dual He.

The loss function corresponding to binary GiniSVM can be visualized through Figure 5(a) and
compared with other primals. For binary-class GiniSVM, ‘margin’ is visualized as the extent over
which data points are asymptotically normally distributed. Using the notation for asymptotic nor-
mality in Huber (1964), the distribution of distance z from one side of the margin for data of one
class4 is modeled by

F(z) = (1− ε)N (z,σ)+ εH (z)

where N (.,σ) represents a normal distribution with zero mean and standard deviation σ, H (.) is
the unknown symmetrical contaminating distribution, and 0 ≤ ε ≤ 1. H (.) could, for instance,
represent impulsive noise contributing outliers to the distribution.

Huber (1964) showed that for this general form of F(z) the most robust estimator achieving
minimum asymptotic variance minimizes the following loss function:

g(z) =

{
1
2

z2

σ2 ; |z| ≤ kσ
k |z|σ −

1
2 σk2 ; |z|> kσ

(27)

where in general the parameter k depends on ε. For GiniSVM, the distribution F(z) for each class
is assumed one-sided (z ≤ 0). In particular, the Huber loss function g(z) in (27) reduces to the
binary GiniSVM loss function lg(y f (x)), shown in Figure 4, for z≤ 0 with z = y f (x)−γ/2, kσ = γ,
and k/σ = C. Therefore the parameter γ in GiniSVM can be interpreted as a noise margin in the
Huber formulation, consistent with its interpretation as noise threshold in the reverse water-filling
procedure for margin normalization. As with soft-margin SVM, points that lie beyond the margin
(z > 0) are assumed correctly classified, and do not enter the loss function (g(z) ≡ 0). The binary
GiniSVM loss function is a special case of Huber loss used in quadratic SVMs (Schölkopf et al.,
1998) which directly generates normalized scores from the margin variable f (x).

5. GiniSVM Training Algorithm

GiniSVM training entails solving a quadratic optimization problem for which several standard pack-
ages and algorithms are available (Platt, 1999b; Cauwenberghs and Poggio, 2001; Osuna et al.,
1997). Most of these methods exploit the underlying structure in the classification problem to in-
corporate heuristics that considerably speed up the convergence of the training algorithm. In this
section we describe two algorithms for optimizing GiniSVM dual function (19). The first algorithm
uses a decomposition algorithm called sequential minimal optimization. The second algorithm uses
the polynomial nature of the dual resulting into a novel multiplicative update algorithm based on
growth transformation on probabilities.

4. The distributions for the two classes are assumed symmetrical, with margin on opposite sides, and distance z in
opposite directions.
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5.1 Sequential Minimal Optimization

Sequential minimal optimization (Platt, 1999b) is an extreme case of a decomposition based quadratic
program solver, where a smallest set of inference parameters is chosen each iteration, and optimized
subject to the linear constraints. The advantage of SMO is that it can be efficiently implemented
without resorting to QP packages, and it scales to very large data sets. In the case of the GiniSVM
dual function (19), at least four inference parameters need to be chosen to satisfy two sets of equality
constraints (11). A randomized version of SMO algorithm is described in Algorithm 2.

Algorithm 2 Randomized SMO algorithm
Require: Training data xi, i = 1, ..,N and labels yik, i = 1, ..,N,k = 1, ..,M
Ensure: Let λi

k = 0 for i = 1, ..,N,k = 1, ..,M.
repeat
• Randomly choose a set of four inference parameters λ1

1,λ1
2,λ2

1 and λ2
2.

• Update λ1
1,λ1

2,λ2
1 and λ2

2 such that the dual (19) is minimized subject to constraints (11).
until convergence

The derivation of the SMO update rule based on the choice of inference parameters is given in
Appendix D. Instead of random selection of working sets of inference parameters, heuristics based
on the structure of the classification problem can be used to speed up convergence (Platt, 1999b;
Keerthi et al., 2001). Standard QP algorithmic methods for SVM training such as caching and
shrinking besides chunking (Joachims, 1998) can be applied to further speed up convergence of
SMO training.

5.2 Growth Transformation on Generalized Polynomial Dual

In lieu of the inference parameters defined as λi
k = C[yik−Pk(xi)], the GiniSVM dual in (19) can be

expressed in terms of probabilities Pik = Pk(xi) as

H =
C
2

M

∑
k=1

[
N

∑
i=1

N

∑
j=1

Qi j [yik−Pik]
[
y jk−Pjk

]
+

γ
2

N

∑
i=1

P2
ik

]
(28)

with linearity constraints (3) and (4) to ensure valid probabilities, Pik ≥ 0,∀i,k and ∑M
k=1 Pik = 1,∀i.

For the remainder of the derivation the additional equality constraint (2) corresponding to the bias
term b will be relaxed. Artifacts due to absence of the bias b can reduced by properly pre-processing
and centering the training data or by incorporating an additional input dimension in the kernel func-
tion. The optimization function (28) is a non-homogeneous polynomial with normalized probability
variables Pik,∀i and with possibly negative coefficients. We can directly apply results from Baum
and Sell (1968) and Gopalakrishnan et al. (1991) to optimize the dual (28).

Theorem 2 (Gopalakrishnan et al.) Let H({Pik}) a polynomial of degree d in variables Pik

in the domain D : Pik ≥ 0,∑qi
k=1 Pik = 1, i = 1, ..,N,k = 1, ..,qi such that ∑qi

k=1 Pik
∂H
∂Pik

(Pik)/ 6= 0 ∀i.
Define an iterative map according to the following recursion

P̂ik←
Pik(

∂H
∂Pik

(Pik)+Γ)

∑qi
k=1 Pik(

∂H
∂Pik

(Pik)+Γ)
(29)
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Figure 6: Probability estimates generated by GiniSVM, KLR and a calibrated soft-margin SVM for
one-dimensional synthetic training data.

where Γ ≥ Sd(N + 1)d−1 with S being the smallest coefficient of the polynomial H({Pik}). Then
{P̂ik} ∈ D and H({P̂ik}) > H({Pik}).

The result can be applied for minimizing the polynomial dual corresponding to Equation (29).
Let P0

ik = 1/M the initial value of the probability distribution for all i,k, and assume the kernel
matrix be bounded such that |Qi j| ≤Qmax,∀i, j. Also, let Pm

ik the value of the probability distribution
at mth iteration then

Pm+1
ik ← Pm

ik δm
ik/

M

∑
k=1

Pm
ik δm

ik

where

δm
ik = C

N

∑
j=1

Qi j [P
m
ik − yik]+ γPm

ik +Γ

and Γ = C (N + 1) Qmax. At each update the cost function (28) decreases, and the procedure is
repeated till convergence. Due to the multiplicative nature of the update some distribution variables
Pik can never reach unity or zero; however, in practice it approaches the limits within given margins
of precision similar to other implementations of SVM training algorithms. As with other SVM
optimization techniques, the speed of large margin growth transformation can be enhanced by using
caching and shrinking (Joachims, 1998), as values of the distribution Pik close to unity or zero almost
do not change.
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Figure 7: Comparison between conditional Bayes probability estimates and scores generated by
GiniSVM for 10-dimensional synthetic data with (a) γ = 0.8 and (b) γ = 0.08.

6. Experiments and Results

The first set of experiments were designed to characterize the probability scores generated by
GiniSVM for synthetic data. Figure 6 compares the scores generated by GiniSVM, KLR and
soft-margin SVM for a synthetic binary classification problem. The one dimensional training data
corresponding to two classes were generated using a bimodal Gaussian distribution. A histogram
generated by data points randomly sampling the distribution is shown in Figure 6 and the locations
of 500 data points used for training are denoted by ‘+’ along y = 1 and y = 0. For the soft-margin
SVM the scores were normalized using Platt’s calibration procedure (Platt, 1999a). The Figure 6
shows that the scores generated by KLR, GiniSVM and calibrated soft-margin SVM are similar and
approximate the sampled distribution which approximates the Bayesian optimum solution. It can be
seen that calibrated soft-margin SVM scores do not approximate the true conditional distribution at
the boundary of the distribution and would require additional parameterization for producing better
estimates.

Figures 7(b) and (c) compare GiniSVM scores with sampled conditional scores (Bayes esti-
mates) for synthetic data in 10 dimensions. The data were generated from a multi-variate Gaussian
distribution, out of which 100 data points were chosen for training. Figures 7(a) and (b) demon-
strate a monotonic relationship between GiniSVM scores and Bayes estimate of class conditional
probabilities. The sigmoidal relationship trend shown in the scatter plot 7(a) for γ = 0.8 is attributed
to linear approximation of the logistic model (14) by subtractive normalization model (20).

The performance of GiniSVM based classifier was evaluated on three benchmark UCI databases
and compared with a baseline one-vs-all soft-margin SVM classification method
(Weston and Watkins, 1998; Crammer and Singer, 2000). Table 1 summarizes the results obtained
for the GiniSVM classifier. Data sets are labeled with attributes as (N,D,M) where N denotes its
total size, D denotes the dimension of the input vector and M denotes the total number of classes.
All training data were normalized between [−1,1] and a 10-fold cross validation procedure was
used to obtain average classification error rate and average number of support vectors. A Gaussian
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Iris Ecoli Glass
(150,3,4) (336,8,7) (214,6,13)

(γ,C) Err(%) nsv(%) (γ,C) Err(%) nsv(%) (γ,C) Err(%) nsv(%)
(0.8, 0.5) 3.2±2 40±1.6 (0.8,1) 14±3 60±5 (0.8,1) 30±4.7 95±1.2
(0.8, 5) 4.0±2 19±2.2 (0.8,10) 15±1.8 62±7 (0.8,10) 29±3 89±1.5
(0.08, 5) 4.8±2 14±3 (0.08,1) 12.7±2.7 63±7 (0.08,10) 32±6 82±2.6

Baseline one-vs-all SVM
(C = 4) 3.4±3 18±1 (C = 10) 14±4 61±6 ( C = 5) 30±2 81±3

Table 1: Performance of GiniSVM classifier on UCI database.

kernel K(x,y) = exp(− 1
2σ2 (x− y)T (x− y)) was chosen for all experiments. The kernel parameter

σ and the regularization parameter C were chosen based on the performance of the baseline SVM
on a held-out set. The same kernel parameter was used for training GiniSVM classifiers. Table 1
shows the error rate (indicated by Err) and the number of support/error vectors (indicated by nsv)
obtained for different sets of hyper-parameters γ and C. The results indicate that the classification
performance of the GiniSVM based system is comparable to the baseline one-vs-all SVM system.
The results also illustrate the effect of γ on the sparseness of the solution which increases as γ→ 0,
as explained using the generalized dual framework in Section 4.

6.1 Face Detection and Effects of Parameter Mismatch

The advantage of GiniSVM over conventional soft-margin SVM is demonstrated by performing
sensitivity analysis on the kernel expansion at completion of training. For this experiment a face
detection task was chosen. The classifiers were trained using the face detection database available
through CBCL at MIT (Alvira and Rifkin, 2001) and their performance was evaluated on the stan-
dard CMU-MIT test set (Rowley et al., 1998). Training of the classifier was performed by utilizing
floating point precision arithmetic, whereas evaluation was performed after quantizing the support
vectors and inference parameters to 8,6 and 4 bits, and adding 1 LSB of uniform random noise.
For this experiment the parameter C was determined by optimizing the performance of the classifier
on a held-out data set. Receiver operating characteristics (ROC) were obtained by evaluating the
performance of the mismatched classifier on the test set. Figure 8 compares ROC curves for the
classifier trained with soft-margin SVM, vs. another trained identically with GiniSVM for a 2nd

order polynomial kernel. The results indicate that GiniSVM solution is more robust to mismatch
and precision errors in the inference parameters. In fact for this data set, the GiniSVM solution
quantized to 1 bit is more robust than an equivalent soft-margin SVM solution quantized to 4 bits.

6.2 Speaker Verification Experiments

The benefit of normalized scores generated by GiniSVM is demonstrated for the task of text-
independent speaker verification. The task entails verifying a particular speaker from possible
imposters without any knowledge of the text spoken. A conventional approach uses a classifier
to generate scores based on individual speech frames. The scores are integrated over the duration
of the utterance and compared against a threshold to accept or reject the speaker. A YOHO speaker
verification database was chosen for training and testing the speaker verification system. The YOHO
database consists of sets of 4 combination lock phrases spoken by 168 speakers. For each utterance
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Figure 8: ROC obtained for a face detection system trained with (a): soft-margin SVM and (b):
GiniSVM training algorithm, for a 2nd order polynomial kernel.

contiguous 25ms speech samples were extracted and Mel-frequency cepstral coefficient (MFCC)
features were extracted. The MFCC feature extraction procedure has been extensively studied in
the literature and details can be found in Rabiner and Juang (1993). A 39-dimensional feature vec-
tor was formed by concatenating the total energy in the speech frame, along with the ∆ and ∆−∆
MFCC coefficients.

For training, 100 speakers (speaker ID: 101-200) were chosen from the YOHO database and
MFCC features were extracted for all speech frames corresponding to each speaker. To reduce the
total number of training points, a K-means clustering was performed for each speaker to obtain 1000
cluster points for the correct speaker, and 100 cluster points for each imposter speaker. For each
speaker (101-200), this procedure was repeated to obtain a training set of 10,900 MFCC vectors.
Classifiers specific to each speaker were trained using a GiniSVM toolkit
(http://bach.ece.jhu.edu/svm/ginisvm). For testing utterances corresponding to 100 speakers were
chosen from the YOHO test set. Confidence scores generated by GiniSVM for each speech frame
were integrated over the duration of the utterance to obtain the final cumulative score. Thus each
speech frame is treated to be independent and their scores are integrated together without taking
into account any time-based correlations.

Figure 9 compares the ROC obtained by a soft-margin SVM based system with a GiniSVM
based verification system trained for one speaker (id: 148). The speaker with worst verification
performance among all was selected. Figure 9 shows that a GiniSVM based system exhibits bet-
ter verification performance compared to an equivalent soft-margin SVM. For each ROC (one per
speaker) an equal error rate (EER) parameter was computed. The EER metric is widely used for
quantifying performance of a biometric system and is defined as the error rate at which total false
positive rate is equal to false rejection rate. Thus, the lower the EER, the more robust is the perfor-
mance of a biometric system. For this experiments EERs corresponding to each speaker verification
system (101-200) were averaged to obtain an equivalent system EER. For a soft-margin SVM and

831



CHAKRABARTTY AND CAUWENBERGHS

0 0.01 0.02 0.03 0.04 0.05 0.06

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

False Acceptance Rate

T
ru

e 
A

cc
ep

ta
nc

e 
R

at
e

KLR

SVM

Gini

Figure 9: Comparison of ROC obtained for a speaker verification system based on soft-margin
SVM and GiniSVM classification for speaker id: 148.

KLR, the average EER was computed to be equal to 0.36% and 0.35%, where as the EER for a
GiniSVM based system was found to 0.28%. This demonstrates that the normalization procedure
used by GiniSVM improves the accuracy of a text-independent speaker verification system. The
verification results are also comparable with other reported results on the YOHO data set (Campbell
et al., 2002).

7. Conclusions and Extensions

We introduced a general, maximum entropy based framework for constructing multi-class support
vector machines that generate normalized scores. In particular, GiniSVM produces direct estimates
of conditional probabilities that approximate kernel logistic regression (KLR) at reduced com-
putational cost, incurring quadratic programming under linear constraints as with standard SVM
training. Unlike a baseline soft-margin SVM based system with calibrated probabilities, GiniSVM
produces unbiased probability estimates owing to symmetry in the agnostic distance metric in the
maximum entropy formulation. The probability estimates are sparse, where the number of non-zero
probabilities is controlled by a single parameter γ, which acts as a margin in the normalization of
probability scores. The margin parameter γ is distinct from the regularization parameter C also
found in soft-margin SVM and KLR, even though both C and γ weigh the agnostic metric relative
to the prior metric in the maximum entropy primal cost function.

For efficient implementation of GiniSVM training, we presented a modified sequential mini-
mum optimization (SMO) algorithm, and a multiplicative update algorithm based on growth trans-
formation on probability functions in the dual. The performance of GiniSVM probability regression
and classification was evaluated on benchmark UCI databases in comparison with KLR and soft-
margin SVM. Results on face detection database indicated that the solution obtained by GiniSVM
training is more robust to mismatch in inference parameters, offering advantages in efficient, re-
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duced precision implementation of SVMs. GiniSVM also successfully trained on a task of text-
independent speaker verification, by integrating normalized probability scores over time. GiniSVM
further extends to forward decoding kernel machines for trainable dynamic probabilistic inference
on graphs (Chakrabartty and Cauwenberghs, 2002).

The maximum entropy framework for large-margin kernel probability regression introduced
for GiniSVM is general and can be extended to other classification and regression tasks based on
polynomial entropy. Of particular interest are formulations that use symmetric potential functions
like the Gini quadratic entropy function.
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Appendix A. Kernel Logistic Regression Primal and Dual Formulation

Proof of Proposition I: Define Le as the regularized log-likelihood/cross entropy for kernel logistic
regression (Wahba, 1998; Zhu and Hastie, 2002)

Le =
M

∑
k=1

1
2
||wk||

2−C
N

∑
i=1

[
M

∑
k=1

yik fk(xi)− log(e f1(xi) + ...+ e fM(xi))] . (30)

First order conditions with respect to parameters wk and bk in fk(x) = wk.x+bk yield

wk = C
N

∑
i=1

[yik−
e fk(xi)

∑M
p e fp(xi)

] xi,

0 = C
N

∑
n

[yik−
e fk(xi)

∑M
p e fp(xi)

] . (31)

Denote

λn
k = C[yik−

e fk(xi)

∑M
p e fp(xi)

] (32)

in the first-order conditions (31) to arrive at the kernel expansion (17) with linear constraint

fk(x) = ∑
n

λn
kK(xi,x)+bk, (33)

0 = ∑
n

λn
k .

Note also that ∑M
k=1 λn

k = 0 by construction.
Legendre transformation of the primal objective function (30) in wk and bk leads to a dual

formulation directly in terms of the coefficients λn
k (Jaakkola and Haussler, 1999). Define zn =

log(∑M
p e fp(xi)), and Qi j = K(xi,x j). Then (32) and (33) transform to

∑
l

Qnlλl
k− log[ynk−λn

k/C]+bk− zn = 0
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which correspond to first-order conditions of the convex dual functional

He =
M

∑
k=1

[
1
2

N

∑
n

N

∑
l

λn
kQnlλl

k +C
N

∑
n

(ynk−λn
k/C) log(ynk−λn

k/C)]

under constraints

∑
n

λn
k = 0, (34)

∑
k

λn
k = 0, (35)

λn
k ≤ Cynk

where bk and zn serve as Lagrange parameters for the equality constraints (34) and (35).

Appendix B. GiniSV M Primal and Dual Formulation

Proof of Proposition II: The hinge function [.]+ can be appropriately modeled by introducing slack
variables µik ≥ 0 into the loss function such that

Lg(wk,bk,zi) = min
µik≥0

1
2 ∑

k

|wk|
2 +

γC
2 ∑

ik

(yik−
1
γ
[ fk(xi)− zi +µik])

2 +∑
ik

ηikµik

The first order conditions corresponding to the variables wk,bk,zi,µik are given by

∂F/∂wk = wk−C
N

∑
i=1

(
yik−

1
γ
[ fk(xi)− zi +µik]

)
xi = 0, (36)

∂F/∂bk = C
N

∑
i=1

(
yik−

1
γ
[ fk(xi)− zi +µik]

)
= 0, (37)

∂F/∂zi = C∑
k

(
yik−

1
γ
[ fk(xi)− zi +µik]

)
= 0 (38)

∂F/∂µik = ηik−
1
γ
[ fk(xi)− zi +µik] = 0 (39)

where ηik are the Lagrange multipliers corresponding to the inequality conditions µik ≥ 0. The
complementary slackness criterion (Bertsekas, 1995) for these constraints gives ηik ≥ 0 and ηikµik =
0 which along with criterion (39) gives

1
γ
[ fk(xi)− zi +µik] =

1
γ
[ fk(xi)− zi]+ ≥ 0 (40)

and, according to (38),

∑
k

1
γ
[ fk(xi)− zi]+ = 1

which proves the first part of the proposition.
To prove the second part of the proposition let

λi
k = Cyik−

1
γ
[ fk(xi)− zi +µik]). (41)
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Criteria (37), (38) and (40) lead to the constraints (11). Substitution in (36) yields an expansion of
wk which re-substituted in the primal yields the dual first-order condition

∑
j

Qi jλ
j
k +bk− zi +µi

k− γ(yik−λi
k/C) = 0.

Along with constraints (11) the corresponding dual reduces to the GiniSVM dual Hg (19), which
completes proof of the proposition.

Appendix C. Binary GiniSVM Dual Formulation

For a binary GiniSVM the dual cost function (19) becomes

Hg =
1

2C ∑
i j

λi
+1λ j

+1Qi j +
1

2C ∑
i j

λi
−1λ j

−1Qi j +
γ
2 ∑

i

(yi,+1−λi
+1/C)2 +

γ
2 ∑

i

(yi,−1−λi
−1/C)2 (42)

and the constraints (11) are written as

λi
−1 =−λi

+1, (43)
N

∑
i=1

λi
−1 =

N

∑
i=1

λi
+1 = 0, (44)

λi
+1 ≤Cyi,+1, (45)

λi
−1 ≤Cyi,−1. (46)

Let λi = yiλi
+1 where yi = (2yi,+1− 1). Then f (x) = 1

2( f+1(x)− f−1(x)) reduces to the kernel
expansion (24) with b = 1

2(b+1− b−1). For binary labels yi = ±1 the equality and inequality con-
straints (43)-(46) simplify to

N

∑
i=1

λiyi = 0,

0≤ λi ≤C.

Further substitution of λi
+1 = yiλi, λi

−1 = −yiλi, yi,+1 = 1
2(1 + yi) and yi,−1 = 1

2(1− yi) into the
binary GiniSVM dual cost function (42)

Hg =
1
C ∑

i j

λiλ jyiy jQi j− γ
N

∑
i=1

((
1
2

)2

−

(
1
2
−

λi

C

)2
)

which is equivalent to the form Hb (25).

Appendix D. GiniSVM Sequential Minimum Optimization

The following extends the original SMO algorithm (Platt, 1999b) from binary soft-margin SVM to
multi-class GiniSVM.

Let λi∗
k ∈ C be a set of parameters in the constraint space C given by (11). Each iteration a

set of four inference parameters, indexed by class identifiers k1,k2 and data identifiers i1, i2, are
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jointly updated. Without loss of generality the parameters of this working set will be referred to as
λ1∗

1 ,λ1∗
2 ,λ2∗

1 and λ2∗
2 , where the indices correspond to k1,k2 and i1, i2. The aim of an SMO update

is to find a new estimate of these coefficients λ1
1,λ1

2,λ2
1 and λ2

2 such that the new set of coefficients
affect a net decrease in the objective function Hg (19), while still satisfying constraints C (11). This
is ensured by

λ1
1 +λ1

2 = ζ1 = λ1∗
1 +λ1∗

2

λ1
1 +λ2

1 = ξ1 = λ1∗
1 +λ2∗

1

λ1
2 +λ2

2 = ξ2 = λ1∗
2 +λ2∗

2

λ2
2 +λ2

1 = ζ2 = λ2∗
2 +λ2∗

1 .

Only three of the above equalities need to be satisfied as the fourth one is automatically satisfied.
Decomposing the GiniSVM dual in terms of these four coefficients leads to

H =
1
2

Q11(λ1
1)

2 +Q12λ1
1λ2

1 +
1
2

Q22(λ2
1)

2 +λ1
1 ∑

j 6=1,2

Q1 jλ
j
1 +λ2

1 ∑
j 6=1,2

Q2 jλ
j
1

+
1
2

Q11(λ1
2)

2 +Q12λ1
2λ2

2 +
1
2

Q22(λ2
2)

2 +λ1
2 ∑

j 6=1,2

Q1 jλ
j
2 +λ2

2 ∑
j 6=1,2

Q2 jλ
j
2

+ γC(y11−λ1
1/C)2 + γC(y21−λ2

1/C)2 + γC(y12−λ1
2/C)2 + γC(y22−λ2

2/C)2.

Substituting

λ1
2 = ζ1−λ1

1,

λ2
1 = ξ1−λ1

1,

λ2
2 = ξ2−ζ1 +λ1

1

and using the first order condition ∂H/∂λ1
1 = 0, optimal values for λ1∗

1 are found as

λ1∗
1 = λ1

1 +(g12 +g21−g11−g22)/2η (47)

where
glm =−2γylm +∑

j

Ql jλ j
m +2γ/Cλl

m

and
η = Q11 +Q22−2Q12 +4γ/C.

At each step of the update (47) the GiniSVM dual function decreases, and repeated sampling of
the four-point working set over the training set ensures proper convergence to the true minimum,
barring degeneracies in the cost function. At convergence the parameters bk,k = 1, ..,M are obtained
by solving a set of overcomplete equations for data points that lie in the interior of the boundary
constraints λi

k < Cyik. For the interior points denoted by its training index i the following condition
is satisfied

bk− zi +gik = 0

which is over-complete in parameters bk,k = 1, ..,M and zi, i = 1, .., I, where I denotes the total
number of training points within the interior of the constraints.
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