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Abstract

Support Vector Regression (SVR) for discrete data is considered. An alternative formulation of
the representer theorem is derived. This result is based on the newly introduced notion of pseu-
doresidual and the use of subdifferential calculus. The representer theorem is exploited to analyze
the sensitivity properties of ε-insensitive SVR and introduce the notion of approximate degrees of
freedom. The degrees of freedom are shown to play a key role in the evaluation of the optimism,
that is the difference between the expected in-sample error and the expected empirical risk. In this
way, it is possible to define a Cp-like statistic that can be used for tuning the parameters of SVR.
The proposed tuning procedure is tested on a simulated benchmark problem and on a real world
problem (Boston Housing data set).

Keywords: statistical learning, reproducing kernel Hilbert spaces, support vector machines, rep-
resenter theorem, regularization theory

1. Introduction

Although Support Vector Machines are mainly used as classification algorithms, recent years have
witnessed a growing interest for their application to regression problems as well. Among the ad-
vantages of SVR (Support Vector Regression), there are the sparseness property and the robustness
against outliers.

The SVR estimator can be seen as the minimizer of a cost functional given by the sum of an
ε-insensitive loss function and a regularization penalty. As such, it is a particular case of a larger
class of kernel-based estimators that are obtained by applying regularization theory in Reproducing
Kernel Hilbert Spaces (RKHS). Under mild assumptions, the solution of these problems can be
written as a linear combination of kernel functions. This kind of result goes under the name of
representer theorem. The first result of this type was due to Kimeldorf and Wahba (1979) for
squared loss functions, see also Tikhonov and Arsenin (1977) for the application in the context of
inverse problems.
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The representer theorem was further generalized to differentiable loss functions (Cox and O’
Sullivan, 1990; Poggio and Girosi, 1992) and even arbitrary monotonic ones (Schölkopf et al.,
2001). Another important issue is the quantitative characterization of the coefficients ai of the linear
combination. For squared losses it is well known that the coefficients are obtained as the solution
of a system of linear equations, see for example Wahba (1990) and Cucker and Smale (2001). An
explicit characterization of the coefficients as the solution of a system of algebraic equations is still
possible if the loss function is differentiable (Wahba, 1998). This result cannot be applied to ε-
insensitive SVR because the loss function is not differentiable. The usual computational approach
is to reformulate the original variational problem as a constrained minimization one whose dual
Lagrangian formulation boils down to a finite dimensional quadratic programming problem (Vapnik,
1995).

Some recent contributions have approached the nondifferentiability issue by resorting to subd-
ifferential calculus. More precisely, Steinwart (2003) has proven a quantitative representer theorem
that, without using the dual problem, characterizes the coefficients by means of inclusions, when
convex loss functions are considered. Various extensions can be found in De Vito et al. (2004). In
particular, besides providing an alternative simpler proof of the quantitative representer theorem,
De Vito and coworkers allow for the offset space and cover both regression and classification.

The contribution of the present paper is twofold. First of all, quantitative representation results
are worked out for convex loss functions. Then, these results are specialized to SVR in order to
study its sensitivity to data and develop a tuning method for its parameters.

Concerning the quantitative representation of the coefficients ai, the paper provides a simple
derivation of the quantitative representer theorem based on Fourier arguments (see Appendix A).
Another result is a new formulation of the quantitative representer theorem that replaces inclusions
with equations by using the newly introduced notion of pseudoresidual (Theorem 1). This result,
not only gives insight into the relation between data and coefficients, but also puts the basis for
the subsequent analysis of SVR properties. In particular, we give a complete characterization of
the sensitivity of SVR coefficients and predictions with respect to the output data. Past work has
focused on sensitivity with respect to the regularization parameter C, see for example Pontil and
Verri (1998) and Hastie et al. (2004). As a byproduct of the sensitivity analysis, the degrees of
freedom of SVR, defined as the trace of the sensitivity matrix, are found to be equal to the number
of marginal support vectors. This analysis is instrumental to the last issue dealt with in the paper,
that is the tuning of both the ε and C parameters of the SVR.

In the literature, the tuning of SVR has been addressed using various approaches. The interpre-
tation of SVR as a Bayesian estimator provides a conceptually elegant framework for reformulating
parameter tuning as a statistical estimation problem (Gao et al., 2002). The major drawback is the
necessity of assuming the validity of the statistical prior underlying the Bayesian interpretation of
SVR, an assumption that may not be appropriate in all cases.

As a matter of fact, the great majority of tuning approaches aims at the minimization of the
prediction error. A powerful, though computationally expensive solution is to resort to k-fold cross
validation. Alternatively, Chang and Lin (2005) strive for the minimization of an upper bound
of the leave-one-out absolute error. Other authors have discussed the choice of ε observing that,
asymptotically, the optimal ε depends linearly on the measurement error standard deviation (Smola
et al., 1998; Kwok and Tsang, 2003). Finally, Schölkopf et al. (2000) have proposed modified SVR
schemes that ease the tuning of the parameters.
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A tuning method based on the extension of the GCV criterion to SVR has been proposed by
Gunter and Zhu (2007).

In the present paper, a different approach is pursued which is based on the estimation of the
so-called in-sample prediction error (Hastie et al., 2001). See also Cherkassky and Ma (2003) and
Hastie et al. (2003) for a discussion on the merits and difficulties of this and other approaches
to model selection. Herein, it is shown how the optimism, that is the difference between the in-
sample prediction error and the expected empirical risk, depends on the sensitivity of the estimator
(Theorem 3). This result opens the way to the estimation of the in-sample prediction error as a
function of the measurement error variance and the degrees of freedom. This estimator can be seen
as an extension to SVR of the so-called Cp statistic, a well known criterion for linear model order
selection. A major advantage of the Cp statistic is that, differently from many other criteria, no
assumption is made on the correctness of the model.

The paper is organized as follows. After some preliminaries (Section 2), the major results
regarding the representation of the coefficients ai and the sensitivity analysis of SVR are derived in
Section 3, which ends with the definition of the degrees of freedom. The issue of parameter tuning
is treated in Section 4, where the estimation of the in-sample prediction error by means of a suitable
Cp statistic is addressed. Finally, the proposed parameter tuning procedure is illustrated in Section
5 by means of both a simulated problem and a real-world one. Some concluding remarks (Section
6) end the paper.

2. Preliminaries

Consider the problem of estimating the functional relationship existing between an input vector
x∈R

N and the output y∈R given the training set D = {xi,yi} (i = 1,2, ..., `), where the input vectors
xi are all distinct. According to the Support Vector Regression approach, the function f̂ (x) : R

N →R

solving the aforementioned problem belongs to a Reproducing Kernel Hilbert Space (RKHS) H and
minimizes the regularized risk:

f̂ = arg min
f∈H

H[ f ] = arg min
f∈H

(
C

`

∑
i=1

V (yi, f (xi))+
1
2
‖ f‖2

H

)
. (1)

The parameter C controls the relative importance given to the empirical risk and the regulariza-
tion term ‖ f‖2

H , and must be properly tuned in order to obtain good performance. Among the
possible convex loss functions V (quadratic, Laplace, etc) particular attention will be given to the
ε-insensitive one:

V (yi, f (xi)) = Vε(yi − f (xi)) =

{
0, | f (xi)− yi| ≤ ε
| f (xi)− yi|− ε, | f (xi)− yi| > ε. (2)

Such a function is known to produce sparse solutions, meaning that they depend only on a small
number of training examples scattered in the input space. The positive scalar ε measures the extent
of the “dead zone” (that is the interval over which the loss function is zero) and should be either
fixed according to the desired resolution or tuned using an objective criterion.
The usual approach to the numerical computation of f̂ calls for the solution of the dual quadratic
programming problem, see for example Vapnik (1995). If the kernel is positive definite, the repre-
senter theorem states that the solution f̂ can be written as
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f̂ (x) =
`

∑
i=1

aiK(xi,x), (3)

where ai are suitable coefficients. If V is everywhere differentiable with respect to its second argu-
ment, it can be shown that

ai = −C∂2V (yi, f̂ (xi)),

where ∂2 denotes the partial derivative with respect to the second argument. Conversely, if V is a
general measurable function convex with respect to its second argument, it is necessary to resort
to subdifferential calculus (for a quick reference to the basic concepts of subdifferential calculus
the interested reader may usefully refer to Steinwart (2003) and De Vito et al. (2004)). See also
Borwein and Lewis (2000). In particular, Steinwart (2003) and De Vito et al. (2004) (Theorem 2)
have shown that

ai ∈ −C∂2V (yi, f̂ (xi)), (4)

where, now, ∂2 is the subdifferential with respect to the second argument. This result goes under
the name of quantitative representer theorem. Note that (4) is no longer an equation but just an
inclusion.

De Vito et al. (2004) studied also the so called continuous setting, that is measurements are
taken on a continuous set rather than being taken as discrete samples. In Appendix A, we provide
an alternative concise proof of the quantitative representer theorem based on Fourier arguments. The
analysis developed in the next section differs from the representation results by Steinwart (2003) and
De Vito et al. (2004) in that we show that the system of inclusions (4) can be replaced by a set of
equations.

3. Quantitative Representation and Sensitivity Analysis

Hereafter, it is assumed that the loss function is of the type

V (yi, f (xi)) = V ( f (xi)− yi),

where V (·) is a convex function and is twice differentiable everywhere except in a finite number of
points γ j, j = 1, . . . ,N. In the following, D−(γ) and D+(γ) will denote the left and right derivative
of V (·) at γ:

D−(γ) = lim
h→0+

V (γ−h)−V (γ)
−h

,

D+(γ) = lim
h→0+

V (γ+h)−V (γ)
h

,

Letting I = {1,2, . . . , `}, define the pseudoresiduals as

ηi := yi −∑
j∈I
j 6=i

a jK(xi,x j).

The following result holds
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Theorem 1 The coefficients ai, i = 1, . . . , `, that characterize the solution of problem (1), satisfy a
system of algebraic equations

ai = Si(ηi),

where Si(ηi) are monotone nondecreasing Lipschitz continuous functions. Moreover, when

ηi ∈
[
−
(
γ j +CK(xi,xi)D

+(γ j)
)
,−
(
γ j +CK(xi,xi)D

−(γ j)
)]

, j = 1, . . . ,N, (5)

the functions Si(ηi) are affine and given by

Si(ηi) =
ηi + γ j

K(xi,xi)
.

Proof. By the definition of pseudoresidual,

f̂ (xi)− yi = aiK(xi,xi)−ηi. (6)

Then,

ai =
ηi + f̂ (xi)− yi

K(xi,xi)
.

Now, there are two cases depending on whether V (·) is twice differentiable at γ := f̂ (xi)−yi or not.
When γ 6= γ j, j = 1, . . . ,N, V (γ) is twice differentiable and its subdifferential is single-valued so that
(4) yields

ai = −CV ′( f̂ (xi)− yi) = −CV ′(aiK(xi,xi)−ηi). (7)

Now, the Implicit Function Theorem can be used to prove that, locally, ai is a monotone nonde-
creasing Lipschitz continuous function of ηi. In fact, by deriving with respect to ηi,

∂ai

∂ηi
=

CV ′′(aiK(xi,xi)−ηi)

1+CK(xi,xi)V ′′(aiK(xi,xi)−ηi)
.

The denominator is always different from zero because, by convexity, V ′′ ≥ 0 whenever it exists.
Therefore, locally, ai is a differentiable function of ηi:

ai = S(ηi).

The function S(ηi) is monotone nondecreasing and has bounded derivative because

0 ≤ ∂ai

∂ηi
<

1
K(xi,xi)

. (8)

Now, let us consider the second case. When γ is fixed as γ = γ j for some j, V (·) is not twice
differentiable at γ. Then, from (6),

ai = Si(ηi) =
γ j +ηi

K(xi,xi)
, (9)

so that ai is an affine function of ηi in the interval
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I j := [ηL
j ,η

R
j ],

where

ηL
j := −

(
γ j +CK(xi,xi)D

+(γ j)
)
,

ηR
j := −

(
γ j +CK(xi,xi)D

−(γ j)
)
.

On the other hand, recalling the properties of the subdifferential of a convex function,

ai ∈
[
−CD+(γ j),−CD−(γ j)

]
. (10)

Hence, (5) follows from (9) and (10). Finally, since

∂ai

∂ηi
=

1
K(xi,xi)

> 0,

the functions Si(ηi) are locally monotone nondecreasing also in the second case. Combining this last
inequality with the bound (8) that holds in differentiability points, we conclude that the derivative
of Si(ηi) is bounded everywhere, possibly except for discontinuity points. Then, in order to prove
Lipschitz continuity it suffices to show that Si(ηi) is continuous.

We now conclude the proof showing that the set of discontinuity points is actually empty. In
this respect, the only points that must be analyzed are the boundaries of the intervals I j. In fact, in
the interior of I j, Si(ηi) is infinitely differentiable because it is affine, while, outside, it has the same
regularity of V ′(·). Hence, it suffices to prove continuity at the left boundary ηL

j of I j. Consider (9)
and take the limit from the right:

lim
ηi→(ηL

j )
+

Si(ηi)

∣∣∣∣
ηi∈I j

= lim
ηi→(ηL

j )
+

γ j +ηi

K(xi,xi)
= −CD+(γ j).

Now, observe that, if ai tends to −CD+(γ j) from below, then ηi tends to ηL
j from the left. Indeed,

taking the limit in (7) for ai →−CD+(γ j) from below, we obtain that f̂ (xi)−yi → γ j from the right
(recall that V ′(·) is nondecreasing). In turn,

lim
ai→(−CD+(γ j))

−
ηi = lim

ai→(−CD+(γ j))
−

(
yi − f̂ (xi)+aiK(xi,xi)

)

= −γ j −CD+(γ j)K(xi,xi) = ηL
j

from the left. This proves the continuity of Si(ηi) at the left boundary ηL
j of I j.

Hereafter, it will be assumed that V = Vε is the so-called ε-insensitive function. Hence, Vε is
not differentiable only at γ1 = −ε and γ2 = +ε. The subdifferential of the loss function has a rather
simple structure:
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C∂Vε( f̂ (xi)− yi) =





{−C} f̂ (xi)− yi < −ε,
[−C,0] f̂ (xi)− yi = −ε,
{0} −ε < f̂ (xi)− yi < ε,
[0,C] f̂ (xi)− yi = ε,
{C} f̂ (xi)− yi > ε.

For the subsequent derivation it is useful to define the following sets:

Iin = {i ∈ I : | f̂ (xi)− yi| < ε},
I+
C = {i ∈ I : f̂ (xi)− yi > ε},

I−C = {i ∈ I : f̂ (xi)− yi < −ε},
I+
M = {i ∈ I : f̂ (xi)− yi = ε},

I−M = {i ∈ I : f̂ (xi)− yi = −ε},
Iout = I+

C ∪ I−C IM = I+
M ∪ I−M.

Note that the set Iin identifies the data pairs {xi,yi} that belong to the so-called ε-tube, whereas Iout

identifies the data outside the tube. The indices belonging to IM correspond to data pairs lying on
the boundary of the ε-tube, also called marginal support vectors. The union of Iout and IM identifies
the so-called support vectors.
In view of Theorem 1, the next corollary follows.

Corollary 1 For the ε-insensitive loss function,

ai = Si(ηi) =





−C ηi ≤−(ε+CK(xi,xi)),
ηi+ε

K(xi,xi)
−(ε+CK(xi,xi)) < ηi < −ε,

0 −ε ≤ ηi ≤ ε,
ηi−ε

K(xi,xi)
ε < ηi < (ε+CK(xi,xi)),

C ηi ≥ (ε+CK(xi,xi)).

Moreover,

• If i ∈ Iin, |ηi| ≤ ε.

• If i ∈ Iout , |ηi| ≥ ε+CK(xi,xi).

• If i ∈ IM, ε ≤ |ηi| ≤ ε+CK(xi,xi).

Corollary 1, which is illustrated in Fig. 1, is now used to evaluate the sensitivity of SVR with respect
to the data.

Let m = #IM denote the number of marginal vectors. We can assume without loss of generality
that the indices I are ordered such that IM = {1, . . . ,m}, IM̄ := Iout ∪ Iin = {m + 1, . . . , `}. Let the
matrix K := [K(xi,x j)] be partitioned as

K =

(
KMM KMM̄

KM̄M KM̄M̄

)
,
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Figure 1: This function Si gives the dependency of the coefficient ai on the pseudoresidual ηi when
the ε-insensitive loss function is used.

where KMM ∈R
m×m. It is also useful to partition the coefficient vector a = (a1, . . . ,a`)

T as (aT
M,aT

M̄)T

and the data vector y = (y1, . . . ,y`)
T as (yT

M,yT
M̄)T , where aM,yM ∈ R

m. Moreover, define

k(x) =




K(x,x1)
. . .

K(x,x`)


 .

Proposition 1 Assume that ηi 6= ±ε and ηi 6= ±(ε+CK(xi,xi)). Then,

∂ f̂
∂y

(x) = k(x)T
(

K−1
MM 0
0 0

)
.

Proof. First of all, by (3)

∂ f̂
∂yk

(x) =
`

∑
j=1

∂a j

∂yk
K(x,x j).

In view of Corollary 1 and the definition of pseudoresidual ηi,

∂ai

∂yk
= S′i(ηi)


δik −∑

j∈I
j 6=i

∂a j

∂yk
K(xi,x j)


 ,∀i (11)

where
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S′i(ηi) =

{
0 i /∈ IM,

1
K(xi,xi)

i ∈ IM

and δik is Kronecker’s delta. Hence, ∀i /∈ IM, ∀k,

∂ai

∂yk
= 0. (12)

On the other hand, ∀i ∈ IM, ∀k, (11) reads

∂ai

∂yk
=

1
K(xi,xi)


δik − ∑

j∈IM
j 6=i

∂a j

∂yk
K(xi,x j)


 ,

whence

∑
j∈IM

∂a j

∂yk
K(xi,x j) = δik, ∀i ∈ IM,∀k ∈ I. (13)

Equations (12) and (13) can be written as

∂aM̄

∂y
= 0,

KMM
∂aM

∂y
=
(
I 0

)
.

Since the vectors xi are all distinct, KMM is a positive definite matrix and therefore

∂a
∂y

=

(
K−1

MM 0
0 0

)
,

from which the thesis follows.
For linear-in-parameter regression it is usual to define the degrees of freedom of the estimator

as the trace of the so-called “hat matrix,” that maps the vector of output data into the corresponding
predictions. Such degrees of freedom have a number of applications ranging from the computation
of confidence intervals to model validation and model order selection, see for example Hastie and
Tibshirani (1990) and Hastie et al. (2001).

Let ŷ = (ŷ1, . . . , ŷ`)
T , where ŷi = f̂ (xi) denotes the SVR prediction at xi. The following Propo-

sition provides the degrees of freedom of SVR. For an alternative proof, based on the dual problem
formulation, see Gunter and Zhu (2007).

Proposition 2 Let the degrees of freedom of the SVR be defined as

q(D) := tr

(
∂ŷ
∂y

)
.

Then, under the assumption of Proposition 1, q(D) is equal to the number m of marginal support
vectors.
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Proof. If x = xi, the application of Proposition 1 yields

∂ŷ
∂y

=

(
I 0

KM̄MK−1
MM 0

)
, (14)

so that q(D) is just equal to m.

Remark 1 Note that the number m of marginal vectors can be evaluated by looking at the pseu-
doresiduals ηi. More precisely, the i-th observation yi is a marginal vector if

ε ≤ |ηi| ≤ ε+CK(xi,xi).

Remark 2 The assumption on the value ηi made in Proposition 1 rules out the marginal support
vectors whose coefficient ai is either 0 or ±C. This corresponds to experimental data that under a
suitable infinitesimal perturbation leave the boundary of the ε-tube moving either inward (ai = 0) or
outward (ai =±C). For such “transition data” yi, the right and left derivatives ∂ŷi/∂yi are different,
so that the degrees of freedom would not be uniquely defined. Then, the degrees of freedom would
range from the minimum to the maximum value of tr (∂ŷ/∂y). Alternatively, one could assign 1/2
degree of freedom to each transition datum. Given that such pathological situation occurs on a
zero-measure set, they will be removed from the analysis without appreciable consequences.

4. Prediction Error Assessment via Cp Statistic

The goal of any regression method is to achieve good generalization performance. In this section,
an index will be derived that assesses the generalization capabilities of SVR. In turn, this index can
be used to tune the design parameters of the estimator.

In order to proceed, it is assumed that the training data are given by

yi = f 0(xi)+ vi, (15)

where f 0(x) is the “true function” to be estimated and the measurement error vector v = [v1 . . .v`]
T

is such that E[v] = 0, Var[v] = diag(σ2
1 . . .σ2

`). Note that f 0(xi) can be seen as the conditional
expectation of yi given xi ( f 0(xi) = E[yi|xi]) and f 0(x) is also known as regression function.

In the following, the generalization performance will be measured in terms of the sum of squared
errors. A first type of error is the empirical risk

err :=
1
`
‖y− ŷ‖2.

This is not a valid measure of generalization because ŷ depends on y. Usually, the generalization
capabilities of the estimator are measured by the expected risk. Unfortunately, it is not easy to
assess the value of the expected risk without introducing assumptions on the nature of f 0(xi). As an
alternative, one can look for probabilistic upper bounds on the expected risk which may be, in some
cases, too loose for an optimal tuning of the SVR parameters. Hereafter, attention will be focused
on the so-called in-sample prediction error, that is the expected error associated with a new set of
data

ynew
i = f 0(xi)+ vnew

i ,
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where vnew has the same statistics as v but is independent of it. The in-sample prediction error, see
for example Hastie et al. (2001), is defined as

Errin := E

[
1
`
‖ynew − ŷ‖2

]
,

where the xi are fixed and the expected value is taken with respect to both the distribution of yi and
ynew

i . A major motivation for using the in-sample prediction error is that, as shown below, it can be
assessed with good accuracy, without introducing undue assumptions on f 0(x).

Remark 3 Recalling the expression of the cost function (1) it would be tempting to use

ErrV
in := E

[
1
`

`

∑
i=1

V (ynew
i , ŷi)

]

as a measure of generalization performance. In particular, the parameters (C,ε) would be tuned so
as to minimize ErrV

in. However, it is immediate to see that ErrV
in = 0 for sufficiently large ε so that a

joint tuning of the two parameters is not possible. Conversely, as observed by Hastie et al. (2001),
the in-sample prediction error proves useful for model comparison and selection because, although
it underestimates the expected risk, in this context the relative size of the error is what matters,
see also Efron (1986). Note also that the use of SVR is not necessarily in contrast with square
loss minimization, insofar sparsity of the solution is an important feature. On these premises, in
the present paper the minimization of the quadratic in-sample prediction error Errin is pursued. A
similar choice has been made by Gunter and Zhu (2007) who derive a quadratic-type GCV criterion
for SVR.

The empirical and the in-sample prediction error are linked as stated in the following proposition,
see for example Hastie et al. (2001). Note that the expectations are taken over the training set.

Proposition 3 Define the ‘optimism’ as

op :=
2
`

E[ŷT v].

Then,

Errin = E[err]+op.

The index Errin can be approximated by

Êrrin = err + ôp,

where ôp is an estimate of op. If ŷ is a linear function of y, and σ2
i = σ2, ∀i, then the optimism can

be expressed as

op =
2qσ2

`
(16)

(note that in the linear case the degrees of freedom q do not depend on the training data y). In this
linear case, Êrrin is better known as Cp statistic
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Cp = err +
2qσ2

`
. (17)

The purpose of the present section is to extend the Cp statistic to Support Vector Regression. The
following theorem highlights the relationship between the optimism and the sensitivities ∂hi/∂yi of
a generic estimator ŷ = h(y). Let us define y0 = [ f 0(x1) . . . f 0(x`)]

T .

Theorem 2 Assume that

(i) eq. (15) holds,

(ii) the errors vi are independent of each other,

(iii) the variances σ2
i = Var[vi] are finite,

(iv) the estimator h(y) is such that for i = 1, . . . , `

lim
|yi|→∞

|hi(y)|
|yi|

= 0.

Then,

op =
2
`

`

∑
i=1

σ2
i

Z

R`

∂hi

∂yi
(y)

`

∏
j 6=i

p j(v j)φi(vi)dv,

where

φi(vi) =
1

σ2
i

Z +∞

vi

spi(s)ds,

and pi(vi) denotes the probability density function of vi.
Moreover, if the errors vi are Gaussian,

op =
2
`

`

∑
i=1

σ2
i E

[
∂hi

∂yi
(y)

]
. (18)

Proof. By definition,

op =
2
`

E[ŷT v] =
2
`

`

∑
i=1

E[hi(y)vi]

=
2
`

`

∑
i=1

Z

R`−1

`

∏
j 6=i

p j(v j)

(
Z

R

hi(y
0 + v)vi pi(vi)dvi

)
dv[−i],

where

dv[−i] =
`

∏
j 6=i

dv j.
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Integration by parts of the inner integral yields

Z

R

hi(y
0 + v)vi pi(vi)dvi = σ2

i

(
Z

R

∂hi

∂vi
(y0 + v)φi(vi)dvi − [hi(y

0 + v)φi(vi)]|+∞
−∞

)
.

Now, we can show that the last term on the right hand side is zero. In fact, for positive vi we have

φi(vi) =
1

σ2
i

Z +∞

vi

spi(s)ds =
1

σ2
i

Z +∞

vi

s2 pi(s)
s

ds ≤ 1

σ2
i vi

Z +∞

vi

s2 pi(s)ds =
1
vi

.

For negative vi, observing that
R +∞

vi
spi(s)ds = −R vi

−∞ spi(s)ds (recall that E[vi] = 0), a similar argu-
ment yields |φi(vi)| ≤ 1

|vi| . In conclusions, we have that |φi(vi)| ≤ 1
|vi| . Now, the sublinear growth of

the estimator (iv) gives

lim
|vi|→∞

|hi(y
0 + v)φi(vi)| ≤ lim

|vi|→∞

|hi(y0 + v)|
|vi|

= 0.

Now, we have

∂hi

∂vi
(y0 + v) =

∂hi

∂yi
(y0 + v),

so that

Z

R

hi(y
0 + v)vi pi(vi)dvi = σ2

i

Z

R

∂hi

∂yi
(y0 + v)φi(vi)dvi.

Then,

op =
2
`

`

∑
i=1

σ2
i

Z

R`−1

`

∏
j 6=i

p j(v j)

(
Z

R

∂hi

∂yi
(y0 + v)φi(vi)dvi

)
dv[−i]

=
2
`

`

∑
i=1

σ2
i

Z

R`

∂hi

∂yi
(y)

`

∏
j 6=i

p j(v j)φi(vi)dv.

Finally, if the errors vi are Gaussian,

φi(vi) =
1

σ2
i

Z +∞

vi

s√
2πσi

e
− s2

2σ2
i ds = − 1√

2πσi
e
− s2

2σ2
i

∣∣∣∣
+∞

vi

= pi(vi).

Therefore,

op =
2
`

`

∑
i=1

σ2
i

Z

R`

∂hi

∂yi
(y)

`

∏
j 6=i

p j(v j)φi(vi)dv =
2
`

`

∑
i=1

σ2
i E

[
∂hi

∂yi
(y)

]

thus proving the thesis.

Remark 4 Although linear estimators do not fulfill assumption (iv), the thesis still holds. In fact,
recalling that for a linear estimator the degrees of freedom do not depend on y, expression (16) is
eventually recovered.
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Note that (18) was already known in the context of Stein’s unbiased risk estimators (Stein, 1981).
The next theorem derives a simple expression for the optimism of the SVR estimator in a somehow
ideal case (see assumption (v) below).

Theorem 3 Assume that

(i) eq. (15) holds,

(ii) the errors vi are independent of each other,

(iii) the variances σ2
i = Var[vi] are finite,

(iv) C < +∞,

(v) the set IM of the marginal vectors does not depend on v.

Then, the optimism of the SVR is

opSV R =
2
` ∑

i∈IM

σ2
i .

Proof. The proof is based on Theorem 2, whose assumptions (i)-(iii) are obviously satisfied. Con-
cerning assumption (iv), consider a vector y and fix all its entries but the i-th one yi. Then, there
exists κi > 0 such that i ∈ Iout whenever |yi| > κi. Hence, for |yi| large enough, |hi(y)| is a finite
constant so that assumption (iv) of Theorem 2 is satisfied.

Now, observe that, for SVR, the derivatives ∂hi
∂yi

are all equal to either 0 or 1, see (14). In

particular, ∂hi
∂yi

is different from zero if and only if i ∈ IM. Then, in view of assumption (v),

opSV R =
2
` ∑

i∈IM

σ2
i

Z

R`
∏
j∈I
j 6=i

p j(v j)φi(vi)dv =
2
` ∑

i∈IM

σ2
i

Z

R

φi(vi)dvi

The thesis is proven by showing that the last integral equals one:

Z

R

φi(vi)dvi =
1

σ2
i

Z +∞

−∞

Z +∞

vi

spi(s)dsdvi =
1

σ2
i

Z +∞

−∞

Z +∞

1
v2

i zpi(zvi)dzdvi

=
1

σ2
i

Z +∞

1
z

Z +∞

−∞
v2

i pi(zvi)dvidz =
1

σ2
i

Z +∞

1

1
z2

Z +∞

−∞
w2 pi(w)dwdz

=
Z +∞

1

dz
z2 = 1.

In practice, it is difficult to guarantee that assumption (v) is satisfied and, in general, it will not.
Nevertheless, if the noise variances σ2

i are not too large, the result of Theorem 3 could still be used
to approximate the true optimism, as shown in the simulated experiment of Section 5.3. For the
sake of simplicity, let us consider the homoskedastic case σ2

i = σ2, ∀i and define:

ôpSV R =
2mσ2

`
.
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This approximated optimism can be used to assess the in-sample error:

CSV R
p = err + ôpSV R. (19)

This last expression is in very close analogy with the linear case (17), provided that the model order
q is replaced by the number m of marginal vectors. Formula (19) provides a further justification for
the definition of approximate degrees of freedom given in Proposition 2.
Note that, in the Gaussian case, from Theorem 2 it follows that

opSV R =
2σ2

`

`

∑
i=1

E

[
∂hi

∂yi
(y)

]
=

2σ2

`
E [#IM] .

Therefore, ôpSV R is an unbiased estimate of the true optimism opSV R.

5. Numerical Examples

In this section the use of the Cp statistic for tuning the SVR parameters (ε,C) is illustrated by means
of two numerical examples. Finally, a simulated experiment is used to assess the precision of the
optimism estimate ôpSV R as a function of the noise variance. The SVR solution was obtained by a
Finite Newton algorithm implemented in MatLab.

5.1 Simulated Data

The true function to be reconstructed is

f 0(x) = esin(8x), 0 ≤ x ≤ 1.

The training data (xi,yi), i = 1, . . . , `, are generated as

yi = y0
i + vi,

y0
i = f 0(xi),

where the errors vi ∼ N(0,σ2) , σ2 = 0.09, are independently distributed and

xi =
i−1
`−1

,

with ` = 64. In order to obtain a statistical assessment of the tuning procedure, n = 100 independent
data sets were generated according to the above model. A cubic B-spline kernel was adopted:

K(x,x′) = B3(x− x′).

The tuning of the parameters (ε,C) was carried out on a 30×30 equally spaced rectangular grid in
the region

0.05 ≤ ε ≤ 0.5,

1 ≤ log10C ≤ 3.
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Figure 2: Estimated Errin for the numerical example (Panels A and B) and average Cp over the 100
data sets (Panels C and D).

The choice of a logarithmically spaced C is in agreement with a common practice in Gaussian
Processes and Tikhonov regularization methods, see for example De Nicolao et al. (1997) and De
Nicolao et al. (2000).
First of all, the in-sample error Errin(ε,C) was computed as

Errin(ε,C) ' σ2 +
1
n`

n

∑
i=1

‖ŷ(i)(ε,C)− y0‖2,

where ŷ(i)(ε,C) is the estimate of the vector y0 obtained from the i-th data set. The function
Errin(ε,C) is shown in Fig. 2. The optimal pair (ε∗,C∗) minimizing Errin(ε,C) is given by
ε∗ = 0.22069, C∗ = 30.392, yielding Errin(ε∗,C∗) = 0.10413.
In order to asses the average performance of the Cp statistic as an estimate of Errin, the SVR estimate
was calculated for each pair (ε,C) on the grid and for all the 100 data sets. In Fig. 2C the average
Cp over the data sets is plotted against C and ε. The corresponding contour plot is shown in Fig.
2D. The minimal C′

p = 0.10220 is obtained in correspondence with ε′ = 0.22069, C′ = 25.929.
From Fig. 2, it appears that, on the average, Cp provides a good estimate of Errin. Moreover,
Errin(ε′,C′) = 0.10436 is reasonably close to the optimal Errin(ε∗,C∗) = 0.10413.
In Fig. 3, Cp, Errin and E[err] are plotted against C for ε = 0.25. The expected empirical risk E[err]
was estimated by averaging over the 100 data sets. Then, the optimism op was estimated as the
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Figure 3: Decomposition of Errin into the sum of E[err] and op as a function of C for ε = 0.25.
Note that Errin is well approximated by Cp.

difference between the estimates of Errin and E[err]. Also from this plot it is seen that Cp provides
an accurate approximation of Errin.
The real goal of a tuning procedure is obtaining a faithful reconstruction of the true function. A
quantitative measure of the predictive performance on a single data set is given by the RMSE (Root
Mean Square Error) defined as:

RMSE(i)(ε,C) =
1√
n
‖ŷ(i)(ε,C)− y0‖.

For each of the 100 data sets, the function f 0(x) was estimated using the pair (ε(i),C(i)) minimizing
the Cp statistic for the i-th data set. The average of such estimated functions is plotted in Fig. 4A
where also the true function f 0(x) is reported for comparison. In order to visualize the variability
of the estimates, pointwise ±2 standard deviations bands are plotted.
For the i-th data set the best possible tuning is

(ε̄(i),C̄(i)) = argmin
ε,C

RMSE(i)(ε,C).
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Figure 4: Average of the estimated functions over the 100 data sets: average (thick continuous) and
true function (dashed). The results have been obtained by SVR with Cp tuning (Panel A)
and SVR with best possible tuning (Panel B). In both cases, the ± 2 standard deviation
bands are reported (dotted black).

Obviously, this cannot be used in practice because y0 is unknown. Nevertheless, this ideal tuning is
interesting because it gives a lower bound on the best achievable performance.

For each of the 100 data sets, the function f 0(x) was estimated using the ideal tuning (ε(i),C(i)).
The average of such estimated functions with pointwise ±2 SD bands is plotted in Fig. 4B. The
comparison with Panel A of the same figure demonstrates that the predictive performance of the Cp

tuning scheme is very close to the best achievable performance.

In Fig. 5 the histogram of RMSE (i)(ε(i),C(i)) (Panel A) is compared with the histogram of the
best achievable errors RMSE (i)(ε̄(i),C̄(i)) (Panel B). Finally, the application of the Cp tuning scheme
is illustrated on the first data set. The value of Cp as a function of ε and C is reported in Fig. 6 A-B.

On the considered grid, the Cp statistic is minimized by ε(1) ' 0.28, C(1) ' 30.4, yielding Cp(ε(1),
C(1)) ' 0.103418. For the sake of comparison, in Fig. 6 C-D the plot of RMSE (1)(ε,C) is given.
The best possible tuning for data set #1 is ε̄(1) ' 0.28, C̄(1) ' 25.93, yielding RMSE(1)(ε̄(1),C̄(1)) '
0.095357. Using the Cp tuning scheme, a very similar value is obtained: RMSE (1)(ε(1),C(1)) '
0.095727.

The SVR estimate corresponding to (ε(1),C(1)) is plotted in Fig. 7 together with the true func-
tion f 0(x). The SVR estimate corresponding to the best possible tuning (ε̄(1),C̄(1)) is plotted for
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Figure 5: Distribution of the RMSE over the 100 data sets using Cp tuning (Panel A) and the best
possible tuning (Panel B).

comparison. Taking into account the signal-to-noise ratio of the data it can be concluded that the Cp

tuning scheme performs more than satisfactorily.

5.2 Boston Housing Data

To show the effectiveness on real-world data of the tuning procedure based on the Cp statistic, we
applied it to the Boston Housing data set from the UCI Repository. The data set consists of 516
instances with 12 input variables (including a binary one) and an output variable representing the
median housing values in suburbs of Boston.

The input variables were shifted and scaled to the unit hypercube, while the output variable was
first shifted to have zero mean and then scaled to fit into the interval [−1,1]. More precisely, letting
m j = mini xi, j and M j = maxi xi, j, the inputs xi, j were transformed into (xi, j −m j) /(M j −m j), while
the outputs yi were transformed into (yi − ȳ) / maxi |yi − ȳ|, where ȳ denotes the sample mean.

The data set was randomly split into two parts: 450 instances to be used for training and 56 for
testing. Pairs (ε,C) over a 20×20 uniform grid were considered with

0 ≤ ε ≤ 0.3, 0 ≤ log10C ≤ 4.

For each pair (ε,C), the SVR fit solving (1)-(2) was evaluated using a Gaussian RBF kernel
with fixed bandwidth (2σ2

kernel = 3.9). An estimate of the noise variance σ2 was obtained from
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Figure 6: Data set #1: the statistic Cp as a function of ε and C (Panels A and B) and the RMSE
between the estimate and the true function (Panels C and D).

the residuals generated from a low-bias linear regression. For details on this procedure, see for
example Hastie and Tibshirani (1990), page 48, and Loader (1999), page 160. In particular, we
used regularized least squares with polynomial kernel of degree 2. The noise variance of the data
set was estimated as σ̂2 = 0.01 using the estimator

σ̂2 =
SSRL

`−2ν1 +ν2
,

where SSRL is the sum of squared residuals using the linear estimator, ν1 = tr(H), ν2 = tr(HT H),
and H is the “hat matrix” of the linear estimator (that is the matrix such that ŷ = Hy). Then, the
following quantities were evaluated:
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Figure 7: Data set #1: True function (continuous), data (crosses), SVR estimate with Cp tuning
(thick continuous) and SVR with best possible tuning (dash-dot).

err =
1
`

`

∑
i=1

(
yi − f̂ (xi)

)2
,

ôpSV R =
2σ̂2m

`
,

CSV R
p = err + ôpSV R,

GCV SV R =
`2err

(`−m)2 .

The score GCV SV R was recently proposed as a tuning criterion by Gunter and Zhu (2007).
These quantities are plotted in Fig. 8 and Fig. 9 together with the 5-fold cross-validation score
whose computation is much heavier and the (quadratic) test error. In the contour plots of Fig. 9, the
position of the minimizers are also showed. It can be seen that Cp and GCV pick the same value
of ε and C. On the considered grid, the minimum value of the test error is 0.01628. The model
selected by Cp and GCV achieves a test error equal to 0.01670, while the model selected by 5-fold
cross-validation achieves 0.01742.
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ôpSVR

log10C

0
0.1

0.2
0

2
4

0.015
0.02

0.025
0.03

ε

CSVRp

log10C 0
0.1

0.2
0

2
4

0.015
0.02

0.025
0.03

0.035

ε

5-CV

log10C

0
0.1

0.2
0

2
4

0.01

0.02

0.03

ε

GCV SVR

log10C 0
0.1

0.2
0

2
4

0.02
0.025

0.03
0.035

ε

Test Error

log10C

Figure 8: Boston Housing data: empirical risk (err), optimism estimate (ôpSV R), Cp statistic (CSV R
p ),

5-fold cross-validation score (5-CV ), Generalized Cross Validation score (GCV SV R), and
mean square error on test data (Test Error).
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Figure 9: Boston Housing data: contour plots of empirical risk (err), optimism estimate (ôpSV R),
Cp statistic (CSV R

p ), 5-fold cross-validation score (5-CV ), Generalized Cross Validation
score (GCV SV R), and mean square error on test data (Test Error). In the plots of CSV R

p ,
5-CV and GCV SV R the minimizer position is marked. In the test error plot, the marks of
all minimizers are reported.
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Figure 10: Simulated experiment: boxplots of the estimated optimism ôpSV R against different val-
ues of the noise standard deviation.

5.3 Dependence of ôpSV R on the Noise Variance

In order to investigate the dependence of the variability of ôpSV R on the noise variance, we ran a
simulated experiment. Specifically, we considered 41 standard deviations in the interval [0,1]:

σ j =
j−1
40

, j = 1, . . . ,41.

Next, for each σ j, 100 independent data sets were generated according to the model

yi = sinc(3xi)+ vi, vi ∼ N(0,σ2
j),

xi =
2i−101

99
, i = 1, . . . ,100.

For each data set, the SVR was computed using the kernel

K(x,x′) = e−
|x−x′|

4

with the values of C and ε fixed to C = 100, ε = 0.1. For each data set, we evaluated ôpSV R =
2σ̂2m/`. In Fig. 10 the boxplots of ôpSV R are reported against the considered noise standard devi-
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ations (the “+” marks denote the outliers). As expected, both the mean and the variance of ôpSV R

increase with the noise variance.
Since, under Gaussian noise, ôpSV R is an unbiased estimator, the true optimism opSV R, which is not
reported in the plot, coincides with the expected value of ôpSV R. From Fig. 10 it appears that there
is a whole range of signal-to-noise ratios such that ôpSV R estimates opSV R with good precision.

6. Concluding Remarks

In this paper, a novel formulation of the quantitative representer theorem is derived for convex
loss functions. More precisely, using the newly introduced notion of pseudoresidual the inclusions
appearing in the previous formulations are replaced by equations. This result is exploited in order to
study the sensitivity of both the SVR coefficients and predictions with respect to the data. In view
of the sensitivity analysis, the degrees of freedom of SVR are defined as the number of marginal
support vectors. Such a definition is further justified by the role that the degrees of freedom play
in the assessment of the optimism, that is the difference between the in-sample prediction error and
the expected empirical risk. A Cp statistic for SVR is defined and proposed as a criterion for tuning
both the parameters ε and C. The performance observed on both a simulated benchmark and a real
world problem appears more than satisfactory. Among the future developments one may mention
the extension of the results of the present paper to kernel based classifiers.
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Appendix A.

In this appendix, a Fourier series demonstration of the representer theorem is provided. The ratio-
nale is inspired by Evgeniou et al. (2000) who prove the representer theorem for differentiable loss
functions. Let us assume that the function K(x, t) is such that the bilinear formula holds:

K(x, t) =
+∞

∑
n=1

λnφn(x)φn(t),

where ∀n, λn > 0, and φn denote the n-th eigenvalue and eigenfunction of the operator

T f = ( f ,K(x, t))L2 .

Then, K is positive definite and a generic function f ∈ L 2 admits the Fourier expansion

f (x) =
+∞

∑
n=1

cnφn(x). (20)

Now, we can build the RKHS H taking all the functions f such that ∑+∞
n=1

c2
n

λn
is finite and defining

the inner product between the two functions u,v ∈ H , u = ∑+∞
n=1 anφn, v = ∑+∞

n=1 bnφn as
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(u,v)H =
+∞

∑
n=1

anbn

λn
,

so that the norm is

‖ f‖2
H =

+∞

∑
n=1

c2
n

λn
.

It is easy to check that the reproducing property holds

f (x) = ( f (t),K(x, t))H ,

so that K(x,y) is indeed the reproducing kernel of H . In particular, the reproducing property implies
that the series (20) is, in fact, pointwise convergent.
In view of this, solving (1) is equivalent to minimizing the following functional with respect to the
coefficient sequence:

F[{cn}] = C
`

∑
i=1

V

(
yi,

+∞

∑
n=1

cnφn(xi)

)
+

1
2

+∞

∑
n=1

c2
n

λn
.

Noting that the sequence {cn} belongs to `2(R), we can see that the functional F to be minimized
maps a subset of `2 into R. From the necessary condition for optimality, we have 0 ∈ ∂F , where
∂F denotes the subdifferential. Exploiting the linearity of the subdifferential with respect to sums
of convex functions and the fact that the second term is Gâteaux-differentiable, we obtain:

∂F =

{
C

`

∑
i=1

∂V

(
yi,

+∞

∑
n=1

cnφn(xi)

)
+

cn

λn

}
.

Now, let us recall the following result (see Prop. 5.7 of Ekeland and Temam (1974), where it is
given for the more general case of topological vector spaces):

Proposition 4 Let H , H ′ two Banach spaces, V a convex function from H into R∪{+∞}, and J a
continuous linear operator from H ′ into H . Assume that there is v′0 ∈ H ′ such that V is continuous
and finite at Jv′0. Then, for all v′ ∈ H ′

(∂V ◦ J)(v′) = J∗(∂V )(Jv′),

where J∗ : H → H ′ is the adjoint defined by

〈
v′,J∗v

〉
H ′ =

〈
Jv′,v

〉
H

for all v ∈ H and v′ ∈ H ′, where < ·, · >H stands for the duality pairing in the Banach space H .

Introducing the linear operators Ji : `2 → R

Ji({cn}) =
+∞

∑
n=1

cnφn(xi),
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we can write

∂V

(
yi,

+∞

∑
n=1

cnφn(xi)

)
= ∂V (yi,Ji({cn})) .

Notice that the adjoint J∗i : R → `2(R) is given by J∗i (t) = {tφn(xi)}. In fact,

〈{cn},J∗i (t)〉`2 =
+∞

∑
n=1

cn(J
∗
i (t))n = t

+∞

∑
n=1

cnφn(xi) = 〈Ji({cn}), t〉R .

In view of Proposition 4,

∂F =

{
C

`

∑
i=1

φn(xi)∂2V

(
yi,

+∞

∑
n=1

cnφn(xi)

)
+

cn

λn

}

so that the condition 0 ∈ ∂F implies that the optimal sequence {ĉn} must satisfy

ĉn ∈ −
`

∑
i=1

C∂2V
(
yi, f̂ (xi)

)
λnφn(xi).

It is then possible to write

ĉn =
`

∑
i=1

aiλnφn(xi),

where

ai ∈ −C∂2V (yi, f̂ (xi)).

Finally, exploiting the bilinear formula for the reproducing kernel, we obtain

f̂ (x) =
+∞

∑
n=1

ĉnφn(x) =
`

∑
i=1

ai

+∞

∑
n=1

λnφn(xi)φn(x) =
`

∑
i=1

aiK(xi,x).
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