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Abstract

Marchand and Shawe-Taylor (2002) have proposed a loss bound for the set covering machine that
has the property to depend on the observed fraction of positive examples and on what the clas-
sifier achieves on the positive training examples. We show that this loss bound is incorrect. We
then propose a loss bound, valid for any sample-compression learning algorithm (including the set
covering machine), that depends on the observed fraction of positive examples and on what the
classifier achieves on them. We also compare numerically the loss bound proposed in this paper
with the incorrect bound, the original SCM bound and a recently proposed loss bound of Marchand
and Sokolova (2005) (which does not depend on the observed fraction of positive examples) and
show that the latter loss bounds can be substantially larger than the new bound in the presence of
imbalanced misclassifications.

Keywords: set covering machines, sample-compression, loss bounds

1. Introduction

One of the key objectives of learning theory is to identify classes of functions and associated learn-
ing algorithms that deliver hypotheses with good guarantees of test set performance for a range
of practical applications. Support vector machines (SVMs) have achieved this objective for prob-
lems for which classifiers with large margins can be identified. An alternative guiding principle for
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the selection of classifiers with guarantees of good generalization is to require some type of parsi-
mony in the form of the functions. Typically seeking parsimonious solutions reduces to an NP-hard
optimization, but an algorithm that delivers a good approximation to the optimal solution using a
greedy approach is the so-called set covering machine (SCM). This approach for producing very
sparse classifiers having good generalization was proposed by Marchand and Shawe-Taylor (2001).

A generalization error bound is an upper bound on the expected test set performance that holds
with high probability over the (random) choice of the training set. There are three ways in which
such a bound can assist a user of adaptive systems technology. Firstly, the existence of such a
bound justifying the form of a learning algorithm gives confidence in its reliability. This is the
primary role of SVM bounds in most applications. The second is to guide model selection through
setting regularization and hyperparameters to optimize the bound. The third is to give to users as a
measure of performance. Experiments with recent SVM bounds have begun to make progress with
the second goal, but it is fair to say that the third goal is still to be realized.

The situation with SCM bounds is that they are typically tighter and more reliable than those
derived for SVMs. The classifier output by the SCM is described by a small subset of the training
data called the compression set. By adapting the pioneering work of Littlestone and Warmuth (1986)
on sample-compression schemes, Marchand and Shawe-Taylor (2001) have been able to obtain a
loss bound that depends on the size (i.e., the number of examples) of the compression set of the SCM
classifier. More recently, Marchand and Sokolova (2005) have been able to obtain a tighter bound,
which applies to any sample-compression learning algorithm (including the SCM), by making use
of sample-compression-dependent sets of messages. None of these loss bounds, however, depend
on the observed fraction of positive examples in the training set and on the fraction of positive
examples used for the compression set of the final classifier. Consequently, these loss bounds are not
appropriate for identifying classifiers that perform well under frequently encountered distributions
where the examples of one class are much more abundant than the examples of the other class (the
class imbalance case) or when the loss suffered by misclassifying a positive example differs greatly
from the loss suffered by misclassifying a negative example (the asymmetrical loss case).

To obtain a loss bound that reflects more accurately the performance of classifiers trained on
imbalanced data sets, Marchand and Shawe-Taylor (2002) have proposed a SCM loss bound that
depends on the observed fraction of positive examples in the training set and on the fraction of
positive examples used for the compression set of the final classifier. However, we will show in
Section 3 that this bound is incorrect. We then propose, in Section 4, a loss bound which is valid
for any sample-compression learning algorithm (including the SCM) and that depends on the ob-
served fraction of positive examples and on what the classifier achieves on the positive training
examples. The proof of this new loss bound turns out to be much more involved than all other
sample-compression loss bounds that do not depend on the observed fraction of positive examples
(as in Marchand and Sokolova, 2005). Finally, for the SCM case, we compare numerically the loss
bound of Section 4 with the recently proposed loss bound of Marchand and Sokolova (2005) (which
does not depend on the observed fraction of positive examples) and show that the latter loss bound
can be substantially larger than the former in the presence of imbalanced misclassifications.

The novelty of this paper is that we correct a bound that was found to be wrong, but in doing so,
we derive a more general form that allows any learning algorithm, relying on sample compression
schemes, to be upper bounded. Separately bounding the positive and negative errors also gives rise
to a natural extension—namely asymmetric loss of sample compression risk bounds. In these cases,
we give a higher weight for misclassification of one class over the other, typically because it is far
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less frequent than the dominant class. An example is classification of news articles by topic, where
classification of all documents as not relevant will give good performance if we do not impose a
greater cost on the misclassification of a relevant document.

We begin our discussion with preliminary definitions and terminology that will be used through-
out the remainder of this paper.

2. Preliminary Definitions

Let the input space X be a set of n-dimensional vectors of R
n and let x be a member of X . We define

a feature as an arbitrary Boolean-valued function that maps X onto {0,1}.

Consider any set H = {hi}
|H |
i=1 of Boolean-valued features hi. We will consider learning algo-

rithms that are given any such set H and return a small subset R ⊂H of features. Given that subset
R , and an arbitrary input vector x, the output f (x) of the Set Covering Machine (SCM) is given by
the conjunction

f (x) =
^

i∈R
hi(x) .

The function f contains a conjunction of features hi that individually give outputs hi(x) of 0
or 1 to denote whether the input vector x belongs to class 0 or class 1, respectively. Therefore,
the function f outputs 0 or 1 according to a conjunction of features hi. A positive example will be
referred to as a P -example and a negative example as a N -example. Given a training set S = SP ∪SN
of examples, the set of positive training examples will be denoted by SP and the set of negative
training examples by SN .

Any learning algorithm that constructs a conjunction (such as the one above) can be transformed
into an algorithm constructing a disjunction just by exchanging the role of the positive and negative
examples. Hence, simply by reassigning the set of negative training examples to the set of positive
training examples (i.e., SP ← SN ) and the set of positive training examples to the set of negative
training examples (i.e., SN ← SP ) we can transform the algorithm into one that constructs a dis-
junction. However, for the remainder of the paper we will assume, without loss of generality, that
the SCM always produces a conjunction.

In this paper, we consider the case where H is the set of data-dependent balls.

Definition 1 For each training example xi with label yi ∈ {0,1} and (real-valued) radius ρ, we
define feature hi,ρ to be the following data-dependent ball centered on xi:

hi,ρ(x)
def
= hρ(x,xi) =

{

yi if d(x,xi) < ρ
yi otherwise ,

where yi denotes the Boolean complement of yi and d(x,x′) denotes the distance between x and x′.
Training example xi will be called the ball center of hi,ρ.

To determine the radius ρ of ball hi,ρ, we will use another training example x j, called the ball
border of hi,ρ, such that ρ = d(x j,xi).

Hence, the set R ⊂H of features used by the SCM gives us a set of ball centers and a set of ball
borders. The union of these two sets gives the compression set of the SCM. Following Littlestone
and Warmuth (1986) and Floyd and Warmuth (1995), the compression set is a small subset of the
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training set which identifies a classifier (here a SCM). The function that maps arbitrary compression
sets to classifiers is called the reconstruction function. We refine further these notions in Section 4.

We adopt the PAC model where it is assumed that each example (x,y) is drawn independently at
random according to a fixed (but unknown) distribution. In this paper, we consider the probabilities
of events taken separately over the P -examples and the N -examples. We will therefore denote by
P{a(x,y)

∣

∣(x,y) ∈ P} the probability that predicate a is true on a random draw of an example (x,y),
given that this example is positive. Hence, the error probability of classifier f on P -examples and
on N -examples, that we call respectively the expected P -loss and the expected N -loss, are given
by

erP ( f )
def
= P{ f (x) 6= y

∣

∣(x,y) ∈ P} ,

erN ( f )
def
= P{ f (x) 6= y

∣

∣(x,y) ∈N } .

Similarly, let êrP ( f ,S) denote the number of examples in SP misclassified by f and let êrN ( f ,S))
denote the number of examples in SN misclassified by f . Hence

êrP ( f ,S)
def
= |{(x,y) ∈ SP : f (x) 6= y}| ,

êrN ( f ,S)
def
=

∣

∣{(x,y) ∈ SN : f (x) 6= y}
∣

∣ .

Throughout this paper, the probability of occurrence of a positive example will be denoted by
pP . Similarly, pN will denote the probability of occurrence of a negative example. We will consider
the general case where the loss lP of misclassifying a positive example can differ from the loss lN
of misclassifying a negative example. We will denote by A(S) the classifier returned by the learning
algorithm A trained on a set S of examples. In this case, the expected loss E[l(A(S))] of classifier
A(S) is defined as

E[l(A(S))]
def
= lP · pP · erP [A(S)] + lN · pN · erN [A(S)] . (1)

3. Incorrect Bound

The Theorem 5 of Marchand and Shawe-Taylor (2002) gives the following loss bound for the SCM
with the symmetric loss case of lP = lN = 1.

Given the above definitions, let A be any learning algorithm that builds a SCM with data-
dependent balls with the constraint that the returned function A(S) always correctly classifies every
example in the compression set. Then, with probability 1−δ over all training sets S of m examples,

E[l(A(S))] ≤ 1− exp

{

−
1

m− cp−b− cn− kp− kn

(

lnB+ ln
1
δ0

)}

,

where

δ0
def
=

(

π2

6

)−5

· ((cp +1)(cn +1)(b+1)(kp +1)(kn +1))−2 ·δ ,

B
def
=

(

mp

cp

)(

mp− cp

b

)(

mn

cn

)(

mp− cp−b
kp

)(

mn− cn

kn

)

,
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and where kp and kn are the number of misclassified positive and negative training examples by
classifier A(S). Similarly, cp and cn are the number of positive and negative ball centers contained
in classifier A(S) whereas b denotes the number of ball borders1 in classifier A(S). Finally mp and
mn denote the number of positive and negative examples in training set S.

Let us take the B expression only and look more closely at the number of ways of choosing the
errors on SP and SN :

(

mp− cp−b
kp

)(

mn− cn

kn

)

.

The bound on the expected loss given above will be small only if each factor is small. However, each
factor can be small for a small number of training errors (desirable) or a large number of training
errors (undesirable). In particular, the product of these two factors will be small for a small value of
kn (say, kn = 0) and a large value of kp (say, kp = mp− cp−b). In this case, the denominator of the
bound given above will become

m− cp−b− cn− kp− kn = mn− cn ,

and will be large whenever mn � cn. Consequently, the bound given by Theorem 5 of Marchand
and Shawe-Taylor (2002) will be small for classifiers having a small compression set and making
a large number of errors on SP and a small number of errors on SN . Clearly, this is incorrect as it
implies a classifier with good generalization ability and so exposes an error in the proof. In order to
derive a loss bound where the issue of imbalanced misclassifications can be handled, the errors for
positive and negative examples must be bounded separately.

The error in the proof of Theorem 5 of Marchand and Shawe-Taylor (2002) occurs at the first
equality used in their Equation 3. This equality is tantamount to writing that for any fixed classifier
f :

P

{

S ∈ X : êr( f ,S) = 0

∣

∣

∣

∣

|SP |= mp

}

= (1− erP ( f ))mp(1− erN ( f ))mn×

(

m
mp

)

p
mp

P (1− pP )mn (false) ,

where pP denotes the probability of occurrence of a P -example. However this last equation is false
since the probability on the left hand side is conditioned on the fact the |SP |= mp. Hence, we have
instead

P

{

S ∈ X : êr( f ,S) = 0

∣

∣

∣

∣

|SP |= mp

}

= (1− erP )mp(1− erN )mn .

4. Sample-Compression Loss Bounds for Imbalanced Data

Recall that X denotes the input space. Let X = (X ×{0,1})m be the set of training sets of size m
with inputs from X . We consider any learning algorithm A having the property that, when trained
on a training set S ∈ X , A produces a classifier A(S) which can be identified solely by a subset Λ =
{ΛP ∪ΛN } ⊂ S, called the compression set, and a message string σ that represents some additional
information required to obtain a classifier. Here ΛP represents a subset of positive examples and ΛN

1. As explained in Marchand and Shawe-Taylor (2002), the ball borders are always positive examples.
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a subset of negative examples. More formally, this means that there exists a reconstruction function
Φ that produces a classifier f = Φ(Λ,σ) when given an arbitrary compression set Λ and message
string σ. We can thus consider that the learning algorithm A, trained on S, returns a compression set
Λ(S) and a message string σ(S). The classifier is then given by Φ(Λ(S),σ(S)).

For any training sample S and compression set Λ, consisting of a subset ΛP of positive examples
and a subset ΛN of negative examples, we use the notation Λ(S) = (ΛP (S),ΛN (S)). Any further
partitioning of the compression set Λ can be performed by the message string σ. For example, in
the set covering machine, σ specifies for each point in ΛP , whether it is a ball center or a ball border
(not already used as a center). As explained by Marchand and Shawe-Taylor (2002), this is the only
additional information required to obtain a SCM consistent with the compression set.

We will use dp to denote the number of examples present in ΛP . Similarly, dn will denote the
number of examples present in ΛN . To simplify the notation, we will use the mP and mN vectors
defined as

mP
def
= (m,mp,mn,dp,dn,kp) ,

mN
def
= (m,mp,mn,dp,dn,kn) , (2)

and

mP (S,A(S))
def
=

(

|S|, |SP |, |SN |, |ΛP (S)|, |ΛN (S)|, êrP (A(S),S)
)

, (3)

mN (S,A(S))
def
=

(

|S|, |SP |, |SN |, |ΛP (S)|, |ΛN (S)|, êrN (A(S),S)
)

. (4)

Hence, the predicate mP (S,A(S)) = mP means that |S| = m, |SP | = mp, |SN | = mn, |ΛP (S)| = dp,
|ΛN (S)|= dn, êrP (A(S),S) = kp. We use a similar definition for predicate mN (S,A(S)) = mN . We
will also use BP (mP ) and BN (mN ) defined as

BP (mP )
def
=

(

mp

dp

)(

mn

dn

)(

mp−dp

kp

)

,

BN (mN )
def
=

(

mp

dp

)(

mn

dn

)(

mn−dn

kn

)

.

The proposed loss bound will hold uniformly for all possible messages that can be chosen by
A. It will thus loosen as we increase the set M of possible messages that can be used. To obtain
a smaller loss bound, we will therefore permit M to be dependent on the compression set chosen
by A. In fact, the loss bound will depend on a prior distribution PΛ(σ) of message strings over the
set MΛ of possible messages that can be used with a compression set Λ. We will see that the only
condition that PΛ needs to satisfy is

∑
σ∈MΛ

PΛ(σ)≤ 1 .

Consider, for example, the case of a SCM conjunction of balls. Given a compression set Λ =
(ΛP ,ΛN ) of size (|ΛP |, |ΛN |) = (dp,dn), recall that each example in ΛN is a ball center whereas
each example in ΛP can either be a ball border or a ball center. Hence, to specify a classifier given
Λ, we only need to specify the examples in ΛP that are ball borders.2 This specification can be used

2. For a SCM making no error with Λ, we can pair each center with its border in the following way. For each negative
center, we choose the closest border. For each positive center, we choose the furthest border.
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with a message string containing two parts. The first part specifies the number b ∈ {0, . . . ,dp} of
ball borders in ΛP . The second part specifies which subset, among the set of

(dp
b

)

possible subsets, is
used for the set of ball borders. Consequently, if b(σ) denotes the number of ball borders specified
by message string σ, we can choose

PΛ(σ) = ζ(b(σ)) ·

(

dp

b(σ)

)−1

(SCM case) , (5)

where, for any non-negative integer b, we define

ζ(b)
def
=

6
π2 (b+1)−2 . (6)

Indeed, in this case, we clearly satisfy

∑
σ∈MΛ

PΛ(σ) =
dp

∑
b=0

ζ(b) ∑
σ:b(σ)=b

(

dp

b(σ)

)−1

≤ 1 .

The proposed loss bound will make use of the following functions:

εP (mP ,β)
def
= 1− exp

(

−
1

mp−dp− kp

[

ln(BP (mP ))+ ln
1
β

])

, (7)

εN (mN ,β)
def
= 1− exp

(

−
1

mn−dn− kn

[

ln
(

BN (mN )
)

+ ln
1
β

])

. (8)

Theorem 2 Given the above definitions, let A be any learning algorithm having a reconstruction
function that maps compression sets and message strings to classifiers. For any prior distribution
PΛ of messages and for any δ ∈ (0,1]:

P

{

S ∈ X : erP [A(S)]≤ εP

(

mP (S,A(S)),gP (S)δ
)

}

≥ 1−δ ,

P

{

S ∈ X : erN [A(S)]≤ εN

(

mN (S,A(S)),gN (S)δ
)

}

≥ 1−δ ,

where mP (S,A(S)) and mN (S,A(S)) are defined by Equation 3 and Equation 4, and

gP (S)
def
= ζ(dp(S)) ·ζ(dn(S)) ·ζ(kp(S)) ·PΛ(S)(σ(S)) , (9)

gN (S)
def
= ζ(dp(S)) ·ζ(dn(S)) ·ζ(kn(S)) ·PΛ(S)(σ(S)) . (10)

Note that Theorem 2 directly applies to the SCM when we use the distribution of messages
given by Equation 5.

Proof To prove Theorem 2, it suffice to upper bound by δ the following probability

P
def
= P

{

S ∈ X : erP [A(S)]≥ ε
(

mP (S,A(S)),Λ(S),σ(S)
)

}

= ∑
mP

P

{

S ∈ X : erP [A(S)]≥ ε
(

mP ,Λ(S),σ(S)
)

,mP (S,A(S)) = mP

}

,
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where ε(mP ,Λ(S),σ(S)) denotes a risk bound on erP (A(S)) that depends (partly) on the compres-
sion set Λ(S) and the message string σ(S) returned by A(S). The summation over mP stands for

∑
mP

(·)
def
=

m

∑
mp=0

mp

∑
dp=0

m−mp

∑
dn=0

mp−dp

∑
kp=0

(·) .

Note that the summation over kp stops at mp−dp because, as we will see later in the proof, we can
upper bound the risk of a sample-compressed classifier only from the training errors it makes on the
examples that are not used for the compression set.

We will now use the notation i = (i1, . . . , id) for a sequence (or a vector) of strictly increasing
indices, 0 < i1 < i2 < · · ·< id ≤ m. Hence there are 2m distinct sequences i. We will also use |i| to
denote the length d of a sequence i. Such sequences (or vectors) of indices will be used to identify
subsets of S. For S ∈ X , we define Si as

Si
def
=((xi1 ,yi1), . . . ,(xid ,yid )) .

Under the constraint that m(S,A(S)) = m, we will denote by ip any sequence (or vector) of
indices where each index points to an example of SP . We also use an equivalent definition for in.
If, for example, in = (2,3,6,9), then Sin will denote the set of examples consisting of the second,
third, sixth, and ninth N -example of S. Therefore, given a training set S and vectors ip and in, the
subset Sip,in will denote a compression set. We will also denote by Imp the set of all the 2mp possible
vectors ip under the constraint that |SP | = mp. We also use an equivalent definition for Imn . Using
these definitions, we will now upper bound P uniformly over all possible realizations of ip and in
under the constraint mP (S,A(S)) = mP . Thus

P ≤ ∑
mP

P

{

S ∈ X : ∃ip ∈ Imp ,∃in ∈ Imn ,∃σ ∈MSip,in
:

erP [Φ(Sip,in ,σ)]≥ ε
(

mP ,Sip,in ,σ
)

,mP (S,A(S)) = mP

}

≤ ∑
mP

∑
ip∈Imp

∑
in∈Imn

P

{

S ∈ X : ∃σ ∈MSip ,in
:

erP [Φ(Sip,in ,σ)]≥ ε
(

mP ,Sip,in ,σ
)

,mP (S,A(S)) = mP

}

,

where Φ(Sip,in ,σ) denotes the classifier obtained once, S, ip, in, and σ have been fixed. The last
inequality comes from the union bound over all the possible choices of ip ∈ Imp and in ∈ Imn . Let

P′
def
=P

{

S ∈ X : ∃σ ∈MSip ,in
: erP [Φ(Sip,in ,σ)]≥ ε

(

mP ,Sip,in ,σ
)

,mP (S,A(S)) = mP

}

.

We now make explicit how the positive and negative examples are interleaved in the training
sequence S by introducing a new variable b, which is a bit-string of length m such that Si is a
positive example if and only if bi = 1. Let Bmp denote the set of possible b vectors that we can have

2540



SAMPLE-COMPRESSION LOSS BOUNDS FOR IMBALANCED DATA

under the constraint that |SP |= mp. We then have

P′ = ∑
b∈Bmp

P

{

S ∈ X : ∃σ ∈MSip,in
: erP [Φ(Sip,in ,σ)]≥ ε

(

mP ,Sip,in ,σ
)

,

mP (S,A(S)) = mP | b(S) = b
}

P

{

S ∈ X : b(S) = b
}

= ∑
b∈Bmp

P

{

S ∈ X : ∃σ ∈MSip,in
: erP [Φ(Sip,in ,σ)]≥ ε

(

mP ,Sip,in ,σ
)

,

mP (S,A(S)) = mP | b(S) = b
}

p
mp

P (1− pP )m−mp .

P′ ≤

(

m
mp

)

p
mp

P (1− pP )m−mp sup
b∈Bmp

P

{

S ∈ X : ∃σ ∈MSip ,in
:

erP [Φ(Sip,in ,σ)]≥ ε
(

mP ,Sip,in ,σ
)

,mP (S,A(S)) = mP | b(S) = b
}

.

Under the condition b(S) = b, index vectors ip and in are now pointing to specific examples in
S. Consequently, under this condition, we can compute the above probability by first conditioning
on the compression set Sip,in and then performing the expectation over Sip,in . Hence

P

{

S ∈ X : (·)

∣

∣

∣

∣

b(S) = b
}

= ESip,in |b P

{

S ∈ X : (·)

∣

∣

∣

∣

b(S) = b,Sip,in

}

.

By applying the union bound over σ ∈MSip ,in
, we obtain

P

{

S ∈ X : ∃σ ∈MSip ,in
: erP [Φ(Sip,in ,σ)]≥ ε

(

mP ,Sip,in ,σ
)

,

mP (S,A(S)) = mP | b(S) = b,Sip,in

}

≤ ∑
σ∈MSip ,in

P

{

S ∈ X : erP [Φ(Sip,in ,σ)]≥ ε
(

mP ,Sip,in ,σ
)

,

mP (S,A(S)) = mP | b(S) = b,Sip,in

}

.

We will now stratify this last probability by the set of possible errors that classifier Φ(Sip,in ,σ)
can perform on the training examples that are not in the compression set Sip,in . Note that we do not
force here the learner to produce a classifier that does not make errors on Sip,in . However, the set
of message strings needed by Φ to identify a classifier h might be larger when h can err on Sip,in .
To perform this stratification, let êr( f ,SP ) be the vector of indices pointing to the examples of SP
that are misclassified by f . Moreover, let Imp(ip) denote the set of all vectors jp ∈ Imp for which no
index i ∈ jp is also in ip. In other words, for all ip ∈ Imp and all jp ∈ Imp(ip), we have jp∩ ip = /0.
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Therefore

P

{

S ∈ X : erP [Φ(Sip,in ,σ)]≥ ε
(

mP ,Sip,in ,σ
)

,mP (S,A(S)) = mP | b(S) = b,Sip,in

}

= ∑
jp∈Imp (ip)

P

{

S ∈ X : erP [Φ(Sip,in ,σ)]≥ ε
(

mP ,Sip,in ,σ
)

,

êr[Φ(Sip,in ,σ),SP ] = jp,mP (S,A(S)) = mP | b(S) = b,Sip,in

}

= ∑
jp∈Imp (ip)

P

{

S ∈ X : erP [Φ(Sip,in ,σ)]≥ ε
(

mP ,Sip,in ,σ
)

,

êr[Φ(Sip,in ,σ),SP ] = jp | b(S) = b,Sip,in

}

,

where the last equality comes from the fact that the condition mP (S,A(S)) = mP is obsolete when
b(S) = b with fixed vectors ip, in, jp. Now, under the condition b(S) = b with a fixed compression
set Sip,in , this last probability is obtained for the random draws of the training examples that are not
in Sip,in . Consequently, this last probability is at most equal to the probability that a fixed classifier,
having erP ≥ ε(mP ,Sip,in ,σ), makes no errors on mp−dp− kp positive examples that are not in the
compression set Sip,in . Note that the probability space created by the conditioning specifies only the
positions of the positive examples but places no further restrictions on them. They can therefore be
viewed as independent draws from the distribution of positive examples. This makes it possible to
bound the probability of the event by the probability that mp− dp− kp independent draws are all
correctly classified. Hence, we have

P

{

S ∈ X : erP [Φ(Sip,in ,σ)]≥ ε
(

mP ,Sip,in ,σ
)

,

êr[Φ(Sip,in ,σ),SP ] = jp | b(S) = b,Sip,in

}

≤
(

1− ε(mP ,Sip,in ,σ)
)mp−dp−kp

.

By regrouping the previous results, we get

P ≤ ∑
mP

(

m
mp

)

p
mp

P (1− pP )m−mp ∑
ip∈Imp

∑
in∈Imn

sup
b∈Bmp

ESip,in |b ∑
σ∈MSip ,in

∑
jp∈Imp (ip)

(

1− ε(mP ,Sip,in ,σ)
)mp−dp−kp

=
m

∑
mp=0

(

m
mp

)

p
mp

P (1− pP )m−mp

mp

∑
dp=0

(

mp

dp

)m−mp

∑
dn=0

(

mn

dn

)mp−dp

∑
kp=0

(

mp−dp

kp

)

sup
b∈Bmp

ESip,in |b ∑
σ∈MSip ,in

(

1− ε(mP ,Sip,in ,σ)
)mp−dp−kp

.
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By using
(

1− ε(mP ,Sip,in ,σ)
)mp−dp−kp

= PSip,in
(σ) ·

1
BP (mP )

·ζ(kp) ·ζ(dn) ·ζ(dp) ·δ ,

we get P≤ δ as desired. Similarly, we have

P

{

S ∈ X : erN [A(S)]≥ εN

(

mN (S,A(S)),gN (S)δ
)

}

≤ δ ,

which completes the proof.

Remark 3 This theorem can be viewed in a standard asymptotic form by using the inequality 1−
exp(−x) ≤ x, for x ≥ 0. To see this, we simply need to substitute Equations 7 and 8 into each
probability given in Theorem 2 and weaken them with the above inequality. Doing so yields the
following bounds:

P

{

S ∈ X : erP [A(S)]≤
1

mp−dp− kp

[

ln(BP (mP ))+ ln
1

gP (S)δ

]}

≥ 1−δ,

P

{

S ∈ X : erN [A(S)]≤
1

mn−dn− kn

[

ln
(

BN (mN )
)

+ ln
1

gN (S)δ

]}

≥ 1−δ .

However, each probability is separately bounding the error on the positive and negative examples
and so will not (in the final bound) hold with probability 1− δ but with probability 1− δ/4 (to
be shown) as the expected loss will rely on four bounds simultaneously holding true (i.e., from
Equation 1 we would like to upper bound erP [A(S)], erN [A(S)], pP and pN ).

Now that we have a bound on both erP [A(S)] and erN [A(S)], to bound the expected loss
E[l(A(S))] of Equation 1 we now need to upper bound the probabilities pP and pN . For this task,
we could use a well-known approximation of the binomial tail such as the additive Hoeffding bound
or the multiplicative Chernoff bound. However, the Hoeffding bound is known to be very loose
when the the probability of interest (here pP and pN ) is close to zero. Conversely, the multiplica-
tive Chernoff bound is known to be loose when the probability of interest is close to 1/2. In order
to obtain a tight loss bound for both balanced and imbalanced data sets, we have decided to use the
binomial distribution without any approximation.

Recall that the probability Bin(m,k, p) of having at most k successes among m Bernoulli trials,
each having probability of success p, is given by the binomial tail

Bin(m,k, p)
def
=

k

∑
i=0

(

m
i

)

pi(1− p)m−i .

Following Langford (2005), we now define the binomial tail inversion Bin(m,k,δ) as the largest
value of probability of success such that we still have a probability of at least δ of observing at most
k successes out of m Bernoulli trials. In other words,

Bin(m,k,δ)
def
= sup

{

p : Bin(m,k, p)≥ δ
}

. (11)
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From this definition, it follows that Bin(m,mn,δ) is the smallest upper bound on pN , which holds
with probability at least 1−δ, over the random draws of m examples. Hence

P

{

S ∈ X : pN ≤ Bin
(

m,mn,δ
)

}

≥ 1−δ .

From this bound (applied to both pP and pN ), and from the previous theorem, the following predi-
cates hold simultaneously with probability 1−δ over the random draws of S:

erP [A(S)] ≤ εP

(

mP ,gP (S)
δ
4

)

,

erN [A(S)] ≤ εN

(

mN ,gN (S)
δ
4

)

,

pN ≤ Bin
(

m,mn,
δ
4

)

,

pP ≤ Bin
(

m,mp,
δ
4

)

,

where mP = mP (S,A(S)) and mN = mN (S,A(S)). Consequently, we have the next theorem.

Theorem 4 Given the above definitions, let A be any learning algorithm having a reconstruction
function that maps compression sets and message strings to classifiers. With probability 1−δ over
the random draws of a training set S, we have

E[l(A(S))] ≤ lP ·Bin
(

m,mp,
δ
4

)

· εP

(

mP ,gP (S)
δ
4

)

+ lN ·Bin
(

m,mn,
δ
4

)

· εN

(

mN ,gN (S)
δ
4

)

,

where mP = mP (S,A(S)) and mN = mN (S,A(S)) are defined by Equations 3 and 4.

We can now improve the loss bound given by Theorem 4 in the following way. Consider the

frequencies p̂P
def
=mp/m and p̂N

def
=mn/m. Let us simply denote by εP and εN some upper bounds on

erP [A(S)] and erP [A(S)]. Let us also denote by pP and pN some upper bounds on pP and pN . Let
us first assume that lN εN ≥ lP εP . Then we have

E[l(A(S))] ≤ pP lP εP + pN lN εN

= lP εP + pN (lN εN − lP εP )

≤ lP εP + pN (lN εN − lP εP )

= p̂P lP εP + p̂N lN εN +(pN − p̂N )(lN εN − lP εP ) .

Likewise, if lP εP ≥ lN εN , we have

E[l(A(S))]≤ p̂P lP εP + p̂N lN εN +(pP − p̂P )(lP εP − lN εN ) .

Consequently, we have the following theorem.
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Theorem 5 Given the above definitions, let A be any learning algorithm having a reconstruction
function that maps compression sets and message strings to classifiers. For any real numbers a,b,c,
let

Ψ(a;b;c)
def
=

{

a · |c| if c≥ 0
b · |c| if c≤ 0 .

Then, with probability 1−δ over the random draws of a training set S, we have

E[l(A(S))] ≤
mp

m
· lP · εP

(

mP ,gP (S)
δ
4

)

+
mn

m
· lN · εN

(

mN ,gN (S)
δ
4

)

+Ψ

(

Bin
(

m,mp,
δ
4

)

−
mp

m
; Bin

(

m,mn,
δ
4

)

−
mn

m
;

lP εP

(

mP ,gP (S)
δ
4

)

− lN εN

(

mN ,gN (S)
δ
4

)

)

,

where mP = mP (S,A(S)) and mN = mN (S,A(S)) are defined by Equations 3 and 4.

To compare the bound given by Theorem 5 with the bound given by Theorem 4, let us assume
that lN εN ≥ lP εP . Using our shorthand notation, the bound of Theorem 5 is given by

lP p̂P εP + lN p̂N εN +(pN − p̂N )(lN εN − lP εP ) .

Whereas the bound of Theorem 4 is given by

lP pP εP + lN pN εN .

The bound of Theorem 4 minus the bound of Theorem 5 then gives

(lP pP εP + lN pN εN )− (lP p̂P εP + lN p̂N εN +(pN − p̂N )(lN εN − lP εP ))

= (pP − p̂P )lP εP +(pN − p̂N )lN εN − (pN − p̂N )(lN εN − lP εP )

= (pP − p̂P + pN − p̂N )lP εP

= (pP + pN −1)lP εP .

Since lP εP > 0 and pP + pN > 1, we have an improvement using Theorem 5.

Example 1 If lP = lN = 1,δ = 0.05,m = 100,mp = 40,mn = 60,εP = 0.3,εN = 0.4, we get 0.439
for the bound of Theorem 4 and only 0.371 for the bound of Theorem 5. Hence, the bound of
Theorem 5 can be significantly better than the the bound of Theorem 4.

5. Discussion and Numerical Comparisons with Other Bounds

Let us first discuss the bounds that we have proposed and make explicit some of the details and
consequences. In general, risk bounds are simply upper bounds of the true error calculated from
the (overall) error achieved during training. There is no distinction made between the positive and
negative class. The results of the current paper are bounds on the error achieved separately on the
positive and negative examples. Hence, making the distinction between the two classes explicit.
Furthermore, the risk bound on one class depends on what the classifier achieves on the training
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examples of that class. Thus, making the bound more data-dependent then the usual bounds on the
true error. This strong data-dependence also allows the user to take into account the observed num-
ber of positive and negative examples in the training sample as well as the flexibility of specifying
different losses for each class. This is known as asymmetric loss and is not possible with the current
crop of sample-compression loss bounds.

Note also that the proposed bounds are data dependent bounds for which there are no corre-
sponding lower bounds. A small compression scheme is evidence of simplicity in the structure of
the classifier, but one that is related to the training distribution rather than a priori determined.

Any algorithm that uses a compression scheme can use the bounds that we have proposed and
take advantage of asymmetrical loss and cases of imbalanced data sets. However, the tightness of the
bound relies on the sparsity of the classifiers (e.g., the size of the compression set). Hence, it may
not be advantageous to use algorithms that do not possess levels of sparsity similar (or comparable)
to the SCM. This is one reason why we will provide a numerical comparison of various sample-
compression bounds for the case of the SCM.

In order to show the merits of our bound we must now compare numerically against more
common sample compression bounds and the bound found to be incorrect. In doing so we point
out when our bound can be smaller and when it can become larger. All the compared bounds are
specialized to the set covering machine compression scheme that uses data-dependent balls. Here
each ball is constructed from two data points—one that defines the center of the ball and another
that helps define the radius of the ball (known as the border point). Hence to build a classifier from
the compression set, we also need an informative message string to discriminate between the border
points and the centers.

Let us now discuss the experimental setup, including a list of all the bounds compared, and then
conclude with a review of the results.

5.1 Setup

From Example 1 of Section 4, it is clear that using Theorem 5 is more advantageous than Theorem 4.
Hence, all experiments will be conducted with the bound of Theorem 5. The first bound we compare
against is taken from the original set covering machine paper by Marchand and Shawe-Taylor (2001)
and is similar to the Littlestone and Warmuth (1986) bound but with more specialization for the
SCM compression set defined from the set of data-dependent balls. The second generalization error
bound is adapted from Marchand and Sokolova (2005) and is a slight modification of the Marchand
and Shawe-Taylor (2001) result. All these bounds will also be compared against the incorrect bound
given in Marchand and Shawe-Taylor (2002).

Please note that traditional sample compression bounds, such as that given by Theorem 6.1 of
Langford (2005), cannot be used with the set covering machine as it does not allow the inclusion of
any side information in the reconstruction of the classifier. The SCM, however, stores both the center
and border points in order to construct its hypotheses. This implies the need for side information
to discriminate between centers and border points, something that traditional sample compression
bounds do not cater for. Therefore, we cannot give numerical comparisons against these types of
bounds.

All generalization error bounds detailed below will make use of the following definitions: dn =
cn, dp = cp + b, d = dp + dn and k = kp + kn. For completeness, we give the definitions of all risk
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bounds not already stated and, to avoid repetition, we only give references to the bounds described
earlier.

• new bound (Theorem 5). When applied to the SCM, the new bound uses the distribution of
messages given by Equation 5 and Equations 6, 7, 8, 9, 10, and 11.

• incorrect bound (Theorem 5 of Marchand and Shawe-Taylor, 2002). This bound can also be
found in Section 3 of the current paper.

• MS01 bound (Theorem 5.2 of Marchand and Shawe-Taylor, 2001):

ε(m,d,cp,k,δ) = 1− exp

(

−1
m−2d− k

[

ln

(

m
2d

)

+ ln

(

2d
cp

)

+ ln

(

m−2d
k

)

+

ln

(

2m2d
δ

)])

.

• MS05 bound (Equation 10 of Marchand and Sokolova, 2005):

ε(m,d,dp,b,k,δ) = 1− exp

(

−1
m−d− k

[

ln

(

m
d

)

+ ln

(

m−d
k

)

+ ln

(

dp

b

)

+

ln

(

1
ζ(d)ζ(k)ζ(b)δ

)])

,

where ζ(a) is given by Equation 6.

5.2 Discussion of Results

The numerical comparisons of these four bounds (new bound, incorrect bound, MS01 bound and
MS05 bound) are shown in Figure 1 and Figure 2. Each plot contains the number of positive ex-
amples mp, the number of negative examples mn, the number of positive centers cp, the number of
negative centers cn and the number of borders b. The number of negative misclassifications kn was
fixed for all plots and these values can be found in the x-axis label (either 0 or 500). The number of
positive examples was varied and its quantity was set to those values given by the x-axis of the plot.
For example, in the left hand side plot of Figure 1, the number of negative misclassifications kn was
0 and the number of positive misclassifications kp varied from 1 to 2000. The y-axis give the bound
values achieved. Finally, the empirical error was also included in each plot—which is simply the
number of examples misclassified divided by the number of examples, that is, (kp +kn)/(mp +mn).

Figure 1 shows the case where the number of positive and negative examples is approximately
the same. We clearly see that the incorrect bound becomes erroneous when the number kp of errors
on the positive training examples approaches the total number mp of positive training examples. We
also see that the new bound is tighter than the MS01 and MS05 bounds when the kp differs greatly
from kn. However, the latter bound is slightly tighter than the new bound when kp = kn.

Figure 2 depicts the case where there is an imbalance in the data set (mn�mp), implying greater
possibility of imbalance in misclassifications. However, the behavior is similar as the one found in
Figure 1. Indeed, the MS01 and MS05 loss bounds are slightly smaller than the new bound when
kp/mp is similar to kn/mn, but the new bound becomes smaller when these two quantities greatly
differ. This is where the new bound is most advantageous—in the case when there is an imbalance
in misclassifications. As we would expect, the new bound is smaller when one class of examples is
more abundant than the other.
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Figure 1: Bound values for the SCM when mp = 2020,mn = 1980,cp = 5,cn = 5,b = 10.
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Figure 2: Bound values for the SCM when mp = 1000,mn = 3000,cp = 5,cn = 5,b = 10.
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6. Conclusion

We have observed that the SCM loss bound proposed by Marchand and Shawe-Taylor (2002) is
incorrect and, in fact, becomes erroneous in the limit where the number of errors on the positive
training examples approaches the total number of positive training examples. We have then pro-
posed a new loss bound, valid for any sample-compression learning algorithm (including the SCM),
that depends on the observed fraction of positive examples and on what the classifier achieves on
them. This new bound captures the spirit of Marchand and Shawe-Taylor (2002) with very similar
tightness in the regimes in which the bound could hold. This is shown in numerical comparisons of
the loss bound proposed in this paper with all of the earlier bounds that can be applied to the SCM.

As mentioned above, an advantage of the bound is its ability to take into account the observed
number of positive examples in the training set in order to arrive at tighter estimates. It also has the
advantage of being applicable in cases where the loss function is asymmetrical for type I and type
II errors, a situation that is not uncommon in practical applications.

The tightness of the bounds derived for the set covering machine make it tempting to use them
to perform model selection as well as to consider integrating them more closely into the workings
of the algorithm. Both of these directions are the subject of ongoing research.
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