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Abstract

We propose a PAC-Bayes theorem for the sample-compression setting where each classifier is de-
scribed by a compression subset of the training data and a message string of additional information.
This setting, which is the appropriate one to describe many learning algorithms, strictly general-
izes the usual data-independent setting where classifiers are represented only by data-independent
message strings (or parameters taken from a continuous set). The proposed PAC-Bayes theorem
for the sample-compression setting reduces to the PAC-Bayes theorem of Seeger (2002) and Lang-
ford (2005) when the compression subset of each classifier vanishes. For posteriors having all their
weights on a single sample-compressed classifier, the general risk bound reduces to a bound simi-
lar to the tight sample-compression bound proposed in Laviolette et al. (2005). Finally, we extend
our results to the case where each sample-compressed classifier of a data-dependent ensemble may
abstain of predicting a class label.

Keywords: PAC-Bayes, risk bounds, sample-compression, set covering machines, decision list
machines

1. Introduction

The PAC-Bayes approach, initiated by McAllester (1999), aims at providing PAC guarantees to
“Bayesian-like” learning algorithms. These algorithms are specified in terms of a prior distribution
P over a space of classifiers that characterizes our prior belief about good classifiers (before the
observation of the data) and a posterior distribution Q (over the same space of classifiers) that takes
into account the additional information provided by the training data. A remarkable result that came
out from this line of research, known as the “PAC-Bayes theorem”, provides a tight upper bound on
the risk of a stochastic classifier (defined on the posterior Q) called the Gibbs classifier.

This PAC-Bayes bound (see Theorem 1) depends both on the empirical risk (i.e., training errors)
of the Gibbs classifier and on “how far” is the data-dependent posterior Q from the data-independent
prior P. Consequently, a Gibbs classifier with a posterior Q having all its weight on a single classifier
will have a larger risk bound than another Gibbs classifier, making the same amount of training
errors, using a “broader” posterior Q that gives weight to many classifiers. Hence, the PAC-Bayes
theorem quantifies the additional predictive power that stochastic classifier selection might have
over deterministic classifier selection.
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A constraint normally imposed by the PAC-Bayes theorem is that the prior P must be defined
without reference to the training data. Consequently, we cannot directly use the PAC-Bayes theo-
rem to bound the risk of sample-compression learning algorithms (Littlestone and Warmuth, 1986,
Floyd and Warmuth, 1995) because the set of classifiers considered by these algorithms are those
that can be reconstructed from various subsets of the training data. However, this is an important
class of learning algorithms since many well known learning algorithms, such as the support vector
machine (SVM) and the perceptron learning rule, can be considered as sample-compression learn-
ing algorithms (Graepel et al., 2005). Moreover, some sample-compression algorithms (Marchand
and Shawe-Taylor, 2002, Marchand and Sokolova, 2005) have achieved very good performance in
practice by deterministically choosing a sparse classifier making few training errors. It is therefore
worthwhile to investigate how the stochastic selection of sample-compressed classifiers provides an
additional predictive power over the deterministic selection of a single sample-compressed classi-
fier.

In this paper, we extend the PAC-Bayes theorem in such a way that it applies now to both the
usual data-independent setting and the more general sample-compression setting. In the sample-
compression setting, each classifier is represented by two independent sources of information: a
compression set which consists of a small subset of the training data, and a message string of the
additional information needed to obtain a classifier. In the limit where the compression set vanishes,
each classifier is identified only by a message string and the new PAC-Bayes theorem reduces to
the “usual” PAC-Bayes theorem of Seeger (2002) and Langford (2005). However, new quantities
appear in the risk bound when classifiers are also described by their compression sets. As in the case
for the usual data-independent setting, the PAC-Bayes theorem for the sample-compression setting
states that a stochastic Gibbs classifier defined on a posterior over several sample-compressed clas-
sifiers generally has a smaller risk bound than any such single (deterministic) sample-compressed
classifier. Nevertheless, in the limit where the posterior Q puts all its weight on a single sample-
compressed classifier, the new PAC-Bayes risk bound reduces to a bound similar to the tight sample-
compression bound of Laviolette et al. (2005) (which applies only to single sample-compressed
classifiers).

Several “PAC-Bayesian sample-compression bounds” have recently been proposed by Graepel
et al. (2005). However, all these bounds, except one (that concerns consistent SVM classifiers with
fixed sparsity), deals with classifiers that use a fixed subset of the training examples. In contrast, we
provide bounds that applies to a stochastic average (and a majority vote) of classifiers using different
subsets (of different sizes) of the training examples. Finally, we extend our results to the important
case where we have an ensemble of sample-compressed classifiers that can abstain of predicting a
class label.

The paper is organized as follows. After providing a few definitions in Section 2, we review,
in Section 3, the PAC-Bayes theorem for the data-independent setting. Section 4 is the “core”
section of this paper. In that section, we present the sample-compression setting and show how it
generalizes the usual data-independent setting. We then provide the main theorem of this paper,
Theorem 3, which is a PAC-Bayes theorem for the sample-compression setting. In Section 5, we
provide examples of learning algorithms that produce classifiers that are well-described within this
sample-compression setting. We then show, in Section 6, that Theorem 3 reduces to a bound similar
to the tight sample-compression bound of Laviolette et al. (2005) in the limit where the posterior Q
puts all its weight on a single sample-compressed classifier. In that section, we also present a bound
for the “intermediate” case where the posterior has all its weight on a single compression sequence
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and non-zero weight on several messages. We then show that the risk bound reduces to the one
recently proposed in Laviolette et al. (2006) for the PAC-Bayes SCM. In Section 7, we provide an
alternative formulation of Theorem 3 by including the training errors into the compression sequence.
We then generalize, in Section 8, Theorem 3 to the case were the individual sample-compressed
classifiers may abstain of predicting a class label. Finally, we conclude in Section 9.

This paper extends the preliminary work of Laviolette and Marchand (2005) and Laviolette et al.
(2006).

2. Basic Definitions

We consider binary classification problems where the input space X consists of an arbitrary subset
of R

n and the output space Y = {−1,+1}. An example (x,y) is an input-output pair where x ∈ X
and y ∈ Y .

Throughout the paper, we adopt the PAC setting where each example (x,y) is drawn according
to a fixed, but unknown, probability distribution D on X ×Y . The risk R( f ) of any classifier f is
defined as the probability that it misclassifies an example drawn according to D. Hence,

R( f )
def
= Pr

(x,y)∼D

(

f (x) 6= y
)

= E
(x,y)∼D

I( f (x) 6= y) ,

where I(a) = 1 if predicate a is true and 0 otherwise.
Given a training sequence S = 〈(x1,y1), . . . ,(xm,ym)〉 of m examples, the empirical risk RS( f )

on S, of any classifier f , is defined according to

RS( f )
def
=

1
m

m

∑
i=1

I( f (xi) 6= yi)
def
= E

(x,y)∼S
I( f (x) 6= y) .

In this paper, we will distinguish the usual data-independent setting from the (more general)
sample-compression setting. By the data-independent setting, we mean the “usual” setting where a
space H of classifiers is defined without making any reference to the training data S. Examples of
such a space H include the set of linear classifiers on R

n, the set of radial-basis functions on R
n, the

set of k-CNF Boolean formulae (Valiant, 1984) on {0,1}n, the set of decision lists (Rivest, 1987) on
{0,1}n. In contrast, the set of data-dependent balls (Marchand and Shawe-Taylor, 2002)—where
each ball of this set is centered on a training example—is an example of a set of classifiers which
is defined only after observing the training data S. Such a set of classifiers is qualified as being
data-dependent. Moreover, since each data-dependent ball is constructed from a small subset of
the training data S, it is an example of what we call a sample-compressed classifier. We define
more formally the sample-compression setting in section 4 in such a way that it extends the usual
data-independent setting. The next section presents the PAC-Bayes theorem within the (restricted)
data-independent setting.

3. The PAC-Bayes Theorem in the Data-Independent Setting

The PAC-Bayes theorem provides tight upper and lower bounds on the risk of a stochastic classifier
called the Gibbs classifier. Given an input example x, the label assigned to x by the Gibbs classifier
GQ is defined by the following process. We first choose randomly a classifier h according to the
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posterior distribution Q and then use h to assign the label to x. The risk of GQ is defined as the
expected risk of classifiers drawn according to Q. Hence,

R(GQ)
def
= E

h∼Q
R(h) = E

h∼Q
E

(x,y)∼D
I(h(x) 6= y) .

Similarly, the empirical risk RS(GQ) of GQ, on a training sequence S of m examples, is given by

RS(GQ)
def
= E

h∼Q
RS(h) = E

h∼Q

1
m

m

∑
i=1

I(h(xi) 6= yi) .

The PAC-Bayes theorem was first proposed by McAllester (1999, 2003a). The version presented
here is due to Seeger (2002) and Langford (2005).

Theorem 1 Given any space H of classifiers. For any data-independent prior distribution P over
H and any δ ∈ (0,1], we have

Pr
S∼Dm

(

∀Q on H : kl(RS(GQ)‖R(GQ)) ≤
1
m

[

KL(Q‖P)+ ln
m+1

δ

])

≥ 1−δ ,

where KL(Q‖P) is the Kullback-Leibler divergence between distributions Q and P:

KL(Q‖P)
def
= E

h∼Q
ln

Q(h)

P(h)
,

and where kl(q‖p) is the Kullback-Leibler divergence between the Bernoulli distributions with prob-
ability of success q and probability of success p:

kl(q‖p)
def
= q ln

q
p

+(1−q) ln
1−q
1− p

.

It is rarely mentioned that this theorem provides both an upper bound and a lower bound on the
true risk R(GQ) based on its empirical risk RS(GQ). With probability at least 1−δ over the random
draws of S, R(GQ) is upper-bounded by

sup

(

R : kl(RS(GQ)‖R) ≤
1
m

[

KL(Q‖P)+ ln
m+1

δ

])

and lower-bounded by

inf

(

R : kl(RS(GQ)‖R) ≤
1
m

[

KL(Q‖P)+ ln
m+1

δ

])

.

The bounds provided by Theorem 1 hold for any fixed prior P on H and also hold uniformly for
all posteriors Q on H ; this includes any Q chosen by the learner after observing S. This is specified
in the theorem by the fact that the quantifier ∀Q occurs inside the probability over the random draws
of S whereas the quantifier ∀P occurs (textually) outside that probability.

The upper bound given by the PAC-Bayes theorem for the risk of Gibbs classifiers can be turned
into an upper bound for the risk of majority-vote classifiers (often called Bayes classifiers) in the
following way. Given a posterior distribution Q, the Bayes classifier BQ performs a majority vote
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(under measure Q) of binary classifiers in H . Then BQ misclassifies an example x iff at least half
of the binary classifiers (under measure Q) misclassifies x. It follows that the error rate of GQ is
at least half of the error rate of BQ. Hence R(BQ) ≤ 2R(GQ). It has been shown (Langford and
Shawe-Taylor, 2003, McAllester, 2003b, Germain et al., 2007, Lacasse et al., 2007) that there exists
circumstances where this “factor-of-two” rule can be improved. However, for many 1 posteriors Q,
one can often find a data-generating distribution where we have R(BQ) = 2R(GQ)− ε for arbitrary
small ε > 0.

Finally, for certain distributions Q, a bound for R(BQ) can be turned into a bound for the risk of
a single classifier whenever there exists h∗ ∈ H such that h∗(x) = BQ(x) ∀x ∈ X . Such a classifier
h∗ is equivalent to BQ since it performs the same classification ∀x ∈ X . For example, a linear
classifier with weight vector w is equivalent to a Bayes classifier BQ over linear classifiers with
any distribution Q rotationally invariant around w. By choosing a Gaussian (or a rectified Gaussian
tail) centered on w for Q and Gaussian centered at the origin for P, Langford (2005), Langford and
Shawe-Taylor (2003), and McAllester (2003b) have been able to derived tight risk bounds for the
SVM from the PAC-Bayes theorem in terms of the “margin errors” achieved on the training data.

4. A PAC-Bayes Theorem for the Sample-Compression Setting

In the sample-compression setting, learning algorithms have access to a data-dependent set of clas-
sifiers defined as follows. Given a training sequence S = 〈z1, . . . ,zm〉 of m examples, each classifier
is described entirely by two complementary sources of information: a subsequence Si of S, called
the compression sequence, and a message σ which represents the additional information needed to
obtain a classifier from the compression sequence.

Given a training sequence S of m examples, the compression subsequence Si of S is defined by
the following vector i of indices

i def
= (i1, i2, . . . , i|i|)

with : i j ∈ {1, . . . ,m} ∀ j

and : i1 < i2 < .. . < i|i| ,

where |i| denotes the number of indices present in i. Hence, Si denotes the |i|-tuple of examples of
S that are pointed by the vector i of indices defined above. We will also use i to denote the vector of
indices not present in i. Hence, the union of all the examples of Si and Si gives all the m examples
of S. Finally, we will denote by I the set of the 2m possible realizations of i.

The fact that each classifier is described by a compression sequence and a message implies that
there exists a reconstruction function R that outputs a classifier R (σ,Si) when given an arbitrary
compression sequence Si and a message σ chosen from the set M (Si) of all distinct messages that
can be supplied to R with the compression sequence Si. This set M (Si) must be defined a priori
(before observing S) for all possible sequences Si of examples. For any sequence S of m examples,
we will also use

MS
def
=

[

i∈I
M (Si) .

1. For example, if there exists (x,y) such that BQ(x) 6= y and Pr
h∼Q

(h(x) 6= y) = 1
2 + ε, then R(BQ) = 2R(GQ)− 2ε for

the data-generating distribution that has all its weight on (x,y).
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The perceptron learning rule and the SVM are examples of learning algorithms where the final
classifier can be reconstructed solely from a compression sequence (Graepel et al., 2005). In con-
trast, the reconstruction functions for the set covering machine (Marchand and Shawe-Taylor, 2002)
and the decision list machine (Marchand and Sokolova, 2005) need both a compression sequence
and a message string. Furthermore, Marchand and Sokolova (2005) provide numerous examples
where it is advantageous to have a set M (Si) of possible messages that depend on the compression
sequence Si. In these circumstances, the set of messages can be substantially reduced by using the
information contained in Si. We will provide detailed examples below of data-dependent distribu-
tions of messages M (Si).

It is important to realize that the sample-compression setting is strictly more general than the
usual data-independent setting where the space H of possible classifiers (considered by learning
algorithms) is defined without reference to the training data. Indeed, we recover this usual setting

when each classifier is identified only by a message σ taken from a set M def
= M ( /0). In that case,

for each σ ∈ M , we have a classifier R (σ). Hence, in this limit, we have a data-independent set H
of classifiers given by R and M such that

H = {R (σ) | σ ∈ M } .

However, the validity of Theorem 1 has been established only in the usual data-independent
setting where the priors are defined without reference to the training data S. More recently, Catoni
(2004) has introduced priors where some data-dependence is allowed. Here, we derive here a new
PAC-Bayes theorem for priors that are more natural for sample-compression algorithms. These are
priors defined over I ×MS for any possible S ∈ (X ×Y )m. More precisely, for each S ∈ (X ×Y )m,
we will only consider priors PS on I ×MS that can be be written as the product

PS(i,σ) = PI (i)PM (Si)(σ) , (1)

where PI (i) is the prior probability of using the vector i of indices (defined above) and where
PM (Si)(σ) is the prior probability of using the message string σ given that we use the compression
sequence Si (i.e., a vector i with a sequence S). The message string σ could also be a parameter
chosen from a continuous set M (Si). In this case, PM (Si)(σ) specifies a probability density function.
Throughout the paper, a distribution on I ×MS, prior or posterior, will always mean a distribution
that factorizes as Equation 1.

We consider learning algorithms that output a posterior distribution Q on I ×MS after observing
some training sequence S. The posterior Q has the same form QI (i)QM (Si)(σ) as the one given for
the prior PS but both QI (i) and QM (Si)(σ) can be chosen after observing the training data S, that
is, they can both depend on S in any way. In contrast, PI (i) cannot depend on S at all and PM (Si)

can only depend on S through M (Si). This implies that PI (i) must be defined before observing S
and PM (Si) defined2 for all possible values of S. Consequently, the set of messages M (Si) must be
defined a priori for any compression sequence Si (we will provide examples in the next section).

Since we do not allow any dependence on S for PI (i), we cannot discriminate a priori between
two vectors of indicies i, i′ ∈ I that have same size. Hence, we propose to assign the same prior
probability to every vector i having the same size, that is, we choose

PI (i) = ζ(|i|) ·
(

m
|i|

)−1

, (2)

2. As we will precisely see later, the allowed dependence on Si of the prior comes from the fact that the empirical risk
of the classifiers will be computed only on the examples of S that are not in the compression sequence Si.
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where ζ can be any function satisfying ∑m
d=0 ζ(d) = 1. However, since the risk upper bound will

deteriorate as we put more weight on classifiers with large compression sizes |i|, it will be preferable
to choose a function ζ(d) that puts more weight on small values of d.

To shorten the notation, we will denote the true risk R(R (σ,Si)) of classifier R (σ,Si) simply
by R(σ,Si). Similarly, we will denote the empirical risk RSi

(R (σ,Si)) of classifier R (σ,Si) simply
by RSi

(σ,Si). Recall that Si is the set of training examples which are not in the compression set Si.
Indeed, it will become obvious that the bound on the risk of classifier R (σ,Si) depends only on its
empirical risk on Si.

Given a training sequence S and a distribution Q, and given a new (testing) input example x,
a sample-compressed Gibbs classifier GQ chooses randomly i according to QI and then chooses σ
according to QM (Si) to obtain classifier R (σ,Si) which is then used to determine the class label of
x. Therefore, given a training sequence S and a distribution Q, the true risk R(GQ) of the sample-
compressed Gibbs classifier GQ is given by

R(GQ) = E
i∼QI

E
σ∼QM (Si)

R(σ,Si) .

Furthermore, its empirical risk RS(GQ) is given by

RS(GQ) = E
i∼QI

E
σ∼QM (Si)

RSi
(σ,Si) .

Note that these expectations are defined only within the context of a training sequence S.
Given a posterior Q, some expectations below will be performed on a re-scaled distribution

defined by the following.

Definition 2 Given a distribution Q on I ×MS, we will denote by QI the distribution defined as

QI (i)
def
=

QI (i)

|i| E
i∼QI

1
|i|

∀i ∈ I , (3)

where |i| def
= m−|i|. We will also denote by Q, the distribution on I ×MS given by the product

QI (i)QMSi
(σ) .

Furthermore, let

dQ
def
= E

i∼QI

|i| . (4)

It follows directly from these definitions that

E
i∼QI

1

|i|
=

1

E
i∼QI

|i|
=

1
m−dQ

. (5)

Let i f
def
= (1,2, . . . ,m) be the (full) vector i that contains all the m indicies. Since |i f | = 0,

we might think that QI is undefined whenever QI (i f ) > 0. However, we can simply show that
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definition 2 implies that we must have QI (i f ) = 1 (and QI (i) = 0 ∀i 6= i f ) whenever QI (i f ) > 0.
This claim simply follows from the fact that for all i we can write

|i| E
j∼QI

1

|j|
= QI (i)+ |i| ∑

j6=i
QI (j)

1

|j|
.

Consequently, we have

QI (i f ) =
QI (i f )

|i f | E
j∼QI

1
|j|

=
QI (i f )

QI (i f )+ |i f |∑j6=i f
QI (j) 1

|j|

= 1 .

And for all i 6= i f , we have

QI (i) =
QI (i)

|i| E
j∼QI

1
|j|

=
QI (i)

QI (i)+ |i|∑j6=i QI (j) 1
|j|

≤
QI (i)

QI (i)+ |i|QI (i f )
1
|i f |

= 0 ,

which proves the claim.
The next theorem constitutes our main result.

Theorem 3 For any δ∈ (0,1], for any reconstruction function mapping compression sequences and
messages to classifiers, for any T ∈ (X ×Y )m and for any prior PT on I ×MT , we have

Pr
S∼Dm

(

∀Q on I ×MS : kl(RS(GQ)‖R(GQ))

≤
1

m−dQ

[

KL(Q‖PS)+ ln
m+1

δ

])

≥ 1−δ .

Similarly as Theorem 1, Theorem 3 provides both an upper bound and a lower bound on the
true risk R(GQ) based on the empirical risk RS(GQ).

Note that

KL(Q‖PS) = E
i∼QI

E
σ∼QM (Si)

ln
QI (i)QM (Si)(σ)

PI (i)PM (Si)(σ)

= E
i∼QI

ln
QI (i)
PI (i)

+ E
i∼QI

E
σ∼QM (Si)

ln
QM (Si)(σ)

PM (Si)

= KL(QI‖PI ) + E
i∼QI

KL(QM (Si)‖PM (Si)) .

Although we must define a priori a continuous family of priors (one prior PT on I ×MT per
possible sequence T ∈ (X ×Y )m), only the prior on the observed training sequence S will contribute
to the bounds.

Theorem 3 is a generalization of Theorem 1 because the latter corresponds to the case where the
probability distribution Q has non-zero weight only for |i|= 0. Indeed, in this case we have 1

m−dQ
=

1
m and Q = Q.
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Note also that, when QI is non-zero only for one compression size |i| = d, we have QI = QI
and dQ = d. Hence, for a stochastic average of sample-compressed classifiers of fixed compression
size d, the risk bounds depend only on the “original” posterior QI .

More generally, note that QI (i) is smaller than QI (i) for classifiers having a compression size
|i| smaller than the Q-average. This, combined with the fact that KL(Q‖PS) favors Q’s close to PS,
implies that there will be a specialization performed by Q on classifiers having small compression
sizes. As an example, in the case where Q = PS, it is easy to see that Q will put more weight than PS

on “small” classifiers. The specialization suggested by Theorem 3 is therefore stronger than what
it would have been if KL(Q‖PS) would have been in the risk bound instead of KL(Q‖PS). Thus,
Theorem 3 reinforces Occam’s principle of parsimony.

Note also that, since R(BQ) ≤ 2R(GQ), Theorem 3 provides an upper bound for the true risk of
the (deterministic) majority vote BQ. Consider, for example, a majority vote of m classifiers, each
having a compression size |i|= 1. In that case, this majority vote uses all the m training examples of
S. However, the upper bound given by Theorem 3 will be small (whenever KL(Q‖PS) and RS(GQ)
are both small) since dQ = 1.

The rest of this section is devoted to the proof of Theorem 3. We first provide a lemma about
the following quantity.

Definition 4 Let S ∈ (X ×Y )m and D be a distribution on X ×Y . We will denote by BS(i,σ), the
probability that the classifier R (σ,Si) of (true) risk R(σ,Si) makes exactly |i|RSi

(σ,Si) errors on

S′
i
∼ D|i|. Hence, equivalently, we have

BS(i,σ)
def
=

(

|i|
|i|RSi

(σ,Si)

)

(R(σ,Si))
|i|RSi

(σ,Si) (1−R(σ,Si))
|i|−|i|RSi

(σ,Si) .

Lemma 5 For any δ ∈ (0,1], for any reconstruction function mapping compression sequences and
messages to classifiers, for any T ∈ (X ×Y )m and for any prior PT on I ×MT , we have

Pr
S∼Dm

(

E
i∼PI

E
σ∼PM (Si)

1
BS(i,σ)

≤
m+1

δ

)

≥ 1−δ .

Proof First observe that (for any i ∈ I , Si ∈ (X ×Y )|i|, and σ ∈ M (Si))

E
Si∼D|i|

1
BS(i,σ)

=
|i|

∑
k=0

Pr
Si∼D|i|

(

RSi
(σ,Si) =

k

|i|

)



 E
Si∼D|i|

∣

∣RSi
(σ,Si)=

k
|i|

(

1
BS(i,σ)

)





=
|i|

∑
k=0

Pr
Si∼D|i|

(

|i|RSi
(σ,Si) = k

)

(|i|
k

)

(R(σ,Si))
k (1−R(σ,Si))

|i|−k
=

m−|i|

∑
k=0

1 = m−|i|+1 .

Since the expectation over Si is independent of Si, for any PI and PM (Si) we have

E
S∼Dm

E
i∼PI

E
σ∼PM (Si)

1
BS(i,σ)

= E
i∼PI

E
Si∼D|i|

E
σ∼PM (Si)

E
Si∼D|i|

1
BS(i,σ)

= E
i∼PI

E
Si∼D|i|

E
σ∼PM (Si)

m−|i|+1

= m−|i|+1 ≤ m+1 .
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In the first equation above, note that M (Si) must be defined for all possible values of Si since the
expectation on the left-hand side is performed for all possible values of S. Note also that the depen-
dence of the prior P on S comes only through Si. Finally, since E

i∼PI
E

σ∼PM (Si)

1
BS(i,σ) is a non-negative

random variable (function of S) having an expectation of at most m + 1, we can use Markov’s in-
equality to obtain the lemma.

The next step is to transform the expectation over PS into an expectation over Q to obtain the
following lemma.

Lemma 6 For any δ ∈ (0,1], for any reconstruction function mapping compression sequences and
messages to classifiers, for any T ∈ (X ×Y )m and for any prior PT on I ×MT , we have

Pr
S∼Dm

(

∀Q on I ×MS : E
i∼QI

E
σ∼QM (Si)

1

|i|
ln

1
BS(i,σ)

≤
1

m−dQ

[

KL(Q‖PS)+ ln
m+1

δ

])

≥ 1−δ .

Proof Lemma 5 gives us

Pr
S∼Dm

(

ln

[

E
i∼PI

E
σ∼PM (Si)

1
BS(i,σ)

]

≤ ln
m+1

δ

)

≥ 1−δ .

Now, for any distribution Q (possibly dependent on S), we have

E
i∼PI

E
σ∼PM (Si)

1
BS(i,σ)

= E
i∼QI

E
σ∼QM (Si)

PI (i)PM (Si)(σ)

QI (i)QM (Si)(σ)

1
BS(i,σ)

.

Since lnx is concave, we can use Jensen’s inequality to obtain

ln

(

E
i∼PI

E
σ∼PM (Si)

1
BS(i,σ)

)

≥ E
i∼QI

E
σ∼QM (Si)

ln

(

PI (i)PM (Si)(σ)

QI (i)QM (Si)(σ)

1
BS(i,σ)

)

= E
i∼QI

E
σ∼QM (Si)

ln

(

PI (i)PM (Si)(σ)

QI (i)QM (Si)(σ)

)

+ E
i∼QI

E
σ∼QM (Si)

ln

(

1
BS(i,σ)

)

= −KL(Q‖PS)+ E
i∼QI

E
σ∼QM (Si)

ln

(

1
BS(i,σ)

)

.

Consequently, we have

Pr
S∼Dm

(

∀Q on I ×MS : E
i∼QI

E
σ∼QM (Si)

ln

[

1
BS(i,σ)

]

≤ KL(Q‖PS)+ ln
m+1

δ

)

≥ 1−δ .

The lemma is obtained from this last equation by using Equations 3, 4, and 5 to transform the ex-
pectation with respect to QI into an expectation with respect to QI .
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We can now prove that Theorem 3 is a direct consequence of Lemma 6, of the convexity of
kl(q‖p), and of a trivial upper-bound on the Binomial.

Proof of Theorem 3

For all non-negative integers n and k such that k ≤ n and n ≥ 1, we have

(

n
k

)(

k
n

)k(

1−
k
n

)n−k

≤ 1 .

From Definition 4, we then have (for any i, σ, and S)

BS(i,σ) ≤

(

R(σ,Si)

RSi
(σ,Si)

)|i|RSi
(σ,Si)( 1−R(σ,Si)

1−RSi
(σ,Si)

)|i|−|i|RSi
(σ,Si)

.

Consequently, for any i, σ, and S, we have

1

|i|
ln

1
BS(i,σ)

≥ RSi
(σ,Si) ln

RSi
(σ,Si)

R(σ,Si)
+(1−RSi

(σ,Si)) ln
1−RSi

(σ,Si)

1−R(σ,Si)

def
= kl

(

RSi
(σ,Si)‖R(σ,Si)

)

. (6)

We now exploit the fact that kl(q‖p) is a convex function of the pair (q, p) of variables. Indeed, from
the log-sum inequality (Cover and Thomas, 1991), we can show that for any (q, p) ∈ [0,1]× [0,1],
any (r,s) ∈ [0,1]× [0,1], and any α ∈ [0,1], we have

kl
(

αq+(1−α)r‖αp+(1−α)s
)

≤ αkl(q‖p)+(1−α)kl(r‖s) .

Hence, from Equation 6 and Jensen’s inequality applied to kl(q‖p), we have

E
i∼QI

E
σ∼QM (Si)

1

|i|
ln

1
BS(i,σ)

≥ E
i∼QI

E
σ∼QM (Si)

kl
(

RSi
(σ,Si)‖R(σ,Si)

)

≥ kl(RS(GQ)‖R(GQ)) .

Theorem 3 then directly follows from this equation and Lemma 6.

5. Learning Algorithms for Stochastic Averages and Majority-Votes of
Sample-Compressed Classifiers

There exists numerous learning algorithms for producing a single sample-compressed classifier.
The perceptron learning rule, for example, produces a linear classifier which can be reconstructed
from the subsequence of training examples that have been used to update the weight vector and the
bias of the linear separator (Graepel et al., 2005). This subsequence of examples then constitutes
the compression sequence of the sample-compressed classifier and the reconstruction function just
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consists of the perceptron learning rule executed on the compression sequence. Another example,
also studied by Graepel et al. (2005), is the support vector machine (SVM). Here, the compression
sequence consists of the set of support vectors and the reconstruction function, again, just consists
of running the original learning algorithm on the compression sequence.

Theorem 3 bounds the risk a stochastic average (and the associated majority-vote) of sample-
compressed classifiers. Hence, to apply Theorem 3 to algorithms producing a single classifier (as
the ones described above), we need to use a posterior Q that has all its weight on a single classifier.
In that case, Theorem 3 reduces to Theorem 7 of the next section. However, due to the presence of
KL(Q‖PS) in Theorem 3, and because the prior PI in Equation 2 gives an equal a priori weight to
every vector i having the same number |i| of indices, Theorem 3 can provide a smaller risk upper-
bound for posteriors Q having non-zero weight on several sample-compressed classifiers than for
posteriors having all their weight on a single sample-compressed classifier. In short, the guarantee
provided by Theorem 3 might be better for a stochastic average of sample-compressed classifiers
than for any single sample-compressed classifier. This observation motivates the consideration of
learning algorithms for producing posteriors having non-zero weight over several classifiers.

One way to produce a (hopefully) good posterior over several sample-compressed classifiers
is to exploit some inherent randomness, or variability, present in the base learning algorithm for
single classifiers. The perceptron learning rule is a good example of a learning algorithm that
naturally presents some variability that can be exploited. Indeed, the linear classifier produced
by the perceptron learning rule is generally very sensitive to the order of the training sequence of
examples. Different permutations of the training sequence are likely to produce different linear
classifiers. This variability has been exploited by Herbrich et al. (2001) to produce a large-scaled
Bayes point machine. If we are not concerned by the space occupied by a large population of
classifiers, it is clear from the work of Herbrich et al. (2001) that we could equally well produce
a uniformly-weighted majority vote of perceptrons obtained from a large number of permutations
of the training sequence.3 In that case, the stochastic average of these classifiers would represent
the typical perceptron that we would obtain by choosing at random a permutation of the training
sequence S. We therefore expect that this stochastic Gibbs classifier would be less sensitive to S
than any single perceptron obtained from S. Theorem 3 confirms this intuition with an upper-bound
on the risk that increases with the amount of the KL-divergence between the posterior and the prior.

Often, the base learning algorithm has no obvious randomness or variability that can be ex-
ploited. The SVM provides an obvious example of this type of algorithm since, given any training
sequence S, the maximum soft-margin classifier is unique (and the same for any permutation of S).
In these cases, a population of distinct classifiers can be obtained by training the base learning algo-
rithm on several training sequences sampled from the bootstrap distribution defined on the original
training sequence S; as done in bagging (Breiman, 1996). Another possibility, is to boost (Freund
and Schapire, 1997) the base learning algorithm by adaptively re-weighting a distribution defined
on the training sequence S.

5.1 Stochastic Averages and Majority-Votes of Set Covering Machines

The perceptron learning rule and the SVM are examples of learning algorithms that produce sample-
compressed classifiers R (Si) that can be reconstructed solely from a compression sequence Si.

3. For the case where the training sequence is not linearly-separable, we could simply add a correction to the diagonal
of the kernel matrix as was done by Herbrich et al. (2001).
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Hence, they are not examples illustrating all the potential of the machinery of data-dependent mes-
sages and priors that was developed in Section 4. We therefore present here an example of a learning
algorithm, called the set covering machine (SCM) (Marchand and Shawe-Taylor, 2002), that does
make use of data-dependent messages to represent sample-compressed classifiers.

As described in Marchand and Shawe-Taylor (2002) and Marchand and Sokolova (2005), a
SCM classifier is a conjunction of data-dependent Boolean-valued features.4 For simplicity, let us
limit ourselves to the case where this set of features consists of data-dependent balls and holes; as
described in Marchand and Sokolova (2005).

Each such feature g is identified by a center xc and a radius ρ. Let d : X ×X → R
+ be any

metric. In the case where feature g is a ball, its output g(x), for any x ∈ X , is given by

g(x) =

{

1 if d(x,xc) ≤ ρ
0 if d(x,xc) > ρ (for balls) .

When feature g is a hole, its output g(x), for any x ∈ X , is given by

g(x) =

{

0 if d(x,xc) ≤ ρ
1 if d(x,xc) > ρ (for holes) .

Each possible pair (zc,zb) of training examples taken from S defines a feature (ball or hole) that
could potentially be included in the (final) conjunction classifier. The first example, zc = (xc,yc),
defines the center of the feature and the second example, zb = (xb,yb), called the border, determines
its radius ρ = d(xc,xb)±ε; where ε is some very small positive constant chosen a priori. To obtain a
conjunction consistent with each center of its features, we limit ourselves to the case where a feature
centered on a positive example must be a ball and a feature centered on a negative example must
be a hole. Moreover, because we want to obtain a conjunction that makes few training errors and
that contains a small number of features, it is a good strategy to try to use features that, individually,
assigns 0 to a large number of negative examples and to a small number of positive examples.5 In
order to achieve this goal reasonably rapidly and to reduce as far as possible the expected size of
the message strings, we will here limit ourselves to conjunctions of features satisfying the following
conditions:

1. no two concentric balls or holes can belong to the same conjunction;

2. border points are only chosen among the positive examples of S;

3. the conjunction makes no error on its compression sequence Si.

The algorithm proposed by Marchand and Shawe-Taylor (2002) greedily constructs conjunctions of
balls and holes that respect these conditions. Condition 1 is motivated by the fact that a conjunction
of two concentric balls gives the same classifier as the single inner ball (and, symmetrically, a
conjunction of two concentric holes can be replaced by the outer hole). Condition 2 follows from our
strategy of looking for features that, individually, assign 0 to a large number of negative examples

4. Here we use the usual convention that the truth values “false” and “true” of Boolean-valued classifiers are mapped,
respectively, to the output values of −1 and +1 of binary-valued classifiers.

5. We exploit here some properties of a conjunction. Namely, a conjunction that makes no training errors consists of
features that, individually, classify correctly all the positive examples in S. In addition, each negative example of S
must be correctly classified by at least one feature in the conjunction.
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and to a small number of positive examples. Indeed, a hole, that can assign 0 to one more negative
example by increasing its radius, without assigning 0 to an extra positive example, will be a “better”
hole to include in the conjunction (a similar observation applies to balls). For Condition 3, we
will see, in the next paragraph, how it helps in reducing the expected size of the messages strings.
For now, note that, to make each feature consistent with its border point, we have to choose ρ =
d(xc,xb)+ ε for a ball and ρ = d(xc,xb)− ε for a hole.

Even under these three conditions, the compression sequence Si alone, does not give enough
information to reconstruct the conjunction of features. From the previous paragraph, we do know
that each negative example in Si must be the center of a hole. However, each positive example in
Si could either be a center (of a ball) or a border point (or both). Hence, we will use messages to
identify centers from among the positive examples in Si. For this task, let P(Si) denote the set of
positive examples among Si. It follows from Condition 1 that, once we use a message that specifies
which are the examples among P(Si) that are used for centers, we automatically know how many
balls to reconstruct from Si. Moreover, since, by Condition 2, each negative example of Si must be
the center of one hole, the number of holes to reconstruct from Si is equal to the number of negative
examples in Si. What remains to be determined, to specify the (final) conjunction classifier, is the
border point in P(Si) for each center in Si. Let us now recall that a conjunction that makes no
errors on Si consists of features that, individually, classify correctly each example in P(Si). Thus,
Condition 3 implies that the border point of each ball center xc must be the example in P(Si) which
is located furthest from xc and the border point of each hole center x′

c must be the example in P(Si)
which is located closest from x′c. Hence, the additional information message σ ∈ M (Si) only needs
to specify which are the examples in P(Si) that are centers. For this task, we can simply use a single
bit for each example in P(Si) to indicate if that example is a center. The set M (Si) then consists
of the set of all such possible bit sequences that we can use, given Si. The total number |M (Si)| of
possible messages is then equal to 2p(Si), where p(Si) = |P(Si)|.

Now, to use Theorem 3 as a risk bound for a stochastic average (i.e., Gibbs) of SCMs, we need
to specify the prior PI (i)PM (Si)(σ) over sets of indices and messages. For PI (i), we use the form
proposed in Equation 2. For PM (Si)(σ), we can simply6 assign the same probability to each message
σ ∈ M (Si). In that case we have

PM (Si)(σ) = 2−p(Si) ∀σ ∈ M (Si) .

The task of the learner will then be to produce a posterior QI (i)QM (Si)(σ) such that, hopefully,
R(GQ) (and thus, indirectly, R(BQ)) will be minimal. For this task we could either bag (Breiman,
1996) or boost (Freund and Schapire, 1997) the SCM learning algorithm proposed by Marchand and
Shawe-Taylor (2002). In these cases, the message part of the posterior, QM (Si)(σ), will be non-zero
only for the particular message that is actually used for each compression sequence Si that occurs in
the majority-vote of SCMs. Hence, for each such Si, we have

KL(QM (Si)‖PM (Si)) = p(Si) ln2 .

Another version of the SCM, called PAC-Bayes SCM, has been proposed recently by Laviolette
et al. (2006). In this version each ball radius is specified by a real-valued “message” instead of

6. Marchand and Sokolova (2005) proposed a different data-dependent set of messages and prior which can give a
(slightly) tighter risk bound than the solution we present here. For pedagogical reasons, we have chosen to present
here a simpler (and easier to understand) example of M (Si) and PM (Si)

(σ).
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a border point. Hence, each compression sequence Si consists only of the centers. Given Si, the
message σσσ consists of a |i|-tuple of radius values. Given some large distance R defined a priori, the
prior is given by

PM (Si)(σσσ) = ∏
i∈i

1
R

∀σi ∈ [0,R] , (7)

and the posterior is given by

QM (Si)(σσσ) = ∏
i∈i

1
bi −ai

∀σi ∈ [ai,bi] ⊆ [0,R] , (8)

where each ai and bi values are selected by the learner. This gives

KL(QM (Si)‖PM (Si)) = ∑
i∈i

ln

(

R
bi −ai

)

.

A posterior over several SCMs of this type could be constructed by bagging (Breiman, 1996)
or boosting (Freund and Schapire, 1997) the soft-greedy algorithm proposed by Laviolette et al.
(2006). Theorem 3 then provides an upper bound for the risk of these stochastic averages (and
associated majority-votes) of PAC-Bayes SCMs.

6. Single Sample-Compressed Classifiers

In this section, we examine the case when the posterior has all its weight on a single sample-
compressed classifier and show that the risk upper-bound for this case is competitive with the
currently-known tightest sample-compression risk bounds (Langford, 2005, Laviolette et al., 2005).

Let us examine the case when, given a training sequence S, the (stochastic) sample-compressed
Gibbs classifier becomes a deterministic classifier with a posterior having all its weight on a sin-
gle sample-compressed classifier R (Si,σ). In that case, QI = QI , dQ = |i|, and KL(Q‖PS) =
− ln(PI (i)PM (Si)(σ)). Consequently, Lemma 6 gives the following inequality for any prior PS and
any reconstruction function.

Pr
S∼Dm

(

∀i ∈ I ,∀σ ∈ M (Si) : E
i∼QI

E
σ∼QM (Si)

ln
1

BS(i,σ)

≤ ln
1

PI (i)PM (Si)(σ)
+ ln

m+1
δ

)

≥ 1−δ . (9)

Now, let us use the binomial distribution

Bin(m,k,r)
def
=

(

m
k

)

rk(1− r)m−k ,

to express BS(i,σ) as
BS(i,σ) = Bin

(

m,mRSi
(σ,Si),R(σ,Si)

)

.

Let us now define the binomial inversion as

Bin(m,k,δ)
def
= sup{r : Bin(m,k,r) ≥ δ} .

Equation 9 then gives the following theorem.
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Theorem 7 For any δ∈ (0,1], for any reconstruction function mapping compression sequences and
messages to classifiers, for any T ∈ (X ×Y )m and for any prior PT on I ×MT , we have

Pr
S∼Dm

(

∀i ∈ I ,∀σ ∈ M (Si) : R(σ,Si) ≤ Bin

(

m,mRSi
(σ,Si),

PI (i)PM (Si)(σ)δ
(m+1)

))

≥ 1−δ .

Let us now compare this risk bound with the tightest currently known sample-compression
risk bounds. The bound proposed in Laviolette et al. (2005) generalizes the the bound proposed
by Langford (2005) to the case where message strings are also used to identify classifiers. With the
current notation, the bound proposed by Laviolette et al. (2005) can be written as

Pr
S∼Dm

(

∀i ∈ I ,∀σ ∈ M (Si) : R(σ,Si) ≤ BinT
(

m,mRSi
(σ,Si),PI (i)PM (Si)(σ)δ

))

≥ 1−δ ,

where, instead of the binomial inversion, we use the binomial tail inversion defined as

BinT(m,k,δ)
def
= sup

{

r :
k

∑
i=0

Bin(m, i,r) ≥ δ

}

.

Consequently, for all values of m,k,δ, we have

Bin(m,k,δ) ≤ BinT(m,k,δ)

When both m and δ are non zero, the equality is realized only for k = 0. Hence, the bound of
Theorem 7 would be tighter than the bound of Laviolette et al. (2005) if Theorem 7 would hold for
δ instead of δ/(m + 1) . The bound of Theorem 7 is therefore “competitive” with the currently-
known tightest sample-compression risk bound.

Let us now examine the “intermediate” case where QI has all its weight on a single vector of
indices i and QM (Si) has non-zero weight on several messages σ ∈ M (Si). In this case we have
Q = Q and KL(Q‖PS) = − ln(PI (i)) + KL(QM (Si)‖PM (Si)). Moreover, given a training sequence
S of m examples and a vector i selected by the learner, the Gibbs classifier GQM (Si)

just chooses
randomly according to QM (Si) a message σ to classify any new example x with classifier R (σ,Si).
Consequently, Theorem 3 reduces to the following corollary.

Corollary 8 For any δ ∈ (0,1], for any reconstruction function mapping compression sequences
and messages to classifiers, for any T ∈ (X ×Y )m and for any prior PT on I ×MT , we have

Pr
S∼Dm

(

∀i ∈ I , ∀QM (Si) : kl(RS(GQM (Si)
)‖R(GQM (Si)

)

≤
1

m−|i|

[

ln
1

PI (i)
+KL(QM (Si)‖PM (Si))+ ln

m+1
δ

])

≥ 1−δ .

This corollary gives the risk bound proposed in Laviolette et al. (2006) for the PAC-Bayes SCM
when the prior is given by Equation 7 and the posterior is given by Equation 8.
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7. Compression Sequences that Include Training Errors

In their pioneering work on sample compression, Littlestone and Warmuth (1986) have handled
the case of non-zero training errors (also called the “lossy” compression case) by including the
training error points in the sample compression sequence Si. Within this methodology, a part of
the message string σ is used to indicate which indices in i are pointing to training error examples.
The other indices in i are then automatically pointing to the training examples actually used for
constructing the classifier. We can also use this methodology for deriving another upper-bound
on the risk of a stochastic average of sample-compressed classifiers. The resulting upper-bound is
generally slightly looser than the one given by Theorem 3 but it has the advantage of being simpler
(and easier to interpret). In addition, it becomes slightly tighter than the bound of Theorem 3 in the
limit of a consistent Gibbs classifier (i.e., when GQ makes no training errors). We will thus present
(and prove) this other upper-bound.

Since each sample-compressed classifier R (σ,Si) is still given by i and σ (once we have a
training sequence S), we can still use all the definitions up to Theorem 3. However, i points also
to training errors in S and σ specifies also the indices of i pointing to training errors. In particular,
this implies that we still use posteriors of the form QI (i)QM (Si)(σ) but now RS(GQ) is always zero.
With this important difference in mind, we have the following theorem.

Theorem 9 For any δ∈ (0,1], for any reconstruction function mapping compression sequences and
messages to classifiers, for any T ∈ (X ×Y )m and for any prior PT on I ×MT , we have

Pr
S∼Dm

(

∀Q on I ×MS such that RS(GQ) = 0:

R(GQ) ≤ 1− exp

[

−1
m−dQ

(

KL(Q‖PS)+ ln
1
δ

)

])

≥ 1−δ .

Before we prove this theorem, let us compare it with Theorem 3 in the consistent case (when GQ

makes no training errors). For Theorem 9, this means that no part of the message σ is needed to
indicate the indices in i that point to training errors. Hence, the messages used for the reconstruction
function are identical for both theorems in the consistent case. Theorem 3, however, applies for
RS(GQ) = 0. Since

kl(0‖R(GQ)) = ln

(

1
1−R(GQ)

)

,

the upper bound of Theorem 3 becomes identical to the bound of Theorem 9 except for the presence
of a ln(m + 1) term in the argument of the exponential in Theorem 3. Consequently, the bound of
Theorem 9 is slightly tighter in the consistent case.

Proof Since the index vector i, used by classifier R (σ,Si), now contains pointers to error points,
all the classifiers having non-zero posterior weight will have RSi

(σ,Si) = 0. Consequently, instead
of using BS(i,σ) (see Definition 4), we will now use CS(i,σ) defined as

CS(i,σ)
def
=

1

(1−R(σ,Si))m−|i|
I
(

RSi
(σ,Si) = 0

)

.
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For any i ∈ I , Si ∈ (X ×Y )|i|, and σ ∈ M (Si), we have

E
Si∼D|i|

CS(i,σ) = Pr
Si∼D|i|

(

RSi
(σ,Si) = 0

)

[

E
Si∼D|i||RSi

(σ,Si)=0
CS(i,σ)

]

= 1 .

Then for any PI and PM (Si), we have

E
S∼Dm

E
i∼PI

E
σ∼PM (Si)

CS(i,σ) = E
i∼PI

E
Si∼D|i|

E
σ∼PM (Si)

E
Si∼D|i|

CS(i,σ) = 1 .

Since E
i∼PI

E
σ∼PM (Si)

CS(i,σ) is a non-negative random variable (function of S) having an expectation

of 1, we can use Markov’s inequality to obtain

Pr
S∼Dm

(

E
i∼PI

E
σ∼PM (Si)

CS(i,σ) ≤
1
δ

)

≥ 1−δ .

Thus

Pr
S∼Dm

(

ln

[

E
i∼PI

E
σ∼PM (Si)

CS(i,σ)

]

≤ ln
1
δ

)

≥ 1−δ .

Given this last result, we can use the same technique as in the proof of Lemma 6 to convert the
expectation over PS into an expectation over Q. With this technique, we find that, for any prior PS,
we have

Pr
S∼Dm

(

∀Q on I ×MS such that RS(GQ) = 0:

E
i∼QI

E
σ∼QM (Si)

1

|i|
lnCS(i,σ) ≤

1
m−dQ

[

KL(Q‖PS)+ ln
1
δ

]

)

≥ 1−δ . (10)

Since the posterior QI (i)QM (Si)(σ) is non-zero only when RSi
(σ,Si) = 0, we have

E
i∼QI

E
σ∼QM (Si)

1

|i|
lnCS(i,σ) = E

i∼QI
E

σ∼QM (Si)

ln

(

1
1−R(σ,Si)

)

≥ ln

(

1
1−R(GQ)

)

,

where the last inequality results from Jensen’s inequality applied to the convex function ln(1/(1−
x)).

The theorem is obtained by including this last result into Equation 10.

8. A PAC-Bayes Theorem for Classifiers that Can Abstain

Many commercial learning systems are producing a “meta-classifier” that consists of an ensemble
of rules. In these cases, each rule is basically a classifier that abstains of predicting the class label
of an example x whenever its premiss (which often consists of a conjunction of Boolean-valued
features) is false on x. If several rules predict a class label for x, the assigned class label will be the
one which is predicted by the largest number of rules in the ensemble. When there is a tie, the whole
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ensemble may abstain or predict the most frequently encountered class in the training sequence S.
Hence, an ensemble of rules is just a majority-vote of classifiers that may abstain.

To bound the risk of majority-votes and stochastic averages of classifiers that can abstain, it
is “natural” to consider loss functions that may take values /∈ {0,1}. If we limit ourselves to loss
functions taking values in the [0,1] interval (including the loss value for abstaining), we can use the
risk bound of Theorem 1 of McAllester (2003a). However, that bound can be considerably higher
than the trivial upper-bound of 1. A better approach would be to use the bound of Theorem 3.2
of Seeger (2003)—which is valid for classifiers predicting a class among k possible values (for
any integer k > 1). In this section, we propose to generalize this latter approach to the sample-
compression setting. 7 Consequently, we will generalize Theorem 3 for a stochastic average of
sample-compressed classifiers that may abstain. As before, the theorem will also apply to the usual
data-independent setting in the limit where each classifier is only described by a data-independent
message (and an empty compression sequence).

Each classifier h has now three possible outcomes h(x)∈ {−1,0,+1} on any x ∈ X . Classifier h
abstains on x whenever h(x) = 0. Therefore, each classifier h is now characterized by two different
probabilities with respect to the random draws of an example (x,y) ∈ X ×Y (where Y is still equal
to {−1,+1}). First, we are concerned with the probability a(h) that classifier h abstains on a new
example, where

a(h)
def
= Pr

(x,y)∼D
(h(x) = 0) .

And we are also concerned with the probability e(h) that classifier h predicts the wrong class label
of a new example, where

e(h)
def
= Pr

(x,y)∼D
(h(x) 6= y∧h(x) 6= 0) .

The probability that classifier h predicts the correct class label of a new example is then equal to
1− e(h)− a(h). In contrast with the case where classifiers cannot abstain, each classifier is now
characterized by a trivalent random variable (instead of a Bernoulli random variable).

The empirical estimates (of these probabilities) on a training sequence S of m examples are
defined as

eS(h)
def
=

1
m

m

∑
i=1

I(h(xi) 6= 0) · I(h(xi) 6= yi) ,

aS(h)
def
=

1
m

m

∑
i=1

I(h(xi) = 0) .

Similarly as before, each classifier R (σ,Si) is described by a compression sequence Si and a
message σ taken from a data-dependent set M (Si). Given a training sequence S, the prior and the
posterior have the same form as before. Moreover, a(σ,Si) and e(σ,Si) will denote, respectively, the
probability of abstaining and the probability of incorrectly predicting a label for classifier R (σ,Si).
We will also denote by aSi

(σ,Si) and eSi
(σ,Si) the empirical estimates (of the corresponding proba-

bilities) on the subsequence Si of examples in S that are not used for constructing classifier R (σ,Si).

7. We consider here the particular case where each classifier either predicts -1 or +1 or abstains of predicting. The
generalization to k classes is straightforward.
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The stochastic sample-compressed Gibbs classifier is the same as before. Namely, given a
training sequence S and a distribution Q, and given a new (testing) input example x, a sample-
compressed Gibbs classifier GQ chooses randomly i according to QI and then chooses σ according
to QM (Si) to obtain classifier R (σ,Si) which is then used to determine the class label of x. Therefore,
given a training sequence S and a distribution Q, e(GQ) and a(GQ) are given by

e(GQ) = E
i∼QI

E
σ∼QM (Si)

e(σ,Si) ,

a(GQ) = E
i∼QI

E
σ∼QM (Si)

a(σ,Si) .

Furthermore, their empirical estimates (on a training sequence S of m examples) are given by

eS(GQ) = E
i∼QI

E
σ∼QM (Si)

eSi
(σ,Si) ,

aS(GQ) = E
i∼QI

E
σ∼QM (Si)

aSi
(σ,Si) .

Note that these expectations are defined only within the context of a training sequence S.
Given a posterior Q, the re-scaled posterior Q is still given by Definition 2.

Theorem 10 For any δ ∈ (0,1], for any reconstruction function mapping compression sequences
and messages to classifiers that may abstain, for any T ∈ (X ×Y )m and for any prior PT on I ×MT ,
we have

Pr
S∼Dm

(

∀Q on I ×MS : kl(aS(GQ),eS(GQ)‖a(GQ),e(GQ))

≤
1

m−dQ

[

KL(Q‖PS)+ ln
(m+1)(m+2)

2δ

])

≥ 1−δ ,

where kl(q1,q2‖p1, p2) is the Kullback-Leibler divergence between the distributions of two trivalent
random variables Yq and Yp with probabilities (q1,q2) and (p1, p2) respectively. Hence,

kl(q1,q2‖p1, p2) = q1 ln
q1

p1
+q2 ln

q2

p2
+(1−q1 −q2) ln

1−q1 −q2

1− p1 − p2
.

Proof The proof essentially parallels the one given for Theorem 3 but with the important difference
that the empirical estimates eSi

(σ,Si) and aSi
(σ,Si) are distributed according to a trinomial (instead

of a binomial) with respect to the random draws of S. Consequently, we now define BS(i,σ) as

BS(i,σ)
def
=

(

|i|
|i|aSi

(σ,Si)

)(

|i|(1−aSi
(σ,Si))

|i|eSi
(σ,Si)

)

(a(σ,Si))
|i|aSi

(σ,Si)

(e(σ,Si))
|i|eSi

(σ,Si) (1−a(σ,Si)− e(σ,Si))
|i|(1−aSi

(σ,Si)−eSi
(σ,Si)) .
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Then, for any i ∈ I , Si ∈ (X ×Y )|i| and σ ∈ M (Si), we have

E
Si∼D|i|

1
BS(i,σ)

=
|i|

∑
j=0

|i|− j

∑
k=0

Pr
Si∼D|i|

(

aSi
(σ,Si) =

j

|i|
∧ eSi

(σ,Si) =
k

|i|

)

E


Si∼D|i|

∣

∣

∣

∣

aSi
(σ,Si) = j

|i|
,

eSi
(σ,Si) = k

|i|





(

1
BS(i,σ)

)

=
|i|

∑
j=0

|i|− j

∑
k=0

Pr
Si∼D|i|

(

aSi
(σ,Si) = j

|i|
∧ eSi

(σ,Si) = k
|i|

)

(

|i|
j

)(|i|− j
k

)

(a(σ,Si))
j (e(σ,Si))

k (1−a(σ,Si)− e(σ,Si))
|i|− j−k

=
(|i|+1)(|i|+2)

2
.

Since the expectation over Si is independent of Si, for any PI and PM (Si) we have

E
S∼Dm

E
i∼PI

E
σ∼PM (Si)

1
BS(i,σ)

= E
i∼PI

E
Si∼D|i|

E
σ∼PM (Si)

E
Si∼D|i|

1
BS(i,σ)

= E
i∼PI

E
Si∼D|i|

E
σ∼PM (Si)

(|i|+1)(|i|+2)

2

=
(|i|+1)(|i|+2)

2
≤

(m+1)(m+2)

2
.

Since E
i∼PI

E
σ∼PM (Si)

1
BS(i,σ) is a non-negative random variable (function of S) having an expectation of

at most (m+1)(m+2)/2, we can use Markov’s inequality to obtain

Pr
S∼Dm

(

E
i∼PI

E
σ∼PM (Si)

1
BS(i,σ)

≤
(m+1)(m+2)

2δ

)

≥ 1−δ .

Hence,

Pr
S∼Dm

(

ln

[

E
i∼PI

E
σ∼PM (Si)

1
BS(i,σ)

]

≤ ln
(m+1)(m+2)

2δ

)

≥ 1−δ .

Similarly as in the proof of Lemma 6, we can transform the expectation over PS into an expectation
over Q to obtain

Pr
S∼Dm

(

∀Q on I ×MS : E
i∼QI

E
σ∼QM (Si)

1

|i|
ln

1
BS(i,σ)

≤
1

m−dQ

[

KL(Q‖PS)+ ln
(m+1)(m+2)

2δ

])

≥ 1−δ . (11)

For all non-negative integers n, j,k such that j + k ≤ n and n ≥ 1, we have

(

n
j

)(

n− j
k

)(

j
n

) j(k
n

)k(

1−
j
n
−

k
n

)n− j−k

≤ 1 .
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Then, for any i, σ, and S, we have

BS(i,σ) ≤

(

a(σ,Si)

aSi
(σ,Si)

)|i|aSi
(σ,Si)

·

(

e(σ,Si)

eSi
(σ,Si)

)|i|eSi
(σ,Si)

·

(

1−a(σ,Si)− e(σ,Si)

1−aSi
(σ,Si)− eSi

(σ,Si)

)|i|(1−aSi
(σ,Si)−eSi

(σ,Si))

.

Consequently, for any i, σ, and S, we have

1

|i|
ln

1
BS(i,σ)

≥ aSi
(σ,Si) ln

aSi
(σ,Si)

a(σ,Si)
+ eSi

(σ,Si) ln
eSi

(σ,Si)

e(σ,Si)

+(1−aSi
(σ,Si)− eSi

(σ,Si)) ln
1−aSi

(σ,Si)− eSi
(σ,Si)

1−a(σ,Si)− e(σ,Si)
def
= kl

(

aSi
(σ,Si),eSi

(σ,Si)‖a(σ,Si),e(σ,Si)
)

.

Since kl(q1,q2‖p1, p2) is a convex function of (q1,q2, p1, p2), we can use Jensen’s inequality to
obtain

E
i∼QI

E
σ∼QM (Si)

1

|i|
ln

1
BS(i,σ)

≥ E
i∼QI

E
σ∼QM (Si)

kl
(

aSi
(σ,Si),eSi

(σ,Si)‖a(σ,Si),e(σ,Si)
)

≥ kl(aS(GQ),eS(GQ)‖a(GQ),e(GQ)) .

The theorem directly follows from this equation and Equation 11.

All PAC-Bayes theorems, including the above, are statements about probabilities and their em-
pirical estimates on a sample—no loss functions are involved. Here, let us consider that the loss
`(h(x),y) suffered by classifier h on an example (x,y) is given by

`(h(x),y) =







1 if h(x) 6= y ∧ h(x) 6= 0
0 if h(x) = y
c if h(x) = 0 ,

for some constant c ∈ [0,1]. Since the risk R(h) of classifier h is its expected loss, we have

R(h) = e(h)+ c ·a(h) .

Hence, for a sample-compressed Gibbs classifier GQ, we have R(GQ) = e(GQ)+ c · a(GQ) (with a
similar relation for the empirical estimates on a training sequence S). Therefore, to upper-bound
R(GQ), we simply need to find the largest value of e(GQ) + c · a(GQ) permitted by Theorem 10
given that we know eS(GQ) and aS(GQ). Consequently, Theorem 10 has the following corollary.

Corollary 11 For any δ ∈ (0,1], for any reconstruction function mapping compression sequences
and messages to classifiers that may abstain, for any T ∈ (X ×Y )m and for any prior PT on I ×MT ,
we have

Pr
S∼Dm

(

∀Q on I ×MS : R(GQ) ≤ sup

{

e+ ca
∣

∣ kl(aS(GQ),eS(GQ)‖a,e)

≤
1

m−dQ

[

KL(Q‖PS)+ ln
(m+1)(m+2)

2δ

]})

≥ 1−δ .
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To upper-bound the risk of the majority-vote BQ with Theorem 10, we need to redefine the
risk R(BQ) (in terms of the loss function ` defined above) and related it to e(GQ) and a(GQ). For
this task, let us adopt the convention that BQ(x) abstains of predicting the label of x whenever the
Q-weight of classifiers predicting +1 is equal to the Q-weight of classifiers predicting −1 (this
includes the case when all the classifiers having non-zero posterior weight abstain).

Similarly as our definition of e(GQ), let e(BQ) denote the probability that BQ predicts incorrectly
the label of x on a random draw of (x,y). Furthermore, let e(x,y)(GQ) denote the probability that GQ

predicts incorrectly the label of (x,y) and let a(x,y)(GQ) denote the probability that GQ abstains on
(x,y), that is,

e(x,y)(GQ)
def
= E

h∼Q
I(h(x) 6= y ∧ h(x) 6= 0)

a(x,y)(GQ)
def
= E

h∼Q
I(h(x) = 0) .

Similarly, let e(x,y)(BQ) = 1 iff BQ predicts incorrectly the label of (x,y). Therefore,

e(x,y)(BQ) = 1 ⇐⇒ e(x,y)(GQ) >
1−a(x,y)(GQ)

2
.

Hence,

e(BQ)
def
= E

(x,y)∼D
e(x,y)(BQ)

= E
(x,y)∼D

I

(

e(x,y)(GQ) >
1−a(x,y)(GQ)

2

)

= Pr
(x,y)∼D

(

2e(x,y)(GQ)+a(x,y)(GQ) > 1
)

< 2e(GQ)+a(GQ) ,

where, for the last line, we have used Markov’s inequality for the non-negative random variable
2e(x,y)(GQ)+a(x,y)(GQ) with expectation 2e(GQ)+a(GQ).

Since R(BQ) = e(BQ)+ c ·a(BQ), we can obtain an upper bound on R(BQ) by upper-bounding
a(BQ). However,

a(BQ) = Pr
(x,y)∼D

(

e(x,y)(GQ) =
1−a(x,y)(GQ)

2

)

.

Since Theorem 10 gives non control on the domain of (e(GQ),a(GQ)) that is bounded with high
probability, we cannot use it to find a tight upper-bound for a(BQ). Therefore, since the loss c of
abstaining is at most 1, we will simply use

R(BQ) ≤ e(BQ)+a(BQ) = E
(x,y)∼D

I

(

e(x,y)(GQ) ≥
1−a(x,y)(GQ)

2

)

= Pr
(x,y)∼D

(

2e(x,y)(GQ)+a(x,y)(GQ) ≥ 1
)

≤ 2e(GQ)+a(GQ) ,

where we have, once again, used Markov’s inequality. 8 Consequently, we have the following
corollary to bound R(BQ).

8. We might think that this upper bound for R(BQ) is worse than the the upper bound of 2R(GQ) for classifiers that
cannot abstain. However, the two upper bounds coincides whenever the cost c of abstaining is 1/2 or, equivalently, if
we force the abstaining classifiers to predict and if their predictions are correct with probability 1/2.
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Corollary 12 For any δ ∈ (0,1], for any reconstruction function mapping compression sequences
and messages to classifiers that may abstain, for any T ∈ (X ×Y )m and for any prior PT on I ×MT ,
we have

Pr
S∼Dm

(

∀Q on I ×MS : R(BQ) ≤ sup

{

2e+a
∣

∣ kl(aS(GQ),eS(GQ)‖a,e)

≤
1

m−dQ

[

KL(Q‖PS)+ ln
(m+1)(m+2)

2δ

]})

≥ 1−δ .

Note that the values of e and a for which the supremum in Corollary 11 and 12 are attained
are generally not upper bounds of both e(GQ) and a(GQ). Consequently, the risk bound given by
Corollary 11 and 12 are tighter than those we would have obtained by bounding e(GQ) and a(GQ)
separately.

8.1 Reduced Coulomb Energy Networks

Corollaries 8 and 11 can be used to bound the risk of stochastic averages and majority-votes of
sample-compressed classifiers that can abstain. The reduced Coulomb energy (RCE) network
(see Reilly et al. 1982 and Duda et al. 2000) provides a simple example of such a majority-vote.
Indeed, a RCE network is basically a majority-vote of single balls. As for the SCM case, each ball
is described by a training example called a center (xc,yc), and another training example called a
border (xb,yb). Given any metric d, the output h(x) on any input example x of a ball is given by yc

if d(x,xc)≤ d(x,xb), otherwise (if d(x,xc) > d(x,xb)) it abstains of predicting a class label. Hence,
each sample-compressed classifier has here a compression sequence Si of only two examples. Given
Si, the message string (which consists here of a single bit) just specifies which of the two examples
of Si is the center.

Consequently, the prior PI (i) will be non-zero only for |i| = 2 and distributed uniformly over
all pairs of (distinct) indices. The posterior QI (i) will also be non-zero only for |i| = 2 but only
balls selected by the RCE network learning algorithm, described in Reilly et al. (1982) and Duda
et al. (2000), will give pairs of indices of non-zero posterior weight. The message-part of the prior,
PM (Si)(σ), assigns equal probability to the two possible single-bit messages and the message-part
of the posterior, QM (Si)(σ), assigns a weight of one to the single-bit message that is actually used
with the two-example compression sequence Si. With this form for the prior and the posterior,
Corollary 8 provides a tight bound for the risk of the stochastic average GQ. However, the empirical
error rate eS(GQ) may be large on some S for simple classifiers that are constructed from only two
examples in the RCE network. Hence, since eS(GQ) may be large, Corollary 11 may only provide
a loose bound for the majority-vote BQ due to the looseness involved in upper-bounding e(BQ) by
2e(GQ)+a(GQ).

9. Conclusion

We have derived a PAC-Bayes theorem for the sample-compression setting where each classifier
is described by a compression subset of the training data and a message string of additional in-
formation. We have emphasized that many learning algorithms are producing classifiers that are
well-described within this setting. We have seen that the PAC-Bayes theorem for the sample-
compression setting reduces to the PAC-Bayes theorem of Seeger (2002) and Langford (2005) in the
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usual data-independent setting when classifiers are represented only by data-independent message
strings (or parameters taken from a continuous set). For posteriors having all their weights on a
single sample-compressed classifier, the general risk bound reduces to a bound similar to the tight
sample-compression bound of Laviolette et al. (2005). The PAC-Bayes risk bound of Theorem 3
is, however, valid for sample-compressed Gibbs classifiers with arbitrary posteriors. Moreover,
we have seen that the risk bound supports the strategy of randomizing the predictions over several
sample-compressed classifiers instead of predicting with a single sample-compressed classifier. In-
deed, a stochastic Gibbs classifier defined on a posterior over several sample-compressed classifiers
can have a smaller risk bound than any such single (deterministic) sample-compressed classifier.
Finally, to obtain a performance guarantee for many “rule-based systems” and RCE networks, we
have generalized the PAC-Bayes theorem to the case where each sample-compressed classifier in
the ensemble can abstain of predicting a class label.

Since the risk bounds derived in this paper are tight for stochastic averages of classifiers, it is
hoped that they will be effective at guiding learning algorithms for choosing the optimal tradeoff
between the empirical risk, the sample compression set size, and the “distance” between the prior
and the posterior. However, given an ensemble of classifiers, we usually prefer to predict with the
majority-vote BQ instead of the stochastic average GQ. In these cases, the PAC-Bayesian guarantee
for BQ only comes indirectly through the inequality R(BQ) ≤ 2R(GQ) (for ensemble of classifiers
that cannot abstain). This is clearly inappropriate for many extensively-used learning algorithms,
such as Adaboost (Freund and Schapire, 1997), that produce majority-votes having a large under-
lying R(GQ) and a very small R(BQ). Finding better guarantees in these circumstances, along the
lines proposed by Lacasse et al. (2007) and Germain et al. (2007), is therefore an important open
problem in machine learning.
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