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Abstract

Quadratic discriminant analysis is a common tool for classification, but estimation of the Gaus-
sian parameters can be ill-posed. This paper contains theoretical and algorithmic contributions to
Bayesian estimation for quadratic discriminant analysis. A distribution-based Bayesian classifier is
derived using information geometry. Using a calculus of variations approach to define a functional
Bregman divergence for distributions, it is shown that the Bayesian distribution-based classifier that
minimizes the expected Bregman divergence of each class conditional distribution also minimizes
the expected misclassification cost. A series approximation is used to relate regularized discrimi-
nant analysis to Bayesian discriminant analysis. A new Bayesian quadratic discriminant analysis
classifier is proposed where the prior is defined using a coarse estimate of the covariance based on
the training data; this classifier is termed BDA7. Results on benchmark data sets and simulations
show that BDA7 performance is competitive with, and in some cases significantly better than, reg-
ularized quadratic discriminant analysis and the cross-validated Bayesian quadratic discriminant
analysis classifier Quadratic Bayes.

Keywords: quadratic discriminant analysis, regularized quadratic discriminant analysis, Bregman
divergence, data-dependent prior, eigenvalue decomposition, Wishart, functional analysis

1. Introduction

A standard approach to supervised classification problems is quadratic discriminant analysis (QDA),
which models the likelihood of each class as a Gaussian distribution, then uses the posterior distri-
butions to estimate the class for a given test point (Hastie et al., 2001). The Gaussian parameters for
each class can be estimated from training points with maximum likelihood (ML) estimation. The
simple Gaussian model assumption is best suited to cases when one does not have much information
to characterize a class, for example, if there are too few training samples to infer much about the
class distributions. Unfortunately, when the number of training samples n is small compared to the
number of dimensions of each training sample d, the ML covariance estimation can be ill-posed.
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One approach to resolve the ill-posed estimation is to regularize the covariance estimation; another
approach is to use Bayesian estimation.

Bayesian estimation for QDA was first proposed by Geisser (1964), but this approach has not
become popular, even though it minimizes the expected misclassification cost. Ripley (2001) in
his text on pattern recognition states that such predictive classifiers are mostly unmentioned in other
texts and that “this may well be because it usually makes little difference with the tightly constrained
parametric families.” Geisser (1993) examines Bayesian QDA in detail, but does not show that in
practice it can yield better performance than regularized QDA. In preliminary experiments we found
that the performance of Bayesian QDA classifiers is very sensitive to the choice of prior (Srivastava
and Gupta, 2006), and that priors suggested by Geisser (1964) and Keehn (1965) produce error rates
similar to those yielded by ML.

In this paper we propose a Bayesian QDA classifier termed BDA7. BDA7 is competitive with
regularized QDA, and in fact performs better than regularized QDA in many of the experiments
with real data sets. BDA7 differs from previous Bayesian QDA methods in that the prior is selected
by crossvalidation from a set of data-dependent priors. Each data-dependent prior captures some
coarse information from the training data. Using ten benchmark data sets and ten simulations,
the performance of BDA7 is compared to that of Friedman’s regularized quadratic discriminant
analysis (RDA) (Friedman, 1989), to a model-selection discriminant analysis (EDDA) (Bensmail
and Celeux, 1996), to a modern cross-validated Bayesian QDA (QB) (Brown et al., 1999), and to
ML-estimated QDA, LDA, and the nearest-means classifier. Our focus is on cases in which the
number of dimensions d is large compared to the number of training samples n. The results show
that BDA7 performs slightly better than the other approaches averaged over the real data sets. The
simulations help analyze the methods under controlled conditions.

This paper also contributes to the theory of Bayesian QDA in several aspects. First, the Bayesian
classifier is solved for in terms of the Gaussian distributions themselves, as opposed to the standard
approach of formulating the problem in terms of the Gaussian parameters. This distribution-based
Bayesian discriminant analysis removes the parameter-based Bayesian analysis restriction of re-
quiring more training samples than feature dimensions, and removes the question of invariance to
transformations of the parameters, because the estimate is defined in terms of the Gaussian dis-
tribution itself. We show that the distribution-based Bayesian discriminant analysis classifier has
roughly the same closed-form as the parameter-based Bayesian discriminant analysis classifier, but
has a different degree of freedom.

The second theoretical result links Bayesian QDA and Friedman’s regularized QDA by a using
series approximation. Third, we show that the Bayesian distribution-based classifier that minimizes
the expected misclassification cost is equivalent to the classifier that uses the Bayesian minimum
expected Bregman divergence estimates of the class conditional distributions.

We begin with a review of approaches to Bayesian QDA and regularized QDA in Section 2. We
formulate the distribution-based Bayesian classifier in Section 3, and review recent results showing
that the distribution-based performance is superior to the parameter-based Bayesian classifier given
the same prior if no cross-validation is allowed. An approximate relationship between Bayesian
QDA and Friedman’s regularized QDA is given in Section 4. In Section 5 we establish that the
Bayesian minimum expected misclassification cost estimate is equivalent to a plug-in estimate using
the Bayesian minimum expected Bregman divergence estimate for each class conditional. Then,
we turn to the practical matter of classification: we propose the cross-validated Bayesian QDA
classifier BDA7 in Section 6. In Section 7, benchmark data set results compare BDA7 to other QDA
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Notation Description Notation Description

I identity matrix I(·) indicator function

xi ∈ R
d ith training sample n number of training samples

yi class label corresponding to xi nh number of training samples of class h

G number of class labels x̄h sample mean for class h

T n pairs of training samples Th nh pairs of class h training samples

x ∈ R
d test sample S ∑n

i=1(xi − x̄)(xi − x̄)T

Y class label corresponding to x Sh ∑n
i=1(xi − x̄h)(xi − x̄h)

T I(yi=h)

C misclassification cost matrix |B| determinant of B

diag(B) diagonal of B tr(B) trace of B

N random Gaussian distribution N realization of a Gaussian distribution

Table 1: Key Notation

classifiers, followed by further analysis using simulation results in Section 8. The paper concludes
with a discussion of the results and some open questions.

Table 1 details some of the notation used in this paper.

2. Prior Research on Ill-Posed QDA

We review the prior literature on Bayesian approaches to QDA, regularization approaches to QDA,
and other approaches to resolving ill-posed QDA.

2.1 Bayesian Approaches to QDA

Discriminant analysis using Bayesian estimation was first proposed by Geisser (1964) and Keehn
(1965). Geisser’s work used a noninformative prior distribution to calculate the posterior odds that
a test sample belongs to a particular class. Keehn’s work assumed that the prior distribution of the
covariance matrix is an inverse Wishart distribution. Raudys and Jain (1991) stated that Bayesian
QDA does not solve the problems that occur with ML QDA, particularly when class sample sizes
differ. Recent work by the authors showed that Bayesian QDA using the priors suggested by Geisser
and Keehn perform similarly to ML QDA on six standard QDA simulations (Srivastava and Gupta,
2006).

The inverse Wishart prior is a conjugate prior for the covariance matrix, and it requires the
specification of a “seed” positive definite matrix and a scalar degree of freedom. Following Brown
et al. (1999), the term Quadratic Bayes (QB) is used to refer to a modern form of Bayesian QDA
where the inverse Wishart seed matrix is kI, where I is the d-dimensional identity matrix, k is a
scalar, and the parameters k and the degree of freedom q of the inverse Wishart distribution are
chosen by crossvalidation.

Previous Bayesian QDA work is parameter-based in that the mean µ and covariance Σ are
treated as random variables, and the expectations of the Gaussian class-conditional distributions are
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calculated with respect to Lebesgue measure over the domain of the parameters. In this paper we
solve for the distribution-based Bayesian QDA, such that the uncertainty is considered to be over
the set of Gaussian distributions and the Bayesian estimation is formulated over the domain of the
Gaussian distributions.

2.2 Regularizing QDA

Friedman (1989) proposed regularizing ML covariance estimation by linearly combining a ML
estimate of each class covariance matrix with the ML pooled covariance estimate and with a scaled
version of the identity matrix to form an estimate Σ̂h(λ,γ) for the hth class:

Σ̂h(λ) =
(1−λ)Sh +λS
(1−λ)nh +λn

, (1)

Σ̂h(λ,γ) = (1− γ)Σ̂h(λ)+
γ
d

tr
(

Σ̂h(λ)
)

I. (2)

The above notation and other key notation is defined in Table 1.
In Friedman’s regularized QDA (RDA), the parameters λ,γ are trained by crossvalidation to

be those parameters that minimize the number of classification errors. Friedman’s comparisons
to ML QDA and ML linear discriminant analysis on six simulations showed that RDA could deal
effectively with ill-posed covariance estimation when the true covariance matrix is diagonal. RDA
is perhaps the most popular approach to discriminant analysis when the covariance estimation is
expected to be ill-posed (Hastie et al., 2001).

Hoffbeck and Landgrebe (1996) proposed a similar regularized covariance estimate for classifi-
cation of the form

Σ̂ = α1diag(Σ̂ML)+α2Σ̂ML +α3Σ̂pooled ML +α4diag(Σ̂pooled ML),

where Σ̂ML and Σ̂pooled ML are maximum likelihood estimates of class and pooled covariance matri-
ces, respectively, and the parameters α1,α2,α3,α4 are trained by crossvalidation to maximize the
likelihood (whereas Friedman’s RDA crossvalidates to maximize classification accuracy). Results
on Friedman’s simulation suite and experimental results on a hyperspectral classification problem
showed that the two classifiers achieved similar accuracy (Hoffbeck and Landgrebe, 1996). An-
other restricted model used to regularize covariance matrix estimation is a banded covariance matrix
(Bickel and Li, 2006).

RDA and the Hoffbeck-Landgrebe classifiers linearly combine different covariance estimates. A
related approach is to select the best covariance model out of a set of models using crossvalidation.
Bensmail and Celeux (1996) propose eigenvalue decomposition discriminant analysis (EDDA), in
which fourteen different models for the class covariances are considered, ranging from a scalar times
the identity matrix to a full class covariance estimate for each class. The model that minimizes the
crossvalidation error is selected for use with the test data. Each individual model’s parameters are
estimated by ML; some of these estimates require iterative procedures that are computationally
intensive.

The above techniques consider a discrete set of possible models for Σ, and either linearly com-
bine models or select one model. In contrast, Bayesian QDA combines a continuous set of possible
models for Σ, weighting each model by its posterior probability.
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2.3 Other Approaches to Quadratic Discriminant Analysis

Other approaches have been developed for ill-posed quadratic discriminant analysis. Friedman
(1989) notes that, beginning with work by James and Stein in 1961, researchers have attempted to
improve the eigenvalues of the sample covariance matrix. Another approach is to reduce the data
dimensionality before estimating the Gaussian distributions, for example by principal components
analysis (Swets and Weng, 1996). One of the most recent algorithms of this type is orthogonal linear
discriminant analysis (Ye, 2005), which was shown by the author of that work to perform similarly
to Friedman’s regularized linear discriminant analysis on six real data sets.

3. Distribution-based Bayesian Discriminant Analysis

Parameter estimation depends on the form of the parameter, for example, Bayesian estimation can
yield one result if the expected standard deviation is solved for, or another result if the expected
variance is solved for. To avoid this issue we derive Bayesian QDA by formulating the problem
in terms of the Gaussian distributions explicitly. This section extends work presented in a recent
conference paper (Srivastava and Gupta, 2006).

Suppose one is given an iid training set T = {(xi,yi), i = 1,2, . . .n} and a test sample x, where
xi,x ∈ R

d , and yi takes values from a finite set of class labels yi ∈ {1,2, . . . ,G}. Let C be the
misclassification cost matrix such that C(g,h) is the cost of classifying x as class g when the truth
is class h. Let P(Y = h) be the prior probability of class h. Suppose the true class conditional
distributions p(x|Y = h) exist and are known for all h, then the estimated class label for x that
minimizes the expected misclassification cost is

Y ∗ 4
= argmin

g=1,...,G

G

∑
h=1

C(g,h)p(x|Y = h)P(Y = h). (3)

In practice the class conditional distributions and the class priors are usually unknown. We model
each unknown distribution p(x|h) by a random Gaussian distribution Nh, and we model the unknown
class priors by the random vector Θ, which has components Θh = P(Y = h) for h = 1, . . . ,G. Then,
we estimate the class label that minimizes the expected misclassification cost, where the expecta-
tion is with respect to the random distributions Θ and {Nh} for h = 1, . . . ,G. That is, define the
distribution-based Bayesian QDA class estimate by replacing the unknown distributions in (3) with
their random counterparts and taking the expectation:

Ŷ
4
= argmin

g=1,...,G
E

[

G

∑
h=1

C(g,h)Nh(x)Θh

]

. (4)

In (4) the expectation is with respect to the joint distribution over Θ and {Nh} for h = 1, . . . ,G, and
these distributions are assumed independent. Therefore (4) can be rewritten as

Ŷ = argmin
g=1,...,G

G

∑
h=1

C(g,h)ENh [Nh(x)]EΘ[Θh]. (5)

Straightforward integration yields an estimate of the class prior, EΘ[Θh] = nh+1
n+G ; this Bayesian esti-

mate for the multinomial is also known as Laplace correction (Jaynes and Bretthorst, 2003).
In this next section we discuss the evaluation of ENh [Nh(x)].
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3.1 Statistical Models and Measure

Consider the family M of multivariate Gaussian probability distributions on R
d . Let each element

of M be a probability distribution N : R
d → [0,1], parameterized by the real-valued variables (µ,Σ)

in some open set in R
d ⊗S, where S ⊂ R

d(d+1)/2 is the cone of positive semi-definite symmetric
matrices. That is M = {N (· ;µ,Σ)} defines a d2+3d

2 -dimensional statistical model, (Amari and
Nagaoka, 2000, pp. 25–28).

Let the differential element over the set M be defined by the Riemannian metric (Kass, 1989;
Amari and Nagaoka, 2000),

dM = |IF(µ,Σ)| 1
2 dµdΣ, where

IF(µ,Σ) = −EX [∇2 logN (X ;(µ,Σ))],

where ∇2 is the Hessian operator with respect to the parameters µ and Σ, and this IF is also known
as the Fisher information matrix. Straightforward calculation shows that

dM =
dµ

|Σ| 1
2

dΣ
|Σ| d+1

2

=
dµdΣ
|Σ| d+2

2

. (6)

Let Nh(µh,Σh) be a possible realization of the Gaussian pdf Nh. Using the measure defined in
(6),

ENh [Nh(x)] =
Z

M
Nh(x)r(Nh)dM, (7)

where r(Nh) is the posterior probability of Nh given the set of class h training samples Th; that is,

r(Nh) =
`(Nh,Th)p(Nh)

αh
, (8)

where αh is a normalization constant, p(Nh) is the prior probability of Nh (treated further in Section
3.2), and `(Nh,Th) is the likelihood of the data Th given Nh, that is,

`(Nh(µh,Σh),Th) =
exp[− 1

2 tr
(

Σ−1
h Sh

)

− nh
2 tr
(

Σ−1
h (µh − X̄h)(µh − X̄h)

T
)

]

(2π)
dnh

2 |Σh|
nh
2

. (9)

3.2 Priors

A prior probability distribution of the Gaussians, p(Nh), is needed to solve the classification prob-
lem given in (4). A common interpretation of Bayesian analysis is that the prior represents informa-
tion that one has prior to seeing the data (Jaynes and Bretthorst, 2003). In the practice of statistical
learning, one often has very little quantifiable information apart from the data. Instead of thinking
of the prior as representing prior information, we considered the following design goals: the prior
should

• regularize the classification to reduce estimation variance, particularly when the number of
training samples n is small compared to the number of feature dimensions;

• add minimal bias;
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• allow the estimation to converge to the true generating class conditional normals as n → ∞ if
in fact the data was generated by class conditional normals;

• lead to a closed-form result.

To meet these goals, we use as a prior

p(Nh) = p(µh)p(Σh) = γ0
exp[− 1

2 tr
(

Σ−1
h Bh

)

]

|Σh|
q
2

, (10)

where Bh is a positive definite matrix (further specified in (25)) and γ0 is a normalization constant.
The prior (10) is equivalent to a noninformative prior for the mean µ, and an inverted Wishart prior
with q degrees of freedom over Σ.

This prior is unimodal and leads to a closed-form result. Depending on the choice of Bh and q,
the prior probability mass can be focused over a small region of the set of Gaussian distributions
M in order to regularize the estimation. Regularization is important for cases where the number of
training samples n is small compared to the dimensionality d. However, the tails of this prior are
sufficiently heavy that the prior does not hinder convergence to the true generating distribution as
the number of training samples increases if the true generating distribution is normal.

The positive definite matrix Bh specifies the location of the maximum of the prior probability
distribution. Using the matrix derivative (Dwyer, 1967) and the knowledge that the inverse Wishart
distribution has only one maximum, one can calculate the location of the maximum of the prior.
Take the log of the prior,

log p(Nh) = −1
2

tr
(

Σ−1
h Bh

)

− q
2

log |Σh|+ logγ0.

Differentiate with respect to Σh to solve for Σh,max,

−1
2

∂
∂Σh

tr
(

Σ−1
h,maxBh

)

− q
2

∂
∂Σh

log |Σh,max| = 0,

Σ−1
h,maxBhΣ−1

h,max −qΣ−1
h,max = 0,

Σh,max =
Bh

q
. (11)

Because this prior is unimodal, a rough interpretation of its action is that it regularizes the
likelihood covariance estimate towards the maximum of the prior, given in (11). To meet the goal of
minimizing bias, we encode some coarse information about the data into Bh. In QB (Brown et al.,
1999), the prior seed matrix Bh = kI, where k is a scalar determined by crossvalidation. Setting
Bh = kI is reminiscent of Friedman’s RDA (Friedman, 1989), where the covariance estimate is

regularized by the trace:
tr(Σ̂ML)

d I.

We have shown in earlier work that setting Bh =
tr(Σ̂ML)

d I for a distribution-based discriminant
analysis outperforms Geisser’s or Keehn’s parameter-based Bayesian discriminant methods, and
does not require crossvalidation (Srivastava and Gupta, 2006). The trace of the ML covariance
estimate is stable, and provides coarse information about the scale of the data samples. Thus, this
proposed data-dependent prior can be interpreted as capturing the knowledge an application expert
would have before seeing the actual data. There are many other approaches to data-dependent
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priors, including hyperparameters and empirical Bayes methods (Efron and Morris, 1976; Haff,
1980; Lehmann and Casella, 1998). Data-dependent priors are also used to form proper priors
that act similarly to improper priors, or to match frequentist goals (Wasserman, 2000). Next, we
describe the closed form result with a prior of the form given in (10), then we return to the question
of data-dependent definitions for Bh when we propose the BDA7 classifier in Section 6.

3.3 Closed-Form Result

In Theorem 1 we establish the closed-form result for the distribution-based Bayesian QDA classi-
fier. The closed-form result for the parameter-based classifier with the same prior is presented after
the theorem for comparison.

Theorem 1: The classifier (5) using the prior (10) can be written as

Ŷ = argmin
g=1,...,G

G

∑
h=1

C(g,h)
(nh)

d
2 Γ
(

nh+q+1
2

)∣

∣

∣

Sh+Bh
2

∣

∣

∣

nh+q
2

(nh +1)
d
2 Γ
(

nh+q−d+1
2

)

|Ah|
nh+q+1

2

P̂(Y = h), (12)

where P̂(Y = h) is an estimate of the class prior probability for class h, Γ(·) is the standard gamma
function, and

Ah =
1
2

(

Sh +
nh(x− x̄h)(x− x̄h)

T

(nh +1)
+Bh

)

. (13)

The proof of the theorem is given in Appendix A. The parameter-based Bayesian QDA class label
using the prior given in (10) is

Ŷ = argmin
g=1,...,G

G

∑
h=1

C(g,h)
(nh)

d
2 Γ
(

nh+q−d−1
2

)

(nh +1)
d
2 Γ
(

nh+q−2d−1
2

)

| Sh+Bh
2 |

nh+q−d−2
2

|Ah|
nh+q−d−1

2

P̂(Y = h). (14)

Equation (14) can be proved by following the same steps as the proof of Theorem 1. The parameter-
based Bayesian discriminant result (14) will not hold if nh ≤ 2d−q+1, while the distribution-based
result (12) holds for any nh > 0 and any d.

In a previous publication (Srivastava and Gupta, 2006), we compared the distribution-based
Bayesian QDA to the parameter-based Bayesian QDA classifier, maximum likelihood QDA, and
nearest means. We compared the noninformative prior originally proposed by Geisser (1964), and
the modified inverse Wishart prior given in Equation (10) with Bh = tr

(

Σ̂ML,h/d
)

I. We fixed the
degrees of freedom for the modified inverse Wishart to be d +3, so that in one-dimension it reduces
to the common inverted gamma distribution. Results on six simulations (two-class versions of
Friedman’s original simulations) showed that given the same prior, the distribution-based performed
better than the parameter-based when the ratio of feature dimensions to number of training samples
is high. For the reader’s convenience, we include a representative set of the simulation results from
Srivastava and Gupta (2006) in Figure 1.

It is interesting to see that the only difference between the parameter-based Bayesian QDA (14)
and the distribution-based Bayesian QDA (12) is a shift of the degree of freedom q; this is true
whether the distribution-based formula (12) is solved for using either the Fisher or Lebesgue mea-
sure. QB, which is a modern parameter-based Bayesian QDA classifier (discussed further in Section
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Figure 1: Mean error rates are shown for a two-class simulation where the samples from each
class are drawn from a Gaussian distribution with the same mean but different, highly-
ellipsoidal covariance matrices. The error rates were averaged over 1000 random trials,
where on each trial 40 training samples and 100 test samples were drawn iid.

2.1), chooses the degree of freedom for the modified inverse Wishart prior by cross-validation. If
one cross-validates the degree of freedom, then it does not matter if one starts from the parameter-
based formula or the distribution-based formula. In Section 6, we propose a new Bayesian QDA
classifier called BDA7 that cross-validates the degree of freedom and a data-dependent seed matrix
Bh for the prior. But first we consider further the analytic properties of Bayesian QDA; in the next
section we develop a relationship between regularized QDA and Bayesian QDA, and then in Section
5 we show how Bayesian QDA is the solution to minimizing any expected Bregman divergence.

4. Relationship Between Regularized QDA and Bayesian QDA

In this section we show that Friedman’s regularized form for the covariance matrix (Friedman, 1989)
emerges from the Bayesian QDA formula.
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Let Dh = Sh + Bh,Zh = x− x̄h. The distribution-based Bayesian discriminant formula for the
class conditional pdf (12) can be simplified to

ENh [Nh] =
n

d
2
h Γ
(

nh+q+1
2

)

(2π)
d
2 (nh +1)

d
2 Γ
(

nh+q−d+1
2

)

∣

∣

Dh
2

∣

∣

nh+q
2

∣

∣

∣

Dh
2 + nh

2(nh+1)ZhZT
h

∣

∣

∣

nh+q+1
2

=
n

d
2
h Γ
(

nh+q+1
2

)

∣

∣

Dh
2

∣

∣

nh+q
2

(2π)
d
2 (nh +1)

d
2 Γ
(

nh+q−d+1
2

)

∣

∣

Dh
2

∣

∣

nh+q+1
2

∣

∣

∣

∣

I +
nh

nh +1
ZhZT

h D−1
h

∣

∣

∣

∣

− nh+q+1
2

=
Γ
(

nh+q+1
2

)

(π)
d
2

∣

∣

∣

(

nh+1
nh

)

Dh

∣

∣

∣

1
2 Γ
(

nh+q−d+1
2

)

(

1+
nh

nh +1
ZT

h D−1
h Zh

)− nh+q+1
2

, (15)

where (15) follows by rearranging terms and applying the identity |I + ZhZT
h D−1

h | = 1 + ZT
h D−1

h Zh

(Anderson, 2003).
Approximate nh/(nh + 1) ≈ 1 in (15). Recall the series expansion er = 1 + r + r2/2 . . ., so if r

is small, 1 + r ≈ er. We apply this approximation to the term 1 + ZT
h D−1

h Zh in (15), and note that
the approximation is better the closer the test point x is to the sample mean x̄h, such that Zh is small.
The approximation is also better the larger the minimum eigenvalue λmin of Dh is, because of the
bound |ZT

h D−1
h Zh| ≤ ‖Zh‖2/λmin. Then (15) becomes

ENh [Nh] ≈

Γ
(

nh+q+1
2

)(

exp
[

nh
nh+1 ZT

h D−1
h Zh

])− nh+q+1
2

(π)
d
2

∣

∣

∣

(

nh+1
nh

)

Dh

∣

∣

∣

1
2 Γ
(

nh+q−d+1
2

)

,

=

Γ
(

nh+q+1
2

)

exp

[

− 1
2 ZT

h

[

nh+1
nh+q+1

(

Dh
nh

)]−1
Zh

]

(π)
d
2

∣

∣

∣

(

nh+1
nh

)

Dh

∣

∣

∣

1
2 Γ
(

nh+q−d+1
2

)

. (16)

Let

Σ̃h
4
=

nh +1
nh +q+1

Dh

nh
. (17)

The approximation (16) resembles a Gaussian distribution, where Σ̃h plays the role of the covariance
matrix. Rewrite (17),

Σ̃h =
nh +1

nh +q+1

(

Sh +Bh

nh

)

=
nh +1

nh +q+1

(

Sh

nh

)

+
nh +1

nh +q+1

(

Bh

nh

)

=

(

1− q
nh +q+1

)

Sh

nh
+

1
nh +q+1

(

nh +1
nh

)

Bh. (18)

In (18), make the approximation nh+1
nh

≈ 1, then multiply and divide the second term of (18) by q,

Σ̃h ≈

(

1− q
nh +q+1

)

Sh

nh
+

(

q
nh +q+1

)

Bh

q
. (19)
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The right-hand side of (19) is a convex combination of the sample covariance and the positive defi-
nite matrix Bh

q . This is the same general formulation as Friedman’s RDA regularization (Friedman,
1989), re-stated in this paper in Equations (1) and (2). Here, the fraction q

nh+q+1 controls the shrink-

age of the sample covariance matrix toward the positive definite matrix Bh
q ; recall from (11) that Bh

q is
the maximum of the prior probability distribution. Equation (19) also gives information about how
the Bayesian shrinkage depends on the number of sample points from each class: fewer training
samples nh results in greater shrinkage towards the positive definite matrix Bh

q . Also, as the degree

of freedom q increases, the shrinkage towards Bh
q increases. However, as q increases, the shrinkage

target Bh
q moves towards the zero-matrix.

5. Bregman Divergences and Bayesian Quadratic Discriminant Analysis

In (5) we defined the Bayesian QDA class estimate that minimizes the expected misclassification
cost. Then assuming a Gaussian class-conditional distribution, the expected class-conditional dis-
tribution is given in (12). A different approach to Bayesian estimation would be to estimate the
hth class-conditional distribution to minimize some expected risk. That is, the estimated class-
conditional distribution would be

f̂h = argmin
f∈A

Z

M
R(Nh, f )dM, (20)

where R(Nh, f ) is the risk of guessing f if the truth is Nh, the set of functions A is defined more
precisely shortly, and dM is a probability measure on the set of Gaussians, M. Equation (20) is a
distribution-based version of the standard parameter Bayesian estimate given in Ch. 4 of Lehmann
and Casella (1998); for example, the standard parameter Bayesian estimate of the mean µ̂ ∈ R

d

would be formulated
µ̂ = argmin

ψ∈Rd

Z

R(µ,ψ)dΛ(µ),

where Λ(µ) is some probability measure.
Given estimates of the class-conditional distributions { f̂h} from (20), one can solve for the class

label as

Ỹ ∗ = argmin
g=1,...,G

G

∑
h=1

C(g,h) f̂h(x)P̂(Y = h). (21)

In this section we show that the class estimate Ŷ from minimizing the expected misclassification
cost as defined in (5) is equivalent to the class estimate Ỹ ∗ from (21) if the risk function in (20) is a
(functional) Bregman divergence. This result links minimizing expected misclassification cost and
minimizing an expected Bregman divergence.

Bregman divergences form a set of distortion functions that include squared error, relative en-
tropy, logistic loss, Mahalanobis distance, and the Itakura-Saito function, and are sometimes termed
Bregman loss functions (Censor and Zenios, 1997). Bregman divergences act on pairs of vectors.
Csiszár defined a Bregman divergence between two distributions (Csiszár, 1995), but Csiszár’s def-
inition acts pointwise on the input distributions, which limits its usefulness in analysis. A recent
result showed that the mean minimizes the average Bregman divergence (Banerjee et al., 2005a,b).
In order to extend this result to distributions and show how it links to Bayesian estimation, one
must solve for minima over sets of functions. To this end, we define a new functional Bregman
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divergence that acts on pairs of distributions. This allows us to extend the Banerjee et al. result
to the Gaussian case and establish the equivalence between minimizing expected misclassification
cost and minimizing the expected functional Bregman divergence.

This section makes use of functional analysis and the calculus of variations; the relevant defini-
tions and results from these fields are provided for reference in Appendix B.

Let ν be some measure, and define the set of functions Ap to be

Ap =

{

a : R
d → [0,1]

∣

∣

∣

∣

a ∈ Lp(ν), a > 0, ‖a‖Lp(ν) = 1

}

.

5.1 Functional Definition of Bregman Divergence

Let φ : Ap → R be a continuous functional. Let δ2φ[ f ; ·, ·], the second variation of φ, be strongly
positive. The functional Bregman divergence dφ : Ap ×Ap → [0,∞) is defined as

dφ( f ,g) = φ[ f ]−φ[g]−δφ[g; f −g], (22)

where δφ[g; ·] is the Fréchet derivative or first variation of φ at g.
Different choices of the functional φ will lead to different Bregman divergences. As an example,

we present the φ for squared error.

5.2 Example (Squared error)

Let φ : A2 → R be defined

φ[g] =
Z

g2dν.

Perturbing g by a sufficiently nice function a (see Appendix B for more details about the perturbation
function a) leads to the difference

φ[g+a]−φ[g] =
Z

(

g2 +2ga+a2 −g2)dν.

Then, because

‖φ[g+a]−φ[g]− R

2gadν‖L2(ν)

‖a‖L2(ν)

=

R

a2 dν
(
R

a2 dν)
1
2

,

=

(

Z

a2 dν
)

1
2

tends to zero as ‖a‖L2(ν) tends to zero, the differential is

δφ[g;a] =
Z

2ga dν. (23)
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Using (23), the Bregman divergence (22) becomes

dφ( f ,g) =
Z

f 2dν−
Z

g2dν−
Z

2g( f −g)dν

=
Z

f 2dν−
Z

2 f gdν+
Z

g2dν

=
Z

( f −g)2dν

= ‖ f −g‖2
L2(ν) ,

which is the integrated squared error between two functions f and g in A2.

5.3 Minimizing Expected Bregman Divergence

The functional definition (22) is a generalization of the standard vector Bregman divergence

dφ̃(x,y) = φ̃(x)− φ̃(y)−∇φ̃(y)T (x− y)

where x,y ∈ R
n, and φ̃ : R

n → R is strictly convex and twice differentiable.

Theorem 2: Let φ : A1 → R, φ ∈ C 3, and δ2φ[ f ; ·, ·] be strongly positive. Suppose the function f̂h

minimizes the expected Bregman divergence between a random Gaussian Nh and any probability
density function f ∈ A where the expectation is taken with respect to the distribution r(Nh), such
that

f̂h = argmin
f∈A

ENh [dφ(Nh, f )]. (24)

Then f̂h is given by

f̂h =
Z

M
Nh r(Nh)dM = ENh [Nh(x)].

The proof of the theorem is given in Appendix A.

Corollary: The result of (5) is equivalent to the result of (21) where each f̂h comes from (24).

The corollary follows directly from Theorem 2 where r(Nh) is the posterior distribution of Nh

given the training samples.

6. The BDA7 Classifier

Distribution-based QDA with a fixed degree of freedom as proposed by the authors in the confer-
ence paper (Srivastava and Gupta, 2006) does not require cross-validation. However, with cross-
validation, one can generally do better if cross-validating a useful parameter. The question is, what
parameters to cross-validate with what options? As done in the QB Bayesian QDA classifier, we
believe that the degree of freedom of the prior should be cross-validated. Also, in preliminary exper-
iments we found that the distribution-based performance could be enhanced by using the diagonal
of Σ̂ML rather than the trace for each prior seed matrix Bh; the diagonal encodes more information
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but is still relatively stable to estimate. The diagonal of Σ̂ML has been used to regularize a regular-
ized discriminant analysis (Hoffbeck and Landgrebe, 1996) and model-based discriminant analysis
(Bensmail and Celeux, 1996).

Note that setting Bh = diag
(

Σ̂ML
)

places the maximum of the prior at 1
q diag

(

Σ̂ML
)

. We hypoth-

esize that in some cases it may be more effective to place the maximum of the prior at diag
(

Σ̂ML
)

;
that requires setting Bh = q diag

(

Σ̂ML
)

.
We also consider moving the maximum of the prior closer to the zero matrix, effectively turn-

ing the prior into an exponential prior rather than a unimodal one. We expect that this will have the
rough effect of shrinking the estimate toward zero. Shrinkage towards zero is a successful technique
in other estimation scenarios: for example ridge and lasso regression shrink linear regression coef-
ficients toward zero (Hastie et al., 2001), and wavelet denoising shrinks wavelet coefficients toward
zero. To this end, we also consider setting the prior matrix seed to be Bh = 1

q diag
(

Σ̂ML
)

.
These different choices for Bh will be more or less appropriate depending on the amount of data

and the true generating distributions. Thus, for BDA7 the Bh is selected by crossvalidation from
seven options:

Bh =



















q diag
(

Σ̂(pooled ML)

)

, q diag
(

Σ̂(class ML,h)

)

,
1
q diag

(

Σ̂(pooled ML)

)

, 1
q diag

(

Σ̂(class ML,h)

)

,

diag
(

Σ̂(pooled ML)

)

, diag
(

Σ̂(class ML,h)

)

,
1
q tr(Σ̂(pooled ML)) I.

(25)

To summarize: BDA7 uses the result (12) where q is cross-validated, and Bh is cross-validated
as per (25).

7. Experiments with Benchmark Data Sets

We compared BDA7 to popular QDA classifiers on ten benchmark data sets from the UCI Machine
Learning Repository. In the next section we use simulations to further analyze the behavior of each
of the classifiers.

QDA classifiers are best-suited for data sets where there is relatively little data, assuming the
class-conditional distribution is Gaussian model can be an appropriate model. For this reason, for
data sets with separate training and test sets, Tables 3 and 4 show results on the test set given a
randomly chosen 5% or 10% of the training samples. For data sets without separate training and
test sets, 5% and 10% of the available samples of each class were randomly selected and used for
training, and the rest of the available samples were used as test samples. Each result in Table 3 and
4 is the average test error of 100 trials with different randomly chosen training samples, with the
exception of the Cover Type data set, for which only 10 random trials were performed due to its
large size. Table 2 summarizes each of the benchmark data sets.

7.1 Experimental Details for Each Classifier

BDA7 is compared with QB (Brown et al., 1999), RDA (Friedman, 1989), eigenvalue decompo-
sition discriminant analysis (EDDA) (Bensmail and Celeux, 1996), and maximum-likelihood esti-
mated QDA, LDA, and the nearest-means classifier (NM). Code for the classifiers (and the simula-
tions presented in the next section) is available at idl.ee.washington.edu.

The parameters for each classifier were estimated by leave-one-out crossvalidation, unless there
exists a separate validation set. Some of the classifiers required the prior probability of each class
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P(Y = h); those probabilities were estimated based on the number of observations from each class
using Bayesian estimation (see Section 3).

The RDA parameters λ and γ were calculated and crossvalidated as in Friedman’s paper (Fried-
man, 1989) for a total of 25 joint parameter choices.

The BDA7 method is crossvalidated with the seven possible choices of Bh for the prior specified
in (25). The scale parameter q of the inverse Wishart distribution is crossvalidated in steps of the
feature space dimension d so that q ∈ {d,2d,3d,4d,5d,6d}. Thus there are 42 parameter choices.

The QB method is implemented as described by Brown et al. (1999). QB uses a normal prior
for each mean vector, and an inverse Wishart distribution prior for each covariance matrix. There
are two free parameters to the inverse Wishart distribution: the scale parameter q ≥ d and the seed
matrix Bh. For QB, Bh is restricted to be spherical: Bh = kI. The parameters q and k are trained by
crossvalidation. In an attempt to be similar to the RDA and BDA7 crossvalidations, we allowed there
to be 42 parameter choices, q ∈ {d,2d,3d,4d,5d,6d} and k ∈ {1,2, . . .7}. Other standard Bayesian
quadratic discriminant approaches use a uniform (improper) or fixed Wishart prior with a parameter-
based classifier (Ripley, 2001; Geisser, 1964; Keehn, 1965); we have previously demonstrated that
the inverse Wishart prior performs better than these other choices (Srivastava and Gupta, 2006).

The EDDA method of Bensmail and Celeux is run as proposed in their paper (Bensmail and
Celeux, 1996). Thus, the crossvalidation selects one of fourteen models for the covariance, where
the ML estimate for each model is used. Unfortunately, we found it computationally infeasible to
run the 3rd and 4th model for EDDA for some of the problems. These models are computationally
intensive iterative ML procedures that sometimes took prohibitively long for large n, and when
n < d these models sometimes caused numerical problems that caused our processor to exit with
error. Thus, in cases where the 3rd and 4th model were not feasible, they were not used.

7.2 Results

The results are shown in Tables 3 and 4 for the UCI Machine Learning Repository benchmark data
sets described in Table 2. The lowest mean error rate is in bold, as well as any other mean error rate
that is not statistically significantly different from the lowest mean error rate, as determined by the
Wilcoxon signed rank test for paired-differences at a significance level of .05.

BDA7 was the best or statistically insignificant from the best for seven of the ten tested data
sets: Heart, Iris, Image Segmentation, Pen Digits, Sonar, Thyroid, and Wine. For the Pima Dia-
betes, Ionosphere, and Cover Type data sets, BDA7 is not the best QDA classifier, but performs
competitively.

The Ionosphere data set is a two-class problem with 351 samples described by 34 features. One
of the features has the value zero for all samples of class two. This causes numerical difficulties
in estimating the maximum likelihood covariance estimates. BDA7 chooses the identity prior seed
matrix Bh = 1

q tr(Σ̂(pooled ML)) I every time for this data set. Given that this is BDA7’s choice, BDA7
is at a disadvantage compared to QB, which cross-validates a scaled identity seed matrix kI. In fact,
our experiments have showed that shrinking the prior closer to zero improves the performance on
this data set, for example using Bh = 1

qd tr(Σ̂(pooled ML)) I.
For the Cover Type problem, the maximum likelihood estimated matrices for QDA and LDA

contain many zeros, which result in a zero determinant; this is in part because 44 of the 54 features
are binary. Thus the QDA and LDA error rate is solely due to the prior class probabilities. Because
of the zero determinant, the best BDA7 model for the prior’s seed matrix is the identity-based model,
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Number of Classes Number of Features Number of Total Samples

(Training/Test)

(Training/Validation/Test)

Cover Type 8 54 11,340/3,780/565,892

Heart 2 10 (nominal features excluded) 270

Image Segmentation 7 19 2310

Ionosphere 2 34 351

Iris 3 4 150

Pen Digits 10 16 7,494/3,498

Pima 2 8 768

Sonar 2 60 238

Thyroid 3 5 215

Wine 3 13 178

Table 2: Information About the Benchmark Data Sets

BDA7 QB RDA EDDA NM LDA QDA

Cover Type 48.3 44.6 59.2 83.1 78.5 62.9 62.9

Heart 30.6 38.5 38.2 33.9 39.9 35.9 44.5

Image Segmentation 12.7 12.9 18.3 29.7 29.5 85.7 85.7

Ionosphere 16.9 16.1 12.5 26.0 27.1 35.8 35.8

Iris 6.9 7.6 8.1 9.4 9.3 8.8 66.6

Pen Digits 6.1 8.1 8.5 7.7 23.9 17.8 23.8

Pima 29.7 32.7 29.4 30.7 35.8 27.6 33.4

Sonar 36.8 40.4 40.4 39.8 42.6 46.7 46.7

Thyroid 11.7 14.8 17.0 14.7 19.2 15.0 30.0

Wine 9.6 33.1 34.2 11.2 32.0 60.1 60.1

Table 3: Average Error Rate Using Randomly Selected 5% of Training Samples
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BDA7 QB RDA EDDA NM LDA QDA

Cover Type 48.0 43.7 57.4 82.1 77.9 62.9 62.9

Heart 27.4 32.0 31.8 28.3 38.6 28.1 41.8

Image Segmentation 10.9 10.8 16.4 27.9 27.7 85.7 85.7

Ionosphere 12.5 11.1 8.7 23.3 24.2 35.9 35.9

Iris 6.2 5.9 6.2 7.4 8.3 5.3 44.9

Pen Digits 5.3 6.0 7.5 5.6 22.9 17.3 16.9

Pima 28.4 29.7 27.7 29.0 36.1 25.8 29.8

Sonar 31.2 33.7 32.8 34.8 38.8 46.8 46.8

Thyroid 7.9 9.1 10.0 8.6 16.2 10.5 30.0

Wine 7.9 16.9 25.0 8.2 30.1 21.6 60.3

Table 4: Average Error Rate Using Randomly Selected 10% of Training Samples

Bh = 1
q tr(Σ̂(pooled ML)) I. As in the Ionosphere data set, this puts BDA7 at a disadvantage compared

to QB, and it is not surprising that on this data set QB does a little better. Despite the numerical
difficulties inherent in this problem, the two Bayesian QDA classifiers do better than the other QDA
classifiers.

8. Simulations

In order to further analyze the behavior of the different QDA classifiers, we compared them in ten
simulations. For each of the ten simulations, the data are drawn iid from three Gaussian class con-
ditional distributions. Six of the simulations were originally created by Friedman and used to show
that RDA performs favorably compared to ML linear discriminant analysis (LDA) and ML QDA
(Friedman, 1989). Friedman’s six simulations all have diagonal generating class covariance matri-
ces, corresponding to independent classification features. In those cases, the constrained diagonal
models used in RDA and EDDA are correct, and so RDA and EDDA’s performance may be opti-
mistic compared to real data. For a fuller picture, we add two full covariance matrix simulations
to Friedman’s six diagonal Gaussian simulations (Cases 1–6), and for each of the full covariance
matrix simulations we consider the cases of classes with the same means (Case 7 and 9), and classes
with different means (Case 8 and 10).

All of the simulation results are presented for 40 training and 100 test samples, drawn iid.
The parameters for each classifier were estimated by leave-one-out crossvalidation, as described in
Section 7.1. Each simulation was run 100 times. Thus, each result presented in Tables 5, 6, and 7 is
the average error over 10,000 test samples.

8.1 Simulation Details and Results

The results show that when the true generating distributions are diagonal (Cases 1–6), then EDDA
performs the best. This can be expected because many of the 14 models EDDA cross-validates are
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diagonal, and are thus a good match to the true generating distributions. When the true generating
distributions are drawn from full covariance matrices (Cases 7–10), EDDA performs well when
there are only 10 features, but the maximum likelihood estimates used in EDDA fail for 50 and
100 feature dimensions. RDA similarly does well when the true generating distribution matches
the RDA models, and like EDDA is unable to learn when the features are highly correlated (Cases
9–10).

BDA7 is rarely the best classifier on the simulations, but never fails to produce relatively rea-
sonable error rates. In particular, BDA7 is shown to be a more robust classifier than QB, achieving
much lower error rates for Cases 5–6, and lower error rates for Cases 2–4 (with the exception of
Case 4 for 100 feature dimensions).

A more detailed analysis and description of each of the simulation cases follows.

8.1.1 CASE 1: EQUAL SPHERICAL COVARIANCE MATRICES

Each class conditional distribution is normal with identity covariance matrix I. The mean of the
first class µ1 is the origin, and the second class has zero mean, except that the first component of the
second class mean is 3. Similarly, the third class has zero mean, except the last component of the
third class mean is 3.

The performance here is bounded by the nearest-means classifier, which is optimal for this
simulation. EDDA also does well, because one of the 14 models available for it to choose is exactly
correct: scalar times the identity matrix. Similarly, RDA strongly shrinks towards the trace times
the identity. Though this is an unrealistic case, it shows that BDA7 can perform relatively well even
though it does not explicitly model the true generating distribution.

8.1.2 CASE 2: UNEQUAL SPHERICAL COVARIANCE MATRICES

The class one conditional distribution is normal with identity covariance matrix I and mean at the
origin. The class two conditional distribution is normal with covariance matrix 2I and has zero mean
except the first component of its mean is 3. The class three conditional distribution is normal with
covariance matrix 3I and has zero mean except the last component of its mean is 4. Like Case 1,
EDDA and RDA use the fact that the true generating distributions match their models to outperform
BDA7, which is significantly better than QB.

8.1.3 CASES 3 AND 4: EQUAL HIGHLY ELLIPSOIDAL COVARIANCE MATRICES

Covariance matrices of each class distribution are the same, and highly ellipsoidal. The eigenvalues
of the common covariance matrix are given by

ei =

(

9(i−1)

d −1
+1

)2

, 1 ≤ i ≤ d, (26)

so the ratio of the largest to smallest eigenvalue is 100.
For Case 3 the class means are concentrated in a low-variance subspace. The mean of class one

is located at the origin and the ith component of the mean of class two is given by

µ2i = 2.5

√

ei

d
d − i

( d
2 −1)

, 1 ≤ i ≤ d.
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BDA7 QB RDA EDDA NM LDA QDA

Case 1 13.2 19.2 12.4 11.2 9.7 14.7 56.1

Case 2 21.3 27.4 17.4 16.1 21.0 26.0 54.6

Case 3 10.4 35.0 14.6 9.1 30.3 12.2 56.4

Case 4 12.6 32.8 12.6 11.6 11.0 13.5 56.9

Case 5 4.1 15.0 18.9 4.4 59.1 60.0 45.8

Case 6 5.2 7.9 7.2 1.7 36.1 36.9 47.7

Case 7 19.5 22.8 29.0 19.7 66.4 63.1 46.5

Case 8 3.7 2.7 4.0 5.1 40.6 6.7 37.5

Case 9 1.5 0.9 10.8 1.0 65.4 58.5 32.5

Case 10 0.4 0.1 2.8 3.4 60.7 7.2 36.5

Table 5: Average Error Rate for 10 Features

BDA7 QB RDA EDDA NM LDA QDA

Case 1 27.9 33.3 25.4 21.7 21.5 67.0 67.0

Case 2 26.8 42.6 15.4 12.5 32.0 66.8 66.8

Case 3 27.2 55.7 44.8 21.2 47.3 66.6 66.6

Case 4 22.5 30.9 17.9 17.0 15.5 67.0 67.0

Case 5 1.2 30.6 11.8 0.0 52.4 66.6 66.6

Case 6 0.5 26.5 8.0 0.0 43.2 66.6 66.6

Case 7 34.7 30.9 41.9 63.9 66.5 66.0 66.0

Case 8 9.2 3.5 2.8 25.5 40.9 66.6 66.6

Case 9 1.3 0.9 62.7 32.5 66.3 66.5 66.5

Case 10 1.7 0.9 60.6 32.4 66.2 66.2 66.2

Table 6: Average Error Rate for 50 Features
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BDA7 QB RDA EDDA NM LDA QDA

Case 1 35.8 31.1 28.1 24.8 24.7 68.0 68.0

Case 2 20.8 41.9 11.1 9.0 37.2 66.8 66.8

Case 3 46.9 56.4 50.5 27.7 51.1 64.9 64.9

Case 4 37.6 32.1 23.9 21.1 20.3 66.7 66.7

Case 5 0.2 38.3 14.5 0.1 55.8 66.6 66.6

Case 6 0.1 29.4 7.2 0.0 40.9 67.3 67.3

Case 7 40.0 35.2 44.3 64.8 66.6 65.8 65.8

Case 8 17.3 8.1 7.4 55.2 54.1 66.3 66.3

Case 9 2.9 2.8 67.0 67.0 66.6 66.6 66.6

Case 10 2.2 2.4 64.0 64.0 66.3 65.9 65.9

Table 7: Average Error Rate for 100 Features

The mean of class three is the same as the mean of class two except every odd numbered dimension
of the mean is multiplied by −1.

Here, BDA7 rivals the performance of EDDA, which makes half the errors of RDA. In contrast,
the error rate of QB is twice as high as BDA7 for 10 and 50 dimensions.

Case 4 is that the class means are concentrated in a high-variance subspace. The mean of class
one is again located at the origin and the ith component of the mean of class two is given by

µ2i = 2.5

√

ei

d
i−1

( d
2 −1)

, 1 ≤ i ≤ d.

The mean of class three is the same as the mean of class two except every odd numbered dimension
of the mean is multiplied by −1.

8.1.4 CASES 5 AND 6: UNEQUAL HIGHLY ELLIPSOIDAL COVARIANCE MATRICES

For these cases, the covariance matrices are highly ellipsoidal and different for each class. The
eigenvalues of the class one covariance are given by Equation (26), and those of class two are given
by

e2i =

(

9(d − i)
d −1

+1

)2

, 1 ≤ i ≤ d.

The eigenvalues of class three are given by

e3i =

(

9(i− d−1
2 )

d −1

)2

, 1 ≤ i ≤ d.

For Case 5, the class means are identical. For Case 6 the class means are different, with the class
one mean located at the origin and the ith component of the class two mean given by µ2i = 14√

d
. The
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mean of class three is the same as the mean of class two except every odd numbered dimension of
the mean is multiplied by −1.

In both these cases the BDA7 error falls to zero as the number of feature dimensions rise,
whereas RDA plateaus around 10% error, and QB has substantially higher error. Case 5 and Case
6 present more information to the classifiers than the previous cases because the covariance ma-
trices are substantially different. BDA7 and EDDA are able to use this information effectively to
discriminate the classes.

8.1.5 CASES 7 AND 8: UNEQUAL FULL RANDOM COVARIANCES

Let R1 be a d×d matrix where each element is drawn independently and identically from a uniform
distribution on [0,1]. Then let the class one covariance matrix be RT

1 R1. Similarly, let the class two
and class three covariance matrices be RT

2 R2 and RT
3 R3, where R2 and R3 are constructed in the same

manner as R1. For Case 7, the class means are identical. For Case 8, the class means are each drawn
randomly, where each element of each mean vector is drawn independently and identically from a
standard normal distribution.

Case 7 is a difficult case because the means do not provide any information and the covariances
may not be very different. However, BDA7 and QB only lose classification performance slowly as
the dimension goes up, while EDDA jumps from 20% error at 10 feature dimensions to 64% error
at 50 dimensions. For most runs of this simulation, the best EDDA model is the full covariance
model, but because EDDA uses ML estimation, its estimation of the full covariance model is ill-
conditioned.

Case 8 provides more information to discriminate the classes because of the different class
means. EDDA again does relatively poorly because its best-choice model is the full-covariance
which it estimates with ML. QB and RDA do roughly equally as well, with BDA7 at roughly twice
their error.

8.1.6 CASES 9 AND 10: UNEQUAL FULL HIGHLY ELLIPSOIDAL RANDOM COVARIANCE

Let R1,R2,R3 be as described for Cases 7 and 8. Then the Cases 9 and 10 covariance matrices are
RiRT

i RT
i Ri for i = 1,2,3. These covariance matrices are highly ellipsoidal, often with one strong

eigenvalue and many relatively small eigenvalues. This simulates the practical classification sce-
nario in which the features are all highly correlated. For Case 9, the class means are the same.
For Case 10, the class means are each drawn randomly, where each element of the mean vector is
drawn independently and identically from a standard normal distribution. The two Bayesian meth-
ods capture the information and achieve very low error rates. The other classifiers do not model this
situation well, and have high error rates for 50 and 100 feature dimensions.

9. Conclusions

In this paper, we have shown how a distribution-based formulation of the Bayesian quadratic dis-
criminant analysis classifier relates to the standard parameter-based formulation, established an an-
alytic link between Bayesian discriminant analysis and regularized discriminant analysis, and pre-
sented a functional equivalence between minimizing the expected misclassification cost and mini-
mizing the expected Bregman divergence of class conditional distributions. A side result was the
establishment of a functional definition of the standard vector Bregman divergence.
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The practical contribution of this paper is the classifier BDA7, which has been shown to perform
generally better than RDA, EDDA and QB on ten benchmark data sets. Key aspects of BDA7 are
that the seed matrix in the inverse Wishart prior uses a coarse estimate of the covariance matrix to
peg the maximum of the prior to a relevant part of the distribution-space.

The simulations presented are helpful in analyzing the different classifiers. Comparisons on
simulations show that RDA and EDDA perform well when the true Gaussian distribution matches
one of their regularization covariance models (e.g., diagonal, identity), but can fail when the gener-
ating distribution has a full covariance matrix, particularly when features are correlated. In contrast,
the Bayesian methods BDA7 and QB can learn from the rich differentiating information offered by
full covariance matrices.

We hypothesize that better priors exist, and that such priors will also be data-dependent and
make use of a coarse estimate of the covariance matrix for the prior. Although modeling each class
by one Gaussian distribution has too much model bias to be a general purpose classifier, Gaussian
mixture model classifiers are known to work well for a variety of problems. It is an open question
as to how to effectively integrate the presented ideas into a mixture model classifier.
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Appendix A.

This appendix contains the proofs of Theorem 1 and Theorem 2.

A.1 Proof of Theorem 1

The proof employs the following identities (Box and Tiao, 1973; Gupta and Nagar, 2000),

Z

µ
exp
[

−nh

2
tr
(

Σ−1(µ− x̄)(µ− x̄)T )
]

dµ =

(

2π
nh

)
d
2

|Σ| 1
2 , (27)

Z

Σ>0

1

|Σ| q
2

exp[− tr
(

Σ−1B
)

]dΣ =
Γd

(

q−d−1
2

)

|B| q−d−1
2

, (28)

where Γd(·) is the multivariate gamma function,

Γd(a) =

(

Γ
(

1
2

))

d(d−1)
d d

∏
i=1

Γ
(

a− d − i
2

)

. (29)

To expand (5), we first simplify (7). The posterior (8) requires calculation of the normalization
constant αh,

αh =
Z

Σh

Z

µh

`(Nh,Th)p(Nh)
dµdΣh

|Σh|
d+2

2

.
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Substitute `(Nh,Th) from (9) and p(Nh) from (10),

αh =
Z

Σh

Z

µh

exp[− nh
2 tr
(

Σ−1
h (µh − x̄h)(µh − x̄h)

T
)

]

(2π)
nhd

2 |Σh|
nh+q

2

exp

[

−1
2

tr
(

Σ−1(Sh +Bh)
)

]

dΣhdµh

|Σh|
d+2

2

.

Integrate with respect to µh using identity (27):

αh =
1

(2π)
nhd

2

(

2π
nh

)
d
2

Z

Σh

exp[− 1
2 tr
(

Σ−1
h (Sh +Bh)

)

]

|Σh|
nh+q+d+1

2

dΣh.

Next, integrate with respect to Σh using identity (28):

αh =
1

(2π)
nhd

2

(

2π
nh

)
d
2 Γd

( nh+q
2

)

∣

∣

∣

Sh+Bh
2

∣

∣

∣

nh+q
2

. (30)

Therefore the expectation ENh [Nh(x)] is

ENh [Nh(x)] =
Z

M
Nh(x) f (Nh)dMh

=
1

αh(2π)
nhd

2

Z

Σh

Z

µh

exp
[

− 1
2 tr
(

Σ−1
h (x−µh)(x−µh)

T
)]

(2π)
d
2 |Σh|

1
2

.
exp
[

− 1
2 tr
(

Σ−1
h (Sh +Bh)

)]

|Σh|
nh+q

2

exp
[

−nh

2
tr
(

Σ−1
h (µh − x̄h)(µh − x̄h)

T )
] dµhdΣh

|Σh|
d+2

2

.

Integrate with respect to µh and Σh using identities (27) and (28), and equation (13) to yield

ENh [Nh(x)] =
1

αh(2π)
dnh

2 (nh +1)
d
2

Γd

(

nh+q+1
2

)

|Ah|
nh+q+1

2

,

where Ah is given by Equation (13). After substituting the value of αh from (30),

ENh [Nh(x)] =
1

(2π)
d
2

n
d
2
h Γd

(

nh+q+1
2

)

| Sh+Bh
2 |

nh+q
2

(nh +1)
d
2 Γd

( nh+q
2

)

|Ah|
nh+q+1

2

.

Simplify the multivariate gamma function Γd using (29):

ENh [Nh(x)] =
1

(2π)
d
2

n
d
2
h Γ
(

nh+q+1
2

)

(nh +1)
d
2 Γ
(

nh+q−d+1
2

)

| Sh+Bh
2 |

nh+q
2

|Ah|
nh+q+1

2

. (31)

Substituting (31) into (5) proves the theorem. Because q ≥ d, the result (31) is valid for any nh > 0
and any feature space dimension d.

�
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A.2 Proof of Theorem 2

Let

J[ f ] = ENh [dφ(Nh, f )]

=
Z

M
dφ(Nh, f )r(Nh)dM

=
Z

M
(φ[Nh]−φ[ f ]−δφ[ f ;Nh − f ])r(Nh)dM, (32)

where (32) follows by substituting the definition of functional Bregman divergence (22). Consider
the increment

4J[ f ,a] = J[ f +a]− J[ f ] (33)

= −
Z

M
(φ[ f +a]−φ[ f ])r(Nh)dM

−
Z

M
(δφ[ f +a;Nh − f −a]−δφ[ f ;Nh − f ])r(Nh)dM, (34)

where (34) follows from substituting (32) into (33). Using the definition of the differential of a
functional (46), the first integrand in (34) can be written as

φ[ f +a]−φ[ f ] = δφ[ f ;a]+ ε[ f ,a]‖a‖L1(ν) . (35)

Take the second integrand of (34), and subtract and add δφ[ f ;Nh − f −a],

δφ[ f +a;Nh − f −a]−δφ[ f ;Nh − f ]

= δφ[ f +a;Nh − f −a]−δφ[ f ;Nh − f −a]+δφ[ f ;Nh − f −a]−δφ[ f ;Nh − f ]
(a)
= δ2φ[ f ;Nh − f −a,a]+ ε[ f ,a]‖a‖L1(ν) +δφ[ f ;Nh − f ]−δφ[ f ;a]−δφ[ f ;Nh − f ]

(b)
= δ2φ[ f ;Nh − f ,a]−δ2φ[ f ;a,a]+ ε[ f ,a]‖a‖L1(ν) −δφ[ f ;a], (36)

where (a) follows from the definition of the second differential (see (47) in Appendix B) and from
the fact that

δφ[ f +a;a]−δφ[ f ;a] = δ2φ[ f ;a,a]+o(‖a‖2
L1(ν)), (37)

where o(‖a‖2
L1(ν)) denotes a function which goes to 0 even if it is divided by ‖a‖2

L1(ν); and (b)
follows from linearity of the first term. Substitute (35) and (36) into (34),

4J[ f ,a] = −
Z

M

(

δ2φ[ f ;Nh − f ,a]−δ2φ[ f ;a,a]+ ε[ f ,a]‖a‖L1(ν)

)

r(Nh)dM.

Note that the term δ2φ[ f ;a,a] is of order ‖a‖2
L1(ν), that is,

∥

∥δ2φ[ f ;a,a]
∥

∥

L1(ν)
≤ m‖a‖2

L1(ν) for some
constant m. Therefore,

lim
‖a‖L1(ν)→0

‖J[ f +a]− J[ f ]−δJ[ f ;a]‖L1(ν)

‖a‖L1(ν)

= 0,
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where

δJ[ f ;a] = −
Z

M
δ2φ[ f ;Nh − f ,a]r(Nh)dM. (38)

For fixed a, δ2φ[ f ; ·,a] is a bounded linear functional in the second argument, so the integration and
the functional can be interchanged in (38). Thus the above equation becomes

δJ[ f ;a] = −δ2φ
[

f ;
Z

M
(Nh − f )r(Nh)dM,a

]

.

Here we tacitly assumed that both
R

M r(Nh)dM and
R

M Nh r(Nh)dM exist. Under the functional
optimality conditions (stated in Appendix B), J[ f ] has an extremum for f = f̂ if, for all admissible
a ∈ A1,

δ2φ
[

f ;
Z

M

(

Nh − f̂
)

r(Nh)dM,a

]

= 0. (39)

Set a =
R

M

(

Nh − f̂
)

r(Nh)dM in (39) and use the assumption that the functional δ2φ[ f ; ·, ·] is
strongly positive, which implies that the above functional can be zero if and only if a = 0, that
is,

0 =
Z

M
(Nh − f̂ )r(Nh)dM, (40)

f̂ = ENh [Nh]. (41)

Equation (41) is well-defined with the measure given in (6). Because a Bregman divergence is not
necessarily convex in its second argument, it is not yet established that the above unique extremum
is a minimum. To show that (41) is in fact a minimum of J, from the functional optimality conditions
it is enough to show that δ2J[ f̂ ; ·, ·] is strongly positive. To show this, for b ∈ A1, consider δJ[ f +
b;a]−δJ[ f ;a] to be the increment in the first differential of J at f . Then

δJ[ f +b;a]−δJ[ f ;a]

(c)
= −

Z

M

(

δ2φ[ f +b;Nh − f −b,a]−δ2φ[ f ;Nh − f ,a]
)

r(Nh)dM

(d)
= −

Z

M
(δ2φ[ f +b;Nh − f −b,a]−δ2φ[ f ;Nh − f −b,a]+δ2φ[ f ;Nh − f −b,a]

−δ2φ[ f ;Nh − f ,a])r(Nh)dM
(e)
= −

Z

M
(δ3φ[ f ;Nh − f −b,a,b]+ ε[ f ,a,a,b]‖b‖L1(ν) +δ2φ[ f ;Nh − f ,a]−δ2φ[ f ;b,a]

−δ2φ[ f ;Nh − f ,a])r(Nh)dM
( f )
= −

Z

M
(δ3φ[ f ;Nh − f ,a,b]−δ3φ[ f ;b,a,b]+ ε[ f ,a,a,b]‖b‖L1(ν)

−δ2φ[ f ;b,a])r(Nh)dM, (42)

where (c) follows from using integral (38); (d) from subtracting and adding δ2φ[ f ;Nh − f − b,a];
(e) from using the definition of the second differential and from the fact (37); and ( f ) follows from
the linearity of the first term and cancelation of the third and fifth terms. Note that in (42), for fixed
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a, the term δ3φ[ f ;b,a,b] is of order ‖b‖2
L1(ν), while the first and the last terms are of order ‖b‖L1(ν) .

Therefore,

lim
‖b‖L1(ν)→0

∥

∥δJ[ f +b;a]−δJ[ f ;a]−δ2J[ f ;a,b]
∥

∥

L1(ν)

‖b‖L1(ν)

= 0,

where

δ2J[ f ;a,b] = −
Z

M
(δ3φ[ f ;Nh − f ,a,b]−δ2φ[ f ;b,a])r(Nh)dM. (43)

Substitute b = a and f = f̂ , and interchange integration and the functional δ3φ in the first integral
of (43) to yield

δ2J[ f̂ ;a,a] = −δ3φ
[

f̂ ;
Z

M
(Nh − f̂ )r(Nh)dM,a,a

]

+
Z

M
δ2φ[ f̂ ;a,a]r(Nh)dM

=
Z

M
δ2φ[ f̂ ;a,a]r(Nh)dM (44)

≥
Z

M
k‖a‖2

L1(ν) r(Nh)dM

= K ‖a‖2
L1(ν) > 0, (45)

where (44) follows from (40), and (45) follows from the strong positivity of δ2φ[ f̂ ; ·, ·] and K
4
=

k
R

M dM > 0. Therefore from (45) and the functional optimality conditions, f̂ is the minimum. The
result f̂ is given in (31).

�

Appendix B. Relevant Definitions and Results from Functional Analysis

The following survey of the relevant definitions and results from functional analysis is based on
Gelfand and Fomin (2000). Let a function space A1 be defined

A1 =

{

a : R
d → [0,1]

∣

∣

∣

∣

a ∈ L1(ν), a > 0, ‖a‖L1(ν) = 1

}

where ν is some measure. Note that A1 is a convex subspace of L1(ν): if a1, a2 ∈ A1 and 0 ≤ ω ≤ 1,
then ωa1 +(1−ω)a2 ∈ A1.

B.1 Definition of Continuous Linear Functionals

The functional ψ : L1(ν) → R is linear and continuous if

1. ψ[ωa1 +a2] = ωψ[a1]+ψ[a2] for any a1,a2 ∈ L1(ν) and any real number ω (linearity); and

2. there is a constant C such that |ψ[a]| ≤C‖a‖ for all a ∈ L1(ν).
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B.2 Functional Derivatives

1. Let φ be a real functional over the normed space L1(ν). The bounded linear functional δφ[ f ; ·]
is the Fréchet derivative of φ at f ∈ L1(ν) if

φ[ f +a]−φ[ f ] = 4φ[ f ;a]

= δφ[ f ;a]+ ε[ f ,a]‖a‖L1(ν) (46)

for all a ∈ L1(ν), with ε[ f ,a] → 0 as ‖a‖L1(ν) → 0.

2. When the second variation δ2φ and the third variation δ3φ exist, they are described by

4φ[ f ;a] = δφ[ f ;a]+
1
2

δ2φ[ f ;a,a]+ ε[ f ,a]‖a‖2
L1(ν)

= δφ[ f ;a]+
1
2

δ2φ[ f ;a,a]+
1
6

δ3φ[ f ;a,a,a]+ ε[ f ,a]‖a‖3
L1(ν) ,

where ε[ f ,a]→ 0 as ‖a‖L1(ν) → 0 . The term δ2φ[ f ;a,b] is bilinear with respect to arguments

a and b, and δ3φ[ f ;a,b,c] is trilinear with respect to a,b, and c.

3. Suppose {an},{ fn}⊂L1(ν) , moreover an → a, fn → f ,where a, f ∈L1(ν). If φ∈C 3(L1(ν);R)
and δφ[ f ;a], δ2φ[ f ;a,a], and δ3[ f ;a,a,a] are defined as above, then δφ[ fn;an] → δφ[ f ;a],
δ2φ[ fn;an,an] → δ2φ[ f ;a,a], and δ3φ[ fn;an,an,an] → δ3φ[ f ;a,a,a], respectively.

4. The functional δ2φ[ f ;a,a] defined on normed linear space L1(ν) is quadratic; it is also strongly
positive if there exists a constant k > 0 such that δ2φ[ f ;a,a] ≥ k‖a‖2

L1(ν) for all a ∈ A1. In a
finite-dimensional space, strong positivity of a quadratic form is equivalent to the quadratic
form being positive definite.

B.3 Functional Optimality Conditions

A necessary condition for the differential functional J[ f ] to have an extremum (minimum) at f = f̂
is that δJ[ f ;a] = 0 and δ2J[ f ;a,a] ≥ 0, for f = f̂ and all admissible functions a ∈ A1. A sufficient
condition for a functional J[ f ] to have a minimum for f = f̂ is that the first variation δJ[ f ;a] vanishes
for f = f̂ , and its second variation δ2J[ f ;a,a] is strongly positive for f = f̂ .
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