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Abstract
Consider the problem of learning logistic-regression models for multiple classification tasks, where
the training data set for each task is not drawn from the same statistical distribution. In such a
multi-task learning (MTL) scenario, it is necessary to identify groups of similar tasks that should
be learned jointly. Relying on a Dirichlet process (DP) based statistical model to learn the extent
of similarity between classification tasks, we develop computationally efficient algorithms for two
different forms of the MTL problem. First, we consider a symmetric multi-task learning (SMTL)
situation in which classifiers for multiple tasks are learned jointly using a variational Bayesian
(VB) algorithm. Second, we consider an asymmetric multi-task learning (AMTL) formulation in
which the posterior density function from the SMTL model parameters (from previous tasks) is
used as a prior for a new task: this approach has the significant advantage of not requiring storage
and use of all previous data from prior tasks. The AMTL formulation is solved with a simple
Markov Chain Monte Carlo (MCMC) construction. Experimental results on two real life MTL
problems indicate that the proposed algorithms: (a) automatically identify subgroups of related
tasks whose training data appear to be drawn from similar distributions; and (b) are more accurate
than simpler approaches such as single-task learning, pooling of data across all tasks, and simplified
approximations to DP.
Keywords: classification, hierarchical Bayesian models, Dirichlet process

1. Introduction

A real world classification task can often be viewed as consisting of multiple correlated subtasks.
In remote sensing, for example, one may have multiple sets of data, each collected at a particular
geographical location; rather than designing individual classifiers for each of these sensing tasks,
it is desirable to share data across tasks to enhance overall sensing performance. This represents a
typical example of a general learning scenario called multi-task learning (MTL) (Caruana, 1997), or
learn to learn (Thrun and Pratt, 1998). In contrast to MTL, single-task learning (STL) refers to the
approach of learning one classification task at a time, only using the corresponding data set; often
STL assumes that the training samples are drawn independently from an identical distribution. MTL
is distinct from standard STL in two principal respects: (i) the tasks are not identical, thus simply
pooling them and treating them as a single task is not appropriate; and (ii) some of the classification
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tasks may be highly correlated (dependent on each other), but the strategy of isolating each task and
learning the corresponding classifier independently does not exploit the potential information one
may acquire from other classification tasks.

The fact that some of the classification tasks are correlated (dependent) implies that what is
learned from one task is transferable to another. By learning the classifiers in parallel under a
unified representation, the transferability of expertise between tasks is exploited to the benefit of all.
This expertise transfer is particularly important when we are provided with only a limited amount
of training data for learning each classifier. By exploiting data from related tasks, the training data
for each task is strengthened and the generalization of the resulting classifier-estimation algorithm
is improved.

1.1 Previous Work on MTL

Multi-task learning has been the focus of much interest in the machine learning community over the
last decade. Typical approaches to information transfer among tasks include: sharing hidden nodes
in neural networks (Baxter, 1995, 2000; Caruana, 1997); placing a common prior in hierarchical
Bayesian models (Yu et al., 2003, 2004, 2005; Zhang et al., 2006); sharing parameters of Gaussian
processes (Lawrence and Platt, 2004); learning the optimal distance metric for K-Nearest Neighbors
(Thrun and O’Sullivan, 1996); sharing a common structure on the predictor space (Ando and Zhang,
2005); and structured regularization in kernel methods (Evgeniou et al., 2005), among others.

In statistics, the problem of combining information from similar but independent experiments
has been studied under the category of meta-analysis (Glass, 1976) for a variety of applications
in medicine, psychology and education. Researchers collect data from experiments performed at
different sites or times—including information from related experiments published in literature—to
obtain an overall evaluation on the significance of an experimental effect. Therefore, meta-analysis
is also referred to as quantitative synthesis, or overview. The objective of multi-task learning is
different from that of meta analysis. Instead of giving an overall evaluation, our objective is to learn
multiple tasks jointly, either to improve the learning performance (i.e., classification accuracy) of
each individual task, or to boost the performance of a new task by transferring domain knowledge
learned from previously observed tasks. Despite the difference in objectives, many of the techniques
employed in the statistical literature on meta-analysis can be applied to multi-task learning as well.

1.1.1 DIRICHLET PROCESSES FOR NONPARAMETRIC HIERARCHICAL BAYESIAN MODELING

Hierarchical Bayesian modeling is one of the most important methods for meta analysis (Burr and
Doss., 2005; Dominici et al., 1997; Hoff, 2003; Müller et al., 2004; Mallick and Walker, 1997).
Hierarchical Bayesian models provide the flexibility to model both the individuality of tasks (ex-
periments), and the correlations between tasks. Statisticians refer to this approach as “borrowing
strength” across tasks. Usually the bottom layer of the hierarchy is individual models with task-
specific parameters. On the layer above, tasks are connected together via a common prior placed on
those parameters. The hierarchical model can achieve efficient information-sharing between tasks
for the following reason. Learning of the common prior is also a part of the training process, and
data from all tasks contribute to learning the common prior, thus making it possible to transfer
information between tasks (via sufficient statistics). Given the prior, individual models are learnt
independently. As a result, the estimation of a classifier (task) is affected by both its own training
data and by data from the other tasks related through the common prior.
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Often, the common prior in a hierarchical Bayesian model is specified in a parametric form with
unknown hyper-parameters, for example, a Gaussian distribution with unknown mean and variance.
Information is transferred between tasks by learning those hyper-parameters using data from all
tasks. However, it is preferable to also learn the functional form of the common prior from the data,
instead of being pre-defined. In this paper, we provide such a nonparametric hierarchical Bayesian
model for jointly learning multiple logistic regression classifiers. Such nonparametric approaches
are desirable because it is often difficult to know what the true distribution should be like, and an
inappropriate prior could be misleading. Further, the model parameters of individual tasks may have
high complexity, and therefore no appropriate parametric form can be found easily.

In the proposed nonparametric hierarchical Bayesian model, the common prior is drawn from
the Dirichlet process (DP). The advantage of applying the DP prior to hierarchical models has been
addressed in the statistics literature, see for example Mukhopadhyay and Gelfand (1997), Mallick
and Walker (1997) and Müller et al. (2004). Research on the Dirichlet process model goes back to
Ferguson (1973), who proved that there is positive (non-zero) probability that some sample function
of the DP will be as close as desired to any probability function defined on the same support set.
Therefore, the DP is rich enough to model the parameters of individual tasks with arbitrarily high
complexity, and flexible enough to fit them well without any assumption about the functional form
of the prior distribution.

1.1.2 IDENTIFYING THE EXTENT OF SIMILARITIES BETWEEN TASKS IN MTL

A common assumption in the previous literature on MTL work is that all tasks are (equally) related
to each other, but recently there have been a few investigations concerning the extent of relatedness
between tasks. An ideal MTL algorithm should be able to automatically identify similarities be-
tween tasks and only allow similar tasks to share data or information. Thrun and O’Sullivan (1996)
first presented a task-clustering algorithm with K-Nearest Neighbors. Bakker and Heskes (2003)
model the common prior in the hierarchical model as a mixture distribution, but two issues exist in
that work: (i) Extra “high-level” task characteristics, other than the features used for learning the
model parameters of individual tasks, are needed to decide the relative weights of mixture compo-
nents; and (ii) the number of mixtures is a pre-defined parameter. Both these issues are avoided
in the models presented here. Based only on the features and class labels, the proposed statistical
models automatically identify the similarities between the various tasks and adjust the complexity
of the model, that is, the number of task clusters, relying on the implicit nonparametric clustering
mechanism of the DP (see Sec. 2).

Before we proceed with the technical details, we clarify two issues about task-similarity. First,
we define two classification tasks as similar when the two classification boundaries are close, that is,
when the weight vectors of two classifiers are similar. Note that this is different from some previous
work such as Caruana (1997) where two tasks are defined to be similar if they use the same features
to make their decision.

Secondly, the property that the distributions drawn from a Dirichlet process are discrete with
probability one introduces questions, because it implies that we cluster identical tasks instead of
similar tasks. This may appear restricting, but for the following reasons this is not the case. We are
interested in the posterior distribution of the model parameters when we learn a model with Bayesian
methods. The posterior is decided by both the prior of the parameters and the data likelihood given
the parameters. If the DP prior is employed, the prior promotes clustering while the likelihood
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encourages the fitting of the parameters of individual classifiers to their own data. Therefore, the
model parameters learned for any task are the result of the tradeoff between sharing with other tasks
and retaining the individuality of the current task. This gives similar tasks the chance to share the
same model parameters.

As discussed above, the direct use of DP yields identical parameter estimates to similar tasks.
One may more generally wish to give similar (but not identical) parameters to similar tasks. This
may be accomplished by adding an additional layer of randomness, that is, modeling the prior of
the model parameters as a DP mixture (DPM) (Antoniak, 1974), which is a usual solution to the
discrete character of DP. We have compared the models with the DPM prior and the DP prior and
found that the former underperforms the latter in all our empirical experiments. We hypothesize
that this result is attributable to the increase in model complexity, since the DPM prior introduces
one more layer in the hierarchical model than the DP prior. Therefore, in this paper we only present
the approach of placing a DP prior on the the model parameters of individual tasks.

1.2 Novel Contributions of this Paper

We develop novel solutions to the following problems: (i) joint learning of multiple classification
tasks, which may differ in data statistics due to temporal, geographical or other variations; (ii) effi-
cient transfer of the information learned from (i) to a new observed task for the purpose of improving
the new task’s learning performance. For notational simplification, problem (i) is referred as SMTL
(symmetric multi-task learning) and problem (ii) as AMTL (asymmetric multi-task learning). Our
discussion is focused on classification tasks, although the proposed methods can be extended di-
rectly to regression problems.

The setting of the SMTL is similar to that used in meta analysis. Most meta-analysis work
considers only simple linear models for regression problems. Mukhopadhyay and Gelfand (1997)
and Ishwaran (2000) discuss the application of DP priors in the general framework of generalized
linear models (GLMs). They use the mixed random effects model to capture heterogeneity in the
population studied in an experiment. The fixed effects are modeled with a parametric prior while
the random effects are mixed over DP. Our work is closely related to their research, in that the
logistic regression model, which we use for classification, is a special case of GLMs. Yet, we
modify the model to suit the multi-task setting. First, we group the population by task and add
an additional constraint that each group share the same model. Second, we place a DP prior on
the whole vector of linear coefficients, including both fixed effects and random effects. The linear
coefficients of covariates in the logistic regression model correspond to the classifiers in linear
classification problems. For our problem, it is too limiting to consider only the variability in the
random effect, that is, the intercept of the classification boundary; the variability in the orientation
of the classification boundary should be considered as well.

The inference techniques employed here constitute a major difference between our SMTL part
and the work of Mukhopadhyay and Gelfand (1997) and Ishwaran (2000). Mukhopadhyay and
Gelfand (1997) use Gibbs sampling based on the Polya Urn representation of DP, while Ishwaran
(2000) develops a Gibbs sampler based on the truncated stick-breaking representation of DP. In the
work reported here, the proposed SMTL models are implemented with a deterministic inference
method, specifically variational Bayesian (VB) inference, avoiding the overfitting associated with
maximum-likelihood (ML) approximations while preserving computational efficiency.
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The AMTL problem addressed here is a natural extension of SMTL. In AMTL the compu-
tational burden is relatively small and thus a means of Monte Carlo integration with acceptance-
rejection is suggested to make predictions for the new task. We note that Yu et al. (2004) propose
a hierarchical Bayesian framework for information filtering, which similarly applies a DP prior on
individual user profiles. However, due to limitations of the approximate DP prior employed in Yu
et al. (2004), their approach differs from ours in two respects: (i) it cannot be used to improve the
classification performance of multiple tasks by learning them in parallel, that is, it is not a solution
to the SMTL problem; and (ii) in the AMTL case, their approach conducts an effective information
transfer to the new observed task only when the size of the training set is large in previous tasks.
These points are clarified further in Section 4.

1.3 Organization of the Paper

The remainder of this paper is organized as follows. Section 2 provides an introduction to the
Dirichlet process and its application to data clustering. The SMTL problem is addressed in Section
3, which describes the proposed Bayesian hierarchical framework and presents a variational infer-
ence algorithm. Section 4 develops an efficient method of information transfer for the AMTL case
and compares it with the method presented by Yu et al. (2004). Experimental results are reported in
Section 5, demonstrating the application of the proposed models to a landmine detection and an art
image retrieval problem. Section 6 concludes the work and outlines future directions.

2. Dirichlet Process

Assume the model parameters of individual tasks, denoted by w, are drawn from a common prior
distribution G. The distribution G itself is sampled from a Dirichlet process DP(α,G0), where
α is a positive scaling (innovation) parameter and G0 is a base distribution. The mathematical
representation of the DP model is

wm|G ∼ G,

G ∼ DP(α,G0).

where m = 1, . . . ,M for M tasks.
Integrating out G, the conditional distribution of wm, given observations of the other M − 1 w

values w−m = {w1, · · · ,wm−1,wm+1, · · · ,wM}, is

p(wm|w−m,α,G0) =
α

M−1+α
G0 +

1
M−1+α

M

∑
j=1, j 6=m

δw j , (1)

where δw j is the distribution concentrated at the single point w j.
Let w∗

k , k = 1, . . . ,K, denote the K distinct values among w1, . . . ,wM and n−m,k denote the num-
ber of w’s equal to w∗

k , excluding wm. Equation (1) can be rewritten as

p(wm|w−m,α,G0) =
α

M−1+α
G0 +

1
M−1+α

K

∑
k=1

n−m,kδw∗
k
. (2)

Relevant observations concerning (2) are: (i) the Dirichlet process model has an implicit mech-
anism of clustering samples into groups, since a new sample prefers to join a group with a large
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population; (ii) the model is flexible, creating new clusters or merging existing clusters to fit the
observed data better; (iii) parameter α controls the probability of creating a new cluster, with larger
α yielding more clusters; (iv) in the limit as α → ∞ there is a cluster for each w, and since w are
drawn from G0, limα→∞ G = G0.

The Dirichlet Process has the following important properties:

1. E[G] = G0; the base distribution represents our prior knowledge or expectation concerning G.

2. p(G|w1, . . . ,wM,α,G0) = DP(α + M,
α

M+α G0 + 1
M+α

M
∑
j=1

δw j); the posterior of G is still a

Dirichlet process with the updated base distribution α
M+α G0 + 1

M+α

M
∑
j=1

δw j , and a confidence

in this base distribution that is enhanced relative to the confidence in the original base distri-
bution G0, reflected in the increased parameter α → α+M.

The lack of an explicit form of G is addressed with the stick-breaking view of the Dirichlet
process. Sethuraman (1994) introduces a constructive definition of the Dirichlet process, based upon
which Ishwaran and James (2001) characterize the DP priors with a stick-breaking representation

G =
∞

∑
k=1

πkδw∗
k
, (3)

where

πk = vk

k−1

∏
i=1

(1− vi).

For each k, vk is drawn from a Beta distribution Be(1,α);1 simultaneously another random variable
w∗

k is drawn independently from the base distribution G0; w∗
k and πk represents the location and

weight of the kth stick.
If vK is set to one instead of being drawn from the beta distribution, it yields a truncated approx-

imation to the Dirichlet process

G =
K

∑
k=1

πkδw∗
k
.

Ishwaran and James (2001) establish two theorems for selecting an appropriate truncation level,
leading to a model virtually indistinguishable from the infinite DP model; the truncated DP model
is computationally more efficient in practice.

3. Learning Multiple Classification Tasks Jointly (SMTL)

In this section we propose a Bayesian multi-task learning model for jointly estimating classifiers for
several data sets. The model automatically identifies relatedness by task clustering with nonparamet-
ric methods. A variational Bayesian (VB) approximation is used to learn the posterior distributions
of the model parameters.

1. Notation for distributions follows Robert and Casella (2004); this same notation is used in the rest of the paper.
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3.1 Mathematical Model

Consider M tasks, indexed as 1, · · · ,M. Let the data set of task m be Dm = {(xm,n,ym,n) : n =
1, · · · ,Nm}, where xm,n ∈ R

d , ym,n ∈ {0,1}, and (xm,n,ym,n) are drawn i.i.d. from the underlying
distribution of task m. For task m the conditional distribution of ym,n given xm,n is modeled via
logistic regression as,

p(ym,n|wm,xm,n) = σ(wT
mxm,n)

ym,n [1−σ(wT
mxm,n)]

1−ym,n (4)

where σ(x) = 1
1+exp(−x) and wm parameterizes the classifier for task m. The goal is to learn {wm}

M
m=1

jointly, sharing information between tasks as appropriate, so that the resulting classifiers can accu-
rately predict class labels for new test samples for tasks m = 1, · · · ,M.

To complete the hierarchical model, we place a Dirichlet process prior on the parameters wm,
which based on the discussion in Section 2 implies clustering of the tasks. The base distribution
G0 is specified as a d-dimensional multivariate normal distribution Nd(µ,Σ). We define an indicator
variable cm = [cm,1, . . . ,cm,∞]T , which is an all-zero vector except that the kth entry is equal to one
if task m belongs to cluster k, using the infinite set of mixture components (clusters) reflected in
(3). The data can be seen as drawn from the following generative model, obtained by employing the
stick-breaking view of DP:

SMTL Model. Given the parameters α, µ and Σ,

1. Draw vk from the Beta distribution Be(1,α) and independently draw w∗
k from the base distri-

bution Nd(µ,Σ), k = 1, . . . ,∞.

2. πk = vk

k−1
∏
i=1

(1− vi), k = 1, . . . ,∞.

3. Draw the indicators (cm,1, . . . ,cm,∞) from a multinomial distribution M∞(1;π1, . . . ,π∞), m =
1, . . . ,M

4. wm =
∞
∏

k=1
(w∗

k)
cm,k , or in an equivalent form wm =

∞
∑

k=1
cm,kw∗

k , m = 1, . . . ,M.

5. Draw ym,n from a Binomial distribution B(1,σ(wT
mxm,n)), m = 1, . . . ,M, n = 1, · · · ,Nm.

We refer to this as symmetric multi-task learning (SMTL) because all tasks are treated symmet-
rically; asymmetric multi-task learning (AMTL) is addressed in Section 4.

3.1.1 HYPER-PRIORS

In the SMTL model, α, µ and Σ are given parameters. The scaling parameter α often has a strong
impact on the number of clusters, as analyzed in Section 2. To make the algorithm more robust, it
is suggested by West et al. (1994) that α be integrated over a diffuse hyper-prior. This leads to a
modified SMTL model:

SMTL-1 Model. Given the parameters µ, Σ and hyper-parameters τ10, τ20,

• Draw α from a Gamma distribution Ga(τ10,τ20).

• Follow Step 1-5 in the SMTL model.
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Similarly, we are also interested in the effects of integrating µ and Σ, the parameters of the
base distribution, over a diffuse prior. For notational simplification, we use Λ, the precision matrix
of the base distribution, instead of the covariance matrix Σ, where Λ = Σ−1. We assume Λ is a
diagonal matrix with diagonal elements λ1, · · · ,λd . The conjugate prior for the mean and precision
of a normal distribution is a Normal-Gamma distribution. Hence, the SMTL-1 model can be further
modified as

SMTL-2 Model. Given the hyper-parameters τ10, τ20, γ10, γ20 and β0,

• Draw λ j from a Gamma distribution Ga(γ10,γ20), j = 1, ...,d.

• Draw µ from a Normal distribution Nd(0,(β0Λ)−1); draw α from a Gamma distribution
Ga(τ10,τ20).

• Follow Step 1-5 in the SMTL model.

The performance of the SMTL-1 and SMTL-2 models is analyzed in Section 5.1.1.

3.1.2 GRAPHICAL REPRESENTATION

Figure 1 shows a graphical representation of the SMTL models with the Dirichlet process prior; the
two SMTL models differ in the ancestor nodes of w∗

k .
In the graph, each node denotes a random variable in the model. The nodes for ym,n and xm,n

are shaded because they are observed data. An arrow indicates dependence between variables, that
is, the conditional distribution of a variable given its parents. The number, for example, M, at the
lower right corner of a box indicates the nodes in that box have M iid copies.

The condition distributions between the variables are specified as follows
· ym,n

p(ym,n|cm,{w∗
k}

∞
k=1,xm,n) =

∞
∏

k=1
{σ(w∗

k
T xm,n)

ym,n [1−σ(w∗
k

T xm,n)]
1−ym,n}cm,k ,

m = 1, . . . ,M, n = 1, · · · ,Nm.
· cm

p(cm|{vk}
∞
k=1) = v

cm,1
1

∞
∏

k=2
[vk

k−1
∏
i=1

(1− vi)]
cm,k , m = 1, . . . ,M.

· vk

p(vk|α) = α(1− vk)
α−1, k = 1, . . . ,∞,

· α
p(α|τ10,τ20) =

ττ10
20

Γ(τ10)
ατ10−1 exp(−τ20α), where Γ(·) is the Gamma function.

· w∗
k
· SMTL-1 Model:

p(w∗
k |µ,Σ) = (2π)−

d
2 |Σ|− 1

2 exp(− 1
2(w∗

k −µ)T Σ−1(w∗
k −µ)), k = 1, . . . ,∞.

· SMTL-2 Model:
p(w∗

k |µ,{λ j}
d
j=1) = (2π)−

d
2 |Λ| 1

2 exp(− 1
2(w∗

k −µ)T Λ(w∗
k −µ)), k = 1, . . . ,∞,

where Λ is a diagonal matrix with diagonal elements λ1, · · · ,λd .
· µ,λ1, · · · ,λd (if the SMTL-2 Model is used)

p(µ,{λ j}
d
j=1|γ10,γ20,β0)

= (2π)−
d
2 |β0Λ| 1

2 exp(−β0
2 µT Λµ) ·

d
∏
j=1

[
γγ10

20
Γ(γ10)

λγ10−1
j exp(−γ20λ j)].
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10τ
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Σ

µ

(a) Graphical representation of the SMTL-1 model.
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(b) Graphical representation of the SMTL-2 model.

Figure 1: Graphical representation of the SMTL models with the Dirichlet process prior.

For simplicity, let Z denote the collection of latent variables and Φ denote the collection of given
parameters and hyper-parameters. For the SMTL-1 model, Z = {{cm}

M
m=1,{vk}

∞
k=1,α,{w∗

k}
∞
k=1}
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and Φ = {τ10,τ20,µ,Σ}; for the SMTL-2 model, Z = {{cm}
M
m=1,{vk}

∞
k=1,α,{w∗

k}
∞
k=1,µ,{λ j}

d
j=1}

and Φ = {τ10,τ20,γ10,γ20,β0}.

3.2 Variational Bayesian Inference

In the Bayesian approach, we are interested in p(Z|{Dm}
M
m=1,Φ), the posterior distribution of the

latent variables given the observed data and hyper-parameters,

p(Z|{Dm}
M
m=1,Φ) =

p({Dm}
M
m=1|Z,Φ)p(Z|Φ)

p({Dm}
M
m=1|Φ)

,

where p({Dm}
M
m=1|Φ) =

R

p({Dm}
M
m=1|Z,Φ)p(Z|Φ)dZ is the marginal distribution, and evaluation

of this integration is the principal computational challenge; the integral does not have an analytic
form in most cases. The Markov Chain Monte Carlo (MCMC) method is a powerful and popu-
lar simulation tool for Bayesian inference. To date most research on applications of the Dirichlet
process has been implemented with Gibbs sampling, an MCMC method (Escobar and West, 1995;
Ishwaran and James, 2001). However, slow speed and difficult-to-evaluate convergence of the DP
Gibbs sampler impede its application in many practical situations.

In this work, we employ a computationally efficient approach, mean-field variational Bayesian
(VB) inference (Ghahramani and Beal, 2001). The VB method approximates the true posterior
p(Z|{Dm}

M
m=1,Φ) by a variational distribution q(Z). It converts computation of posteriors into

an optimization problem of minimizing the Kullback-Leibler (KL) distance between q(Z) and
p(Z|{Dm}

M
m=1,Φ), which is equivalent to maximizing a lower bound of log p({Dm}

M
m=1|Φ), the log

likelihood. To make the optimization problem tractable, it is assumed that the variational distribu-
tion q(Z) is sufficiently simple - fully factorized with each factorized component in the exponential
family. Under this assumption, an analytic solution of the optimal q(Z) can be obtained by taking
functional derivatives; refer to Ghahramani and Beal (2001) and Jordan et al. (1999) for more details
about VB.

3.2.1 LOCAL CONVEX BOUND

One difficulty of applying VB inference to the SMTL models is that the sigmoid function in (4) does
not lie within the conjugate-exponential family. We use a variational method based on bounding log
convex functions (Jaakkola and Jordan, 1997).

Consider the logistic regression model p(y|w,x) = σ(wT x)y[1−σ(wT x)]1−y. The prior distri-
bution of w is assumed to be normal with mean µ̃0 and variance Σ̃0. We want to estimate the
posterior distribution of w given the data (x,y). This does not have an analytic solution due to the
non-exponential property of the logistic regression function. Jaakkola and Jordan (1997) present a
method that uses an accurate variational transformation of p(y|w,x) as follows

p(y|w,x) ≥ σ(ξ)exp(
(2y−1)wT x−ξ

2
+ρ(ξ)(xT wwT x−ξ2)),

where ρ(ξ) =
1
2−σ(ξ)

2ξ and ξ is a variational parameter. The equality holds when ξ = ±wT x.

The posterior p(w|x,y, µ̃0, Σ̃0) remains the normal form with this variational approximation.
Given the variational parameter ξ, the mean µ̃ and variance Σ̃ of the normal distribution can be
computed as

Σ̃ = (Σ̃−1
0 +2|ρ(ξ)|xxT )−1

, µ̃ = Σ̃[Σ̃−1
0 µ̃0 +(y−

1
2
)x]. (5)

44



MULTI-TASK LEARNING FOR CLASSIFICATION WITH DIRICHLET PROCESS PRIORS

Note that we use the top script ˜ to avoid confusion with the usage of µ and Σ as the mean and
variance of the DP base distribution G0 in other sections of this paper.

Since the optimal value of ξ depends on w, an EM algorithm is devised in Jaakkola and Jordan
(1997) to optimize ξ. The E step updates µ̃ and Σ̃ following (5), given the estimate of ξ in the last
iteration; the M step computes the optimal value of ξ as

ξ2 = xT (Σ̃+ µ̃µ̃T )x.

This EM algorithm is assured to converge and has been verified to be fast and stable in Jaakkola and
Jordan (1997).

The variational method can give us a lower bound of the predictive likelihood as

p(y|x, µ̃0, Σ̃0) ≥ exp(logσ(ξ)−
ξ
2
−ρ(ξ)ξ2 −

1
2

µ̃T
0 Σ̃−1

0 µ̃0 +
1
2

µ̃T Σ̃−1µ̃+
1
2

log
|Σ̃|
|Σ̃0|

). (6)

3.2.2 TRUNCATED VARIATIONAL DISTRIBUTION

Another difficulty that must be addressed is the computational complexity of the infinite stick-
breaking model. Following Blei and Jordan (2005), we employ a truncated stick-breaking represen-
tation for the variational distribution. It is worth noting that in the VB framework, the model is a
non-truncated full Dirichlet process while the variational distribution is truncated. Empirical results
on truncation level selection are given by Blei and Jordan (2005), but no theoretical criterion has
been developed in the VB framework up to now. In all the experiments presented here we set the
truncation level equal to the number of tasks. There is no loss of generality with this approach but
it is computationally expensive if there are a large number of tasks.

Let K denote the truncation level. In the SMTL-1 model, the factorized variational distribution
is specified as

q(Z) = [
M

∏
m=1

qcm(cm)] · [
K

∏
k=1

qvk(vk)] ·qα(α) · [(
K

∏
k=1

qw∗
k
(w∗

k)],

where

• qcm(cm) is a multinomial distribution,

cm ∼ MK(1;φm,1, . . . ,φm,K),m = 1, . . . ,M.

• qvk(vk) is a Beta distribution

vk ∼ Be(ϕ1,k,ϕ2,k),k = 1, . . . ,K −1.

Note qvK (vK) = δ1(vK).

• qα(α) is a Gamma distribution
α ∼ Ga(τ1,τ2).

• qw∗
k
(w∗

k) is a normal distribution,

w∗
k ∼ Nd(θk,Γk),k = 1, . . . ,K.
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Similarly, in the SMTL-2 model, the factorized variational distribution is specified as

q(Z) = [
M

∏
m=1

qcm(cm)] · [
K

∏
k=1

qvk(vk)] ·qα(α) · [(
K

∏
k=1

qw∗
k
(w∗

k)] ·qµ,{λ j}
d
j=1

(µ,{λ j}
d
j=1).

where qcm(cm), qvk(vk), qα(α) and qw∗
k
(w∗

k) are the same as the specifications above.
The distribution qµ,{λ j}

d
j=1

(µ,{λ j}
d
j=1) is Normal-Gamma,

(µ,{λ j}
d
j=1) ∼ Nd(η,(βΛ)−1)

d

∏
j=1

Ga(γ1 j,γ2 j). (7)

A coordinate ascent algorithm is developed for the SMTL model by applying the mean-field
method (Ghahramani and Beal, 2001). Each factor in the factorized variational distribution and ξ,
the variational parameter of the sigmoid function, are re-estimated iteratively conditioning on the
current estimate of all the others, assuring the lower bound of the log likelihood increases monoton-
ically until it converges. The re-estimation equations can be found in the Appendix.

3.3 Prediction for Test Samples

The prediction function for a new test sample xm,? is

p(ym,? = 1|cm,{w∗
k}

K
k=1,xm,?) =

K

∑
k=1

cm,kσ(w∗
k

T xm,?). (8)

Integrating (8) over the variational distributions qw∗
k
(w∗

k) and qcm(cm) yields

p(ym,? = 1|{{φm,k}
K
k=1}

M
m=1,{θk}

K
k=1,{Γk}

K
k=1,xm,?)

=
K
∑

k=1
φm,k

R

σ(w∗
k

T xm,?)Nd(θk,Γk)dw∗
k .

(9)

The integral in (9) does not have an analytic form. The variational method described in Section
3.2.1 could give us a lower bound of the integral in the form of (6), if we apply the EM algorithm
by taking Nd(θk,Γk) as the prior of w∗

k and (xm,?,ym,? = 1) as the observation. However, we prefer
an accurate estimate of the integral instead of the lower bound of it. In addition, the iterative EM
algorithm might be inefficient in some applications that have a strict requirement to the testing
speed. Therefore, we use the approximate form of the integral in MacKay (1992)

Z

σ(w∗
k

T xm,?)Nd(θk,Γk)dw∗
k ≈ σ(

θT
k xm,?

√

1+ PI
8 xT

m,?Γkxm,?

), (10)

where PI is the constant approximately 3.1416 (here PI is used instead of π to avoid confusion with
π used in the stick-breaking representation of the DP).

We design a simple experiment to empirically evaluate accuracy of the approximation. Assume
xm,? is a 1-dimensional vector. Let the value of θk be −10,−9.5, · · · ,10 and the value of Γk be
10−1,100,101 and 102. For any combination of the values of θk and Γk, we compare the average
error between the approximation and the true value of the integration over the range of xm,? from
−10 to 10 with an interval of 0.5. The “true” value of the integral is approximated by the MCMC
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Figure 2: The error between the approximation and the true value of the integral in (10), averaged
over the range of xm,? from −10 to 10 with an interval of 0.5.

method, that is, we randomly draw 104 samples of w∗
k from the normal distribution Nd(θk,Γk),

substitute the samples into the logistic function σ(w∗
k

T xm,?) and take the average of the function
values. The results are plotted in Fig. 2, which shows the approximation is rather accurate.

Substituting (10) into (9) yields the prediction function as

p(ym,? = 1|{{φm,k}
K
k=1}

M
m=1,{θk}

K
k=1,{Γk}

K
k=1,xm,?) ≈

K

∑
k=1

φm,kσ(
θT

k xm,?
√

1+ PI
8 xT

m,?Γkxm,?

).

4. Information Transfer to a New Task (AMTL)

Assume the SMTL model has been applied to M tasks. Now assume a new task M +1 is considered.
When learning task M + 1 we wish to benefit from the information learned from the previous M
tasks. One option is to re-run the SMTL algorithm on all M + 1 tasks, but this requires storage of
the data from all previous tasks and may be computationally prohibitive for real-time applications.
In fact, re-running SMTL on all tasks is in many situations not necessary, as the previous M tasks
may simply represent the history and re-estimating them is uninteresting. In these cases, we need
only concentrate on learning the new task, treating the previous M tasks as the background tasks,
from which relevant information is transferred to the new task. Such an approach provides us the
advantage of algorithmic efficiency, since we do not have to manipulate a bulk of data from the
past tasks. In this section, we develop an efficient method for fast learning of the new observed
task. Since task M +1 is treated differently from tasks 1 though M, this is referred to as asymmetric
MTL, or AMTL.
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4.1 Prior Learned from Previous Tasks

From (2), we know that the conditional distribution of the classifier wM+1 given α, G0 and the other
M classifiers is

p(wM+1|w1, · · · ,wM,α,G0) =
α

M +α
G0 +

1
M +α

K

∑
k=1

nkδw∗
k
, (11)

where nk =
M
∑

m=1
cm,k is the number of wm which are equal to w∗

k .

Assume the SMTL-1 model has been applied to M previous tasks and thus the variational distri-
butions qcm(cm), qα(α) and qw∗

k
(w∗

k) have been optimized. We have Eq[cm,k] = φm,k, Eq[α] = τ1
τ2

and
Eq[w∗

k ] = θk, where Eq is the expectation with respect to the variational distributions. Substituting
the expectations into (11) yields

p(wM+1|{{φm,k}
K
k=1}

M
m=1,{θk}

K
k=1,τ1,τ2,G0) ≈

τ1
τ2

M + τ1
τ2

G0 +
1

M + τ1
τ2

K

∑
k=1

n̄kδθk , (12)

where n̄k =
M
∑

m=1
φm,k. For future convenience, we define Ω = {{{φm,k}

K
k=1}

M
m=1,{θk}

K
k=1,τ1,τ2}.

Equation (12) represents our belief about the classifier wM+1 before we actually see the data
DM+1. Therefore, by taking it as a prior for wM+1, information learned from previous tasks can
be transferred to the new task. The posterior of wM+1, after observing the data DM+1, is computed
according to the Bayes Theorem

p(wM+1|DM+1,Ω,G0) =
p(DM+1|wM+1)p(wM+1|Ω,G0)

p(DM+1|Ω,G0)
, (13)

where
p(DM+1|wM+1)

=
NM+1

∏
n=1

p(yM+1,n|wM+1,xM+1,n),

=
NM+1

∏
n=1

σ(wT
M+1xM+1,n)

yM+1,n [1−σ(wT
M+1xM+1,n)]

1−yM+1,n .

(14)

Note in Section 4 we limit the discussion on learning from previous tasks to the SMTL-1 model,
for which the parameters of G0 are given; the approach developed in this section can be extended to
the SMTL-2 model by substituting the expectations on the parameters of G0 into (12).

4.2 Sampling Posterior Using Metropolis-Hastings Algorithm

The posterior (13) does not have an analytic form because the prior (12) is a mixture of the base
distribution G0 with several point mass distributions, and the sigmoid function in the likelihood
function (14) is not conjugate to the prior. Considering that the computational burden is small in the
AMTL case (we only deal with data from task M + 1), we appeal to MCMC methods and develop
a Metropolis-Hastings algorithm to draw samples from the posterior (Robert and Casella, 2004;
Neal, 1998). This algorithm is feasible in practice since it is a simple MCMC solution and the
computational cost is low.
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Metropolis-Hastings Algorithm

1. Draw a sample ẇ from (12).

2. Draw a candidate ŵ also from (12).

3. Compute the acceptance probability

a(ŵ, ẇ) = min[1,
p(DM+1|ŵ)
p(DM+1|ẇ) ].

4. Set the new value of ẇ to ŵ with this probability; otherwise let the new value of ẇ be the same
as the old value.

5. Repeat Step 2-4 until the required number of samples, denoted by NSAM , are taken.

This yields an approximation to the posterior in (13)

p(wM+1|DM+1,Ω,G0) ≈
1

NSAM

NSAM

∑
i=1

δẇi .

4.3 Prediction Algorithm for Test Samples in New Task

Our goal is to learn wM+1 so that the resulting classifier can accurately predict the class label for a
new test sample xM+1,?. The prediction function is

p(yM+1,? = 1|xM+1,?,Ω,G0)
=

R

p(yM+1,? = 1|xM+1,?,wM+1)p(wM+1|DM+1,Ω,G0)dwM+1,

≈ 1
NSAM

NSAM

∑
i=1

p(yM+1,? = 1|xM+1,?, ẇi),

= 1
NSAM

NSAM

∑
i=1

σ
(

ẇT
i xM+1,?

)

.

(15)

Hence, the entire learning procedure for a new task is
AMTL-1 Algorithm Given Ω and G0,

1. Compute the parameters in (12) - the prior learned from previous M tasks.

2. Draw samples ẇ1, · · · , ẇNSAM with the Metropolis-Hastings algorithm.

3. Predict for test samples using (15).

4.4 Comparison with Method of Yu et al. (2004)

Yu et al. (2004) present a hierarchical Bayesian framework for information filtering. Their purpose
is to find the right information item for an active user, utilizing both item content information and
an accumulated database of item ratings cast by a large set of users. The problem is modeled as
a classification problem by labeling the items a user likes “1” and “0” otherwise. The learning
situation is similar to our AMTL case, if each user is treated as a task. In Yu’s approach, a Dirichlet
process prior is learned from the database

p(wM+1|{Dm}
M
m=1,α0,G0) =

α0

M +α0
G0 +

1
M +α0

M

∑
m=1

ζmδŵm , (16)
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where α0 and G0 are pre-defined. They treat ŵm as the maximum a posteriori (MAP) estimate of
task m. The weights ζm are learned with an Expectation Maximization (EM) algorithm presented in
Yu et al. (2004, Section 3).

From the stick-breaking view of DP, the prior in (16) is an approximation to the standard DP,
in that the locations of sticks are fixed, at the classifiers learned from individual models, while the
weights are inferred with the EM algorithm. This approximation is inappropriate if the training
samples in each previous task are not sufficient, so that each task cannot learn an accurate classifier
by only using the corresponding user’s profile. In other words, it is not a good use of the information
in previous tasks.

Some other approximations are made in the prediction step of Yu’s approach, although they are
relatively trivial compared to the approximation to the DP prior mentioned above. For comparison,
we develop the second AMTL algorithm with the approximate DP prior.

AMTL-2 Algorithm Given ŵ1, · · · , ŵM, α0 and G0,

1. Optimize the weights ζm in (16) with the EM algorithm in Yu et al. (2004, Section 3).

2. Substitute (12) with (16), then draw samples ẇ1, · · · , ẇNSAM with the Metropolis-Hastings al-
gorithm.

3. Predict for test samples using (15).

Empirical comparisons of the two AMTL algorithms are reported in Section 5.1.2.

5. Experiments and Results Analysis

An empirical study of the proposed methods is conducted on two real applications: (i) a landmine
detection problem, and (ii) an art image retrieval problem.

5.1 Landmine Detection
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Figure 3: Number of landmines/clutter in each of the 29 data sets.
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Data from 29 tasks are collected from various landmine fields.2 Each object in a given data set
is represented by a 9-dimensional feature vector and the corresponding binary label (1 for landmine
and 0 for clutter). The feature vectors are extracted from radar images, concatenating four moment-
based features, three correlation-based features, one energy ratio feature and one spatial variance
feature. Figure 3 shows the number of landmines/clutter in each data set.

The landmine detection problem is modeled as a binary classification problem. The objective is
to learn a classifier from the labeled data, with the goal of providing an accurate prediction for an
unlabeled feature vector. We treat classification of each data set as a learning task and evaluate the
proposed SMTL and AMTL methods on this landmine detection problem.

Among these 29 data sets, 1-15 correspond to regions that are relatively highly foliated and 16-
29 correspond to regions that are bare earth or desert. Thus we expect that there are approximately
two clusters of tasks corresponding to two classes of ground surface conditions. We first evaluate
the SMTL models using data sets 1-10 and 16-24; next, for the AMTL setting, these data are treated
as previous tasks and data sets 11-15 and 25-29 are treated as new observed tasks.

5.1.1 SMTL

Data sets 1-10 and 16-24 are used for the SMTL experiment, so there are a total of 19 tasks. We ex-
amine the performance of four methods on accuracy of label prediction: (i) SMTL-1, (ii) SMTL-2,
(iii) the STL method—learn each classifier using the corresponding data set only—with the varia-
tional approach to logistic regression models in Section 3.2.1, and (iv) simply pooling the data in
all tasks and then learning a single classifier with the variational approach as for (iii).

The performance is measured by average AUC on 19 tasks, where AUC denotes area under the
Receiver Operation Characteristic (ROC) curve. A larger AUC value indicates a better classification
performance. To have a comprehensive evaluation, we test the algorithms with different sizes of
training sets. The number of training samples for every task is set as 20, 40, · · · , 300. For each
task, the training samples are randomly chosen from the corresponding data set and the remaining
samples are used for testing. Since the data have severely unbalanced labels, as shown in Fig. 3, we
have a special setting that assures there is at least one “1” and one “0” sample in the training set of
each task.

Hyper-parameter settings are as follows: (i) τ10 = 5e−2, τ20 = 5e−2, γ10 = 1e−2, γ20 = 1e−3 and
β0 = 1e−2, (ii) τ10 = 5e−2, τ20 = 5e−2, µ = 0 and Σ = 10I, (iii) and (iv) µ̃0 = 0 and Σ̃0 = 10I. We
also tested with other choices of hyper-parameters and found that the algorithms are not sensitive to
the hyper-parameter settings as long as the hyper-priors are rather diffuse.

We plot the results of 100 random runs in Fig. 4. The two SMTL methods generally outperform
the STL method and simple pooling. To gain insight into how the SMTL method identifies the
clustering structure of tasks, we calculate the between-task similarity matrix as follows: at a certain
setting of the size of training set (e.g., 20 training samples per task), for each random run, the SMTL
algorithm outputs the variational distribution qcm(cm) with the optimized variational parameters
{φm,k}

K
k=1, where φm,k indicates the probability that task m belongs to cluster k, and then we take

k∗m = argmaxkφm,k as the membership of task m. The element at the ith row and jth column in
the between-task similarity matrix records number of occurrences, among 100 random runs, that
task i and task j are grouped into the same cluster. Fig. 5 shows the Hinton diagram (Hinton
and Sejnowski, 1986) for the between-task similarity matrices corresponding different experiment

2. The data are available at http://www.ee.duke.edu/∼lcarin/LandmineData.zip.
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Figure 4: Average AUC on 19 tasks in the landmine detection problem.

settings: (a)(c)(e) learned by using the SMTL-1 model with 20, 100 and 300 training samples per
task; (b)(d)(f) learned by using the SMTL-2 model with 20, 100 and 300 training samples per task.
In a Hinton diagram, the size of blocks is proportional to the value of the corresponding matrix
elements.

With the help of Fig. 5, we have the following analysis on the behavior of the curves in Fig. 4.

1. When very few training samples are available, for example, 20 per task, the STL method
performs poorly. The simple pooling method significantly improves the performance because
its effective training size is 18 times larger than that for each individual task. The training
samples are so few that although both SMTL methods find that all tasks are similar, they
cannot identify the extent of similarity between tasks (see (a) and (b) in Fig. 5). As a result,
they perform similar to the simple pooling method. The SMTL-2 performs slightly better due
to additional robustness introduced by integrating over the parameters of G0.

2. When there are a few training samples available, for example, 100 per task, the simple pooling
method does not improve further as more training samples are pooled together, because it
ignores the statistical differences between tasks. Both SMTL methods begin to learn the
clustering structure (see (c) and (d) in Fig. 5) and this leads to better performance than the
simple pooling. The clustering structure in (d) is more obvious than that in (c), therefore the
SMTL-2 method works slightly better than the SMTL-1 method.

3. When each task has many training samples, for example, 300 per task, both SMTL methods
identify the clustering structure (see (e) and (f) in Fig. 5). The number of training samples is
large enough for each task to learn well by itself, so the curve for the STL method approaches
the curves for the SMTL methods and exceeds the curve for the simple pooling. It is clear
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Figure 5: Hinton diagram for the between-task similarity matrix in the landmine detection problem,
(a)(c)(e) learned by using the SMTL-1 model with 20, 100 and 300 training samples per
task; (b)(d)(f) learned by using the SMTL-2 model with 20, 100 and 300 training samples
per task. In a Hinton diagram, the size of blocks is proportional to the value of the
corresponding matrix elements.
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in (e) and (f) that the 19 tasks are roughly grouped into two clusters, which agree with the
ground truth discussed above.

5.1.2 AMTL

In this experiment, the data sets used in Section 5.1.1 are treated as previous tasks and data sets
11-15 and 25-29 as the new observed tasks. We compare three approaches:

1. AMTL-1: First we apply the SMTL-1 model to those previous tasks and learn the variational
parameters Ω, and then run the AMTL-1 algorithm on each new task.

2. AMTL-2: First we apply the variational logistic regression approach in Section 3.2.1 to each
previous task and learn the individual classifiers ŵ1, . . . , ŵM, and then run the AMTL-2 algo-
rithm on each new task.

3. STL: Each new task learns by itself.

In the two AMTL methods, the mean and variance of the base distribution G0 are specified
as µ = 0 and Σ = 10I. The parameters τ1 and τ2 in the AMTL-1 model can be estimated from
previous tasks, while α0 in the AMTL-2 model is a predefined parameter, which represents a prior
belief about the relatedness between the new task and previous tasks. We have two settings: (i)
α0 = τ1

τ2
= 0, which represents a belief that the new task is closely related to previous tasks, and (ii)

α0 = τ1
τ2

, where τ1 and τ2 are estimated from previous tasks.
The performance of the three approaches is measured by the average AUC over the 10 new

tasks. Experimental results of 100 random runs are shown in Fig. 6. Two factors affecting learning
performance are considered: (i) number of training samples per previous task, used for learning the
prior of wM+1, and (ii) number of training samples per new task. The first factor is evaluated at 40,
160 and all samples in each previous task used for training, corresponding to (a)(b), (c)(d) and (e)(f)
in Fig. 6 respectively. The second factor is evaluated at 20, 40, · · · , 200 training samples in each
new task, plotted along the horizonal axis in each subplot of Fig. 6.

We have the following observations from Fig. 6:

1. In the case α0 = τ1
τ2

= 0 (see (a)(c)(e)), the prior belief is that the new task is closely related
previous tasks and the purpose of this setting is to focus on the comparison of information
transferability of the two AMTL approaches, given the ground truth that the new tasks are
quite similar to some of previous tasks. The AMTL-1 approach efficiently transfers informa-
tion from previous tasks to the new task. The SMTL method can learn an informative prior
for the new task, with only 40 training samples for each previous task (see (a) in Fig. 6). The
learning performance is slightly improved by using more training samples for each previous
task. The performance has almost no change as the number of training samples in the new
task increases, because we use the linear classier and thus the matching classifier can be found
with even only a pair of “1” and “0” labeled samples.

Information transferability of the AMTL-2 approach is weaker than the AMTL-1 approach,
due to the approximate DP prior (as analyzed in Section 4.4). As a result, the more training
samples in the new task, the more confused the algorithm is about which “stick” should be
the matching classifier. This explains why the curve for the AMTL-2 approach in (a) even
drops a little as the training samples in the new task increases. However, with a large set
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(a) α0 = τ1
τ2

= 0; 40 training samples for each previous
task.
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(b) α0 = τ1
τ2

, where τ1 and τ2 are estimated from previous
tasks; 40 training samples for each previous task.
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(c) α0 = τ1
τ2

= 0; 160 training samples for each previous
task.
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(d) α0 = τ1
τ2

, where τ1 and τ2 are estimated from previous
tasks; 160 training samples for each previous task.
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(e) α0 = τ1
τ2

= 0; all samples in previous tasks used for
training.
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(f) α0 = τ1
τ2

, where τ1 and τ2 are estimated from previous
tasks; all samples in previous tasks used for training.

Figure 6: Average AUC on 10 new tasks in the landmine detection problem.
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of training samples in previous tasks, the AMTL-2 approach works slightly better than the
AMTL-1 approach (see (e)), because the former can tell the subtle difference between very
similar tasks, while the latter treats them as identical.

2. Next, we recover G0 by using the parameters τ1 and τ2 estimated from previous tasks in the
AMTL-1 model and setting α0 = τ1

τ2
in the AMTL-2 model (see (b)(d)(f)). That enables the

new task to discover a new classifier by itself as well as use those learned from previous
tasks. Information transferability of the AMTL-2 approach is weak when there are only a
few training samples for each previous task, as disussed above. In such a case, the AMTL-2
approach works just as the STL approach because the new task has to learn by itself (see (b)).
In contrast, the AMTL-1 approach benefits from previous tasks so that incorporation of G0

has a relatively small effect on its performance.

5.2 Art Image Retrieval

A web survey is built to collect user ratings on 642 paintings from 30 artists.3 A user chooses his
rating of an image from “like”,“dislike” or “not sure”. Every user may give ratings only on a subset
of all images. In total 203 user ratings are collected.

Our objective is to estimate a user’s preference on unrated images. We model this as a binary
classification problem. Each user corresponds to a classification task. The images he rates as “like”
are labeled “1”, “dislike” labeled “0” and the images with the rating “not sure” are not included.
The content of an image is described by a 275-dimensional (275-D) feature vector concatenating a
256-D correlagram, a 10-D Pyramid wavelet texture and 9-D first and second color moments.

The painting image data differ with the landmine data in two respects. First, the low-level
features of image content, for example, color and texture, are weak indicators of human preferences,
therefore the content of an image is less helpful than ratings on that image from other users with
similar interests. Second, because user preferences are very diverse, the clustering structure of tasks
is expected to be more complex than that of the landmine detection tasks.

We use the 68 users who rate more than 100 images for the SMTL experiment. Then we take
these as previous tasks and those 50 users who rate between 50 and 100 images are treated as new
tasks in the AMTL experiment.

5.2.1 SMTL

In the SMTL experiment, two methods are compared: (i) SMTL-1, and (ii) the single-task learning
(STL) method using the variational logistic regression approach in Section 3.2.1. The simple pool-
ing method is not feasible because different users may look at the same image and give different
ratings. The SMTL-2 model is also excluded, because the feature dimension (275) is high relative
to the number of training samples for each task, so that it is hard to get an accurate estimation on
the variational distribution of λ j in (7), which is the precision on each feature dimension.

Hyper-parameter settings are as follows: (i) τ10 = 5e−2, τ20 = 5e−2, µ = 0 and Σ = 10I, and
(ii) µ̃0 = 0 and Σ̃0 = 10I. Similar to the landmine experiments, the performance is measured by the
average AUC on all tasks and evaluated at 10, 20, 30, 40 or 50 randomly selected training samples
for each task. Figure 7 plots the results of 10 random runs.

3. The survey is online at http://honolulu.dbs.informatik.uni-muenchen.de:8080/paintings/index.jsp.
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Figure 7: Average AUC on 68 tasks in the art image retrieval problem.
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Figure 8: Number of clusters among 68 tasks in the art image retrieval problem.

As mentioned above, the tasks in the art image database are more diverse than those in the
landmine data sets. To get a clear view of this, we observe the number of clusters among 68 tasks
instead of the between-task similarity matrix. As in Section 5.1.1, we make a hard decision on
membership of each task, for each evaluation point and each random run, and then we obtain the
statistics of number of clusters among 68 tasks, which is shown in Fig. 8. When the training size
is small, the algorithm weakly finds the similarity between tasks and most of the tasks learn by
themselves, therefore the SMTL-1 method works similar to the single-task learning. As the number
of training samples increases, the clustering structure becomes more clear and information is shared
between the users/tasks with similar interests, leading to improvement in learning performance.

5.2.2 AMTL

We first apply the SMTL-1 method on the 68 tasks, using all data as training samples, to learn the
prior for a new classifier, then evaluate the performance of the AMTL-1 algorithm on 50 new tasks,
measured by the average AUC. The performance is compared to that of the STL approach, which
means learning by the new task itself. The number of samples drawn with the Metropolis-Hastings

57



XUE, LIAO, CARIN AND KRISHNAPURAM

0 5 10 15 20 25 30
0.45

0.5

0.55

0.6

0.65

Number of Training Samples for Each New Task

A
ve

ra
ge

 A
U

C
 o

n 
50

 N
ew

 T
as

ks

AMTL−1
STL

Figure 9: Average AUC on 50 new tasks in the art image retrieval problem.

algorithm in Section 4.2, NSAM , is set to be 1e3. The results of 10 random runs are shown in Fig. 9.
The curves indicate that the AMTL-1 approach outperforms the STL approach.

6. Conclusions and Future Work

A DP-based multi-task learning algorithm has been applied to the problem of designing logistic-
regression classifiers for multiple tasks, for cases in which there is the potential of enhancing
individual-task performance via appropriate sharing of inter-task data. Two overarching formu-
lations have been considered. In the symmetric multi-task learning (SMTL) formulation all of the
task-dependent classifiers are learned jointly. While this is a useful formulation in many cases, it
requires one to store all data across previous tasks. In many cases we may undertake a new task
and we would like this task to benefit from experience acquired from previous tasks, without having
to return to all data observed previously. This has motivated what we have termed an asymmetric
multi-task learning (AMTL) formulation. In addition to the overarching SMTL and AMTL for-
mulations, we have considered different forms of these algorithms based on how the DP priors are
handled.

MTL classification performance has been presented on two data sets: (i) a landmine sensing
problem based on measured data, and (ii) an art-preference database. Concerning (i), the MTL
formulation yielded a clear indication of how the data from the multiple tasks clustered into related
physical phenomena. For this data we know the task-dependent environmental conditions under
which the sensing was performed, and the task relatedness reflected in Hinton maps demonstrated
close agreement with physical expectations. This provides a powerful confirmation of the utility of
the DP formulation for a case in which “truth” is known, yielding confidence for new multi-task
data sets for which the DP formulation may be used to infer truth.

In the context of the DP formulation, we considered examples for which the innovation param-
eter and the parameters of the base distribution were fixed, while in a separate formulation prior
distributions were placed on these parameters (yielding a further layer in the Bayesian formula-
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tion). For the examples presented here we found the performance of the latter formulation to be
slightly better than the former. We also compared the DP MTL formulation to several simpler
learning approaches: (i) single-task learning in which no data are shared, (ii) pooling in which all
data are shared indiscriminately, and (iii) a simplification to DP developed by Yu et al. (2004). For
the data considered, the DP-based MTL formulations developed here outperformed these simpler
approaches.

In future research we plan to extend the MTL approach to more-general settings. For exam-
ple, in the MTL classifier formulation it is assumed that labeled data are available for each of the
tasks. More realistically, labeled data may be available from previous tasks, but the new task un-
der investigation may only contain unlabeled data. Based on examining the relationship of the data
manifold of the new unlabeled data relative to the manifolds of the previous tasks, it may be possible
to ascertain which labeled data, from previous tasks, are relevant for the new unlabeled data under
test. In such a heterogeneous MTL setting, involving tasks characterized by labeled and unlabeled
data, it may be possible to label the new data under test (from the new task) without requiring any
associated labeled data.

In this context one may also consider an active-learning setting, in which labels are acquired
selectively from the new task of interest, such that after active learning all tasks have labeled data
and the MTL formulations presented here may be applied directly. In this context we note that
such an approach was examined in the course of the research presented here, with active learning
performed using query by committee (QBC) (McCallum and Nigam, 1998). For the data considered
in this paper, we found that as long as at least one label was acquired from each of the two labels (we
here considered binary labels), the MTL algorithm performed well. Consequently, while the QBC
results were good, even a random acquisition of labels yielded good MTL performance, as long as at
least one (randomly acquired) label existed from each of the two labels. This suggests a significant
robustness of the MTL formulation, in its ability to use a small amount of labeled data for a given
task to still yield good task-dependent classification performance, by appropriately sharing labeled
data from other tasks. Nevertheless, this phenomenon is worth further examination, with other data
sets, to further examine the utility of active learning as applied to unlabeled data from a new task
(relative to simply using random sampling to determine which data to acquire labels on).
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Appendix A. Re-Estimation Equations in Coordinate Ascent Algorithm

For the SMTL-1 model, the re-estimation equations are as follows
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• qcm(cm):

sm,k =
Nm

∑
n=1

[−ρ(ξm,n)xT
m,n(θkθT

k +Γk)xm,n +(ym,n −
1
2)θT

k xm,n

+ log(σ(ξm,n))−
1
2 ξm,n +ρ(ξm,n)ξ2

m,n]

+1(k < K)[Ψ(ϕ1,k)−Ψ(ϕ1,k +ϕ2,k)]

+1(k > 1){
k−1
∑

i=1
[Ψ(ϕ2,i)−Ψ(ϕ1,i +ϕ2,i)]}

,

φm,k =
exp(sm,k)

K
∑

k=1
exp(sm,k)

,

m = 1, . . . ,M,k = 1, . . . ,K,

where Ψ(x) = d lnΓ(x)
dx ; Γ(x) is the Gamma function; 1(E) is equal to 1 if the logic expression

E is true and 0 otherwise.

• qvk(vk):

ϕ1,k = 1+
M

∑
m=1

φm,k,

ϕ2,k =
τ1

τ2
+

M

∑
m=1

K

∑
i=k+1

φm,i,

k = 1, . . . ,K −1.

• q(α):

τ1 = τ10 +K −1,

τ2 = τ20 −
K−1

∑
k=1

[Ψ(ϕ2,k)−Ψ(ϕ1,k +ϕ2,k)].

• qw∗
k
(w∗

k):

Γk = [Σ−1 +2
M

∑
m=1

φm,k

Nm

∑
n=1

|ρ(ξm,n)|xm,nxT
m,n]

−1
,

θk = Γk[Σ−1µ+
M

∑
m=1

φm,k

Nm

∑
n=1

(ym,n −
1
2
)xm,n],

k = 1, . . . ,K. (17)

• ξm,n:

ξm,n =

√

K

∑
k=1

φm,kxT
m,n(θkθT

k +Γk)xm,n,

m = 1, . . . ,M,n = 1, . . . ,Nm.
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For the SMTL-2 model, we only need to modify (17) and add an update step for µ and λ1, · · · ,λd

• qw∗
k
(w∗

k):

Γk = [∆+2
M

∑
m=1

φm,k

Nm

∑
n=1

|ρ(ξm,n)|xm,nxT
m,n]

−1
,

θk = Γk[∆η+
M

∑
m=1

φm,k

Nm

∑
n=1

(ym,n −
1
2
)xm,n],

k = 1, . . . ,K,

where ∆ is a diagonal matrix with diagonal elements γ1,1
γ2,1

, . . . ,
γ1,d

γ2,d
.

• qµ,{λ j}
d
j=1

(µ,{λ j}
d
j=1):

β = β0 +K,

η =

K
∑

k=1
θk

β
,

γ1, j = γ10 +
K
2

,

γ2, j = γ20 +
1
2

K

∑
k=1

(θ2
k, j +Γk, j)−

1
2

βη2
j ,

j = 1, . . . ,d,

where θk, j denotes the jth element of the vector θk (same for η j), and Γk, j denotes the jth
diagonal element of the matrix Γk.
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