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Abstract
Gaussian kernels with flexible variances provide a rich family of Mercer kernels for learning algo-
rithms. We show that the union of the unit balls of reproducing kernel Hilbert spaces generated by
Gaussian kernels with flexible variances is a uniform Glivenko-Cantelli (uGC) class. This result
confirms a conjecture concerning learnability of Gaussian kernels and verifies the uniform con-
vergence of many learning algorithms involving Gaussians with changing variances. Rademacher
averages and empirical covering numbers are used to estimate sample errors of multi-kernel regu-
larization schemes associated with general loss functions. It is then shown that the regularization
error associated with the least square loss and the Gaussian kernels can be greatly improved when
flexible variances are allowed. Finally, for regularization schemes generated by Gaussian kernels
with flexible variances we present explicit learning rates for regression with least square loss and
classification with hinge loss.
Keywords: Gaussian kernel, flexible variances, learning theory, Glivenko-Cantelli class, regular-
ization scheme, empirical covering number

1. Introduction

Let X be a metric space in R
n and Y ⊆ R. In learning theory, we are interested in the approximation

of functions or function relations from samples. The functions are from an input space X to an output
space Y , and samples are drawn according to a Borel probability measure ρ on the space Z := X ×Y .
The target function f V

ρ that we want to learn or approximate is a minimizer (may not be unique) of

some error functional E( f ) =
Z

Z
V (y, f (x))dρ induced by a loss function V : Y ×Y → R+, that is,

f V
ρ = argmin

{
E( f ) : f is a measurable function from X to Y

}
. (1)

To define f V
ρ , we denote ρX as the marginal distribution of ρ on X and dρ(·|x) the conditional

distribution. Then the error can be written as E( f ) =
R

X

R

Y V (y, f (x))dρ(y|x)dρX(x), and we choose
f V
ρ to be a minimizer of the pointwise error: for almost every x ∈ X ,

f V
ρ (x) = argmin

t∈Y

Z

Y
V (y, t)dρ(y|x).
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The idea of many learning algorithms is to approximate f V
ρ or its generalizing ability (measured

by the error in terms of the loss V ) by minimizing the empirical error Ez( f ) = 1
m ∑m

i=1V (yi, f (xi)),
or a penalized version, where z = {(xi,yi)}m

i=1 is a set of samples drawn independently according
to ρ. The law of large numbers tells us that Ez( f ) → E( f ) in probability for a fixed function f .
This leads to the natural expectation that a minimizer fz of Ez over a set of functions G , called the
hypothesis space, would approximate a minimizer fG of E in G (whose error is close to that of f V

ρ
when G is large): E( fz)→E( fG ) as m→∞. This approximation behaves well when the hypothesis
space G enjoys the uniform convergence property (see Vapnik, 1998; Alon et al., 1997).

Throughout the paper we choose Y to be a subset of R, the loss function V has an extended
domain V : Y ×R → R+, and f V

ρ (x) is defined to be a minimizer of mint∈R

R

Y V (y, t)dρ(y|x). In
particular, for the binary classification problem (Devroye et al., 1997), we take Y = {1,−1} and
V (y, t) = φ(yt) with φ : R → R+. For the hinge loss φ(yt) = max{1− yt,0} used in the support
vector machine for classification (Cortes and Vapnik, 1995), the target function f V

ρ (x) = fc(x) is
called the Bayes rule defined as fc(x) = 1 for ρ(y = 1|x)≥ ρ(y = −1|x), and fc(x) = −1 otherwise.
In this case, the uniform convergence can be characterized by the finiteness of the VC-dimension of
G (see, e.g., Vapnik, 1998).

For the regression problem, we choose Y = R and V (y, t) = ψ(y− t) with ψ : R → R+. In
particular, for the least square loss ψ(y− t) = (y− t)2, f V

ρ (x) = fρ(x) =
R

Y ydρ(y|x) is the regression
function (induced by conditional means). When Y is a closed interval on R, the uniform convergence
of real-valued function space G can be characterized by the property: for every ε > 0, there holds

lim
`→+∞

sup
µ

Pr

{
sup
m≥`

sup
f∈G

∣∣∣∣
1
m

m

∑
i=1

f (xi)−
Z

X
f (x)dµ

∣∣∣∣ > ε
}

= 0. (2)

Here Pr denotes the probability with respect to the samples x1,x2, . . ., independently drawn ac-
cording to a Borel probability distribution µ on X . The supremum is taken with respect to all
such probability distributions. Following Dudley et al. (1991), we say that G is uniform Glivenko-
Cantelli (uGC) if it satisfies the equality (2) for any ε > 0, which is equivalent to the finiteness of
Vγ-dimension for any γ > 0 (Alon et al., 1997), see Section 4.

In this paper, we restrict our attention to the uniform convergence of kernel-based learning
algorithms. A function K : X ×X → R is called a reproducing kernel if it is symmetric and positive
semidefinite, that is, for any finite set of distinct points {x1, · · · ,x`} ⊂ Ω, the matrix (K(xi,x j))

`
i, j=1

is positive semidefinite. If moreover, K is continuous, then we call such a reproducing kernel a
Mercer kernel. The reproducing kernel Hilbert space (RKHS) HK associated with the kernel K is
defined to be the completion of the linear span of the set of functions {Kx = K(x, ·) : x ∈ X} with
the reproducing property (Aronszajn, 1950)

f (x) = 〈 f ,Kx〉K , ∀x ∈ X , f ∈ HK . (3)

Learning algorithms considered here can be stated as minimization problems in HK . The re-
producing property (3) makes the minimization over HK be realized by an optimization procedure
in R

m. Consider the Tikhonov regularization scheme (Evgeniou et al., 2000) associated with the
kernel K, loss V and a regularization parameter λ > 0 defined as

f̃z,λ = arg min
f∈HK

{
1
m

m

∑
i=1

V (yi, f (xi))+λ‖ f‖2
K

}
.
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The Representer Theorem (Schölkopf et al., 2001; Wahba, 1990) tells us f̃z,λ = ∑m
i=1 ciKxi with

(ci)
m
i=1 ∈ R

m. When V is convex with respect to the second variable, this leads to a convex opti-
mization problem in R

m. In particular, for the least square loss or the hinge loss, it is a convex
quadratic programming optimization problem which can handle large data settings. For discussions
on the error rates of these schemes, see, for example, Vapnik (1998); Zhang (2004); Steinwart and
Scovel (2005). This paper aims at Tikhonov regularization schemes associated with a set of kernels.

1.1 Multi-kernel Regularization Schemes

Multi-kernel regularization schemes have attracted attention recently due to applications in multi-
task learning (Evgeniou and Pontil, 2004; Lanckriet et al., 2004), mixture density estimation (Li
and Barron, 1999; Rakhlin et al., 2005), multi-kernel regularized classifiers (Chapelle et al., 2002;
Cristianini et al., 1998; Wu et al., 2007), and many others. These schemes involve a set of Mercer
kernels {Kσ}σ∈Σ with an index set Σ and take the following form with the regularization parameter
λ > 0

fz,λ := argmin
σ∈Σ

min
f∈HKσ

{
1
m

m

∑
i=1

V (yi, f (xi))+λ‖ f‖2
Kσ

}
, (4)

where the loss function V (y, ·) is usually convex for any y ∈ Y.

Throughout the paper we assume the existence of a solution to the optimization problem (4).
This assumption is satisfied when Σ is a compact metric space and Kσ(x,y) is continuous with
respect to σ ∈ Σ for each fixed pair (x,y) ∈ X × X . See Wu et al. (2007). When Σ = (0,b] (a
noncompact index set) with 0 < b < ∞, each Kσ is a Gaussian kernel and V is the least-square loss,
the existence will be verified in Appendix B under some conditions on the sample z.

When we consider the convergence of E( fz,λ) to E( f V
ρ ), we need to find the hypothesis space

for the uniform convergence here. Since fz,λ is the minimizer in (4), with a special choice f = 0 we
see that whenever fz,λ ∈ HKσ , the quantity λ‖ fz,λ‖2

Kσ is bounded by

Ez( fz,λ)+λ‖ fz,λ‖2
Kσ ≤ Ez(0)+0 ≤ 1

m

m

∑
i=1

V (yi,0) ≤ ‖V (y,0)‖L∞
ρ (Z).

When ρ satisfies ‖V (y,0)‖L∞
ρ (Z) ≤ M < ∞ (a strong assumption for regression problems, excluding

Gaussian noise), we have ‖ fz,λ‖Kσ ≤
√

M/λ for all z ∈ Zm. This leads to the following hypothesis
set.

Definition 1 The normalized hypothesis set H associated with Mercer kernels {Kσ}σ∈Σ is defined
as

H = ∪σ∈Σ{ f ∈ HKσ : ‖ f‖Kσ ≤ 1}. (5)

The above analysis tells us that if ‖V (y,0)‖L∞
ρ (Z) ≤ M, then fz,λ ∈

√
M
λ H =

{√
M
λ f : f ∈ H

}

for almost every z∈ Zm. For the study of uniform convergence and error analysis on the multi-kernel
scheme (4), a basic question is whether H is uGC. This is the main question investigated in this
paper. The reproducing property of RKHS plays an essential role in our subsequent investigations.

The first purpose of this paper is to show that the uGC property of H is equivalent to that of a
smaller set consisting of fundamental functions from the RKHS.

251



YING AND ZHOU

Theorem 2 Let {Kσ}σ∈Σ be a set of Mercer kernels on X with

κ := sup
σ∈Σ

sup
x∈X

√
Kσ(x,x) < ∞. (6)

Then the set H defined by (5) is uGC if and only if the normalized fundamental set

F = FΣ = {Kσ
x : σ ∈ Σ,x ∈ X} (7)

is uGC.

Theorem 2 will be proved in Section 3. The reproducing property (3) tells us that ‖Kσ
x ‖Kσ =√

Kσ(x,x) ≤ κ for any x ∈ X and σ ∈ Σ. Therefore, the normalized condition (6) on the kernels
{Kσ : σ ∈ Σ} is essential for 1

κ F ⊆ H (a scaling). Since F contains much less functions than H ,
checking the uGC property for F is potentially much simpler than that for H . We shall use this
idea to establish the learnability of Gaussian kernels with flexible variances.

1.2 uGC Property for Gaussians with Flexible Variances

The second purpose of this paper is to verify the learnability of Gaussian kernels with flexible
variances stated in the form of the following uGC property. The theorem will be proved in Section 4.

Theorem 3 Let n ∈ N and X be any subset of R
n. Let

Kσ(x,y) = exp

{
−

n

∑
i=1

(xi − yi)
2

σ2
i

}
for σ = (σ1, . . . ,σn) ∈ (0,+∞)n. (8)

Define H by (5) with Σ = (0,+∞)n. Then H is uGC.

Note that each kernel in (8) is, in a way, normalized: its C(X) norm is 1, ensuring the kernel to
be uniformly bounded by 1 and (6) to be satisfied with κ = 1.

When X is compact and the index set is restricted to be [a,+∞)n with a > 0, we know from
Theorem 3 in Zhou (2003) that for any s ∈ N, the set H defined by (5) is included in a ball of Cs(X)
with a finite radius. Hence, the closure of H in C(X) is compact. This belongs to the well-studied
case (Cucker and Smale, 2001; Cucker and Zhou, 2007) that the closure of the hypothesis space H
is compact, and thereby satisfies the uniform convergence condition.

When a = 0 and the index set becomes (0,∞)n, the closure is not compact any more. This
observation led the second author to raise the following open problem in Zhou (2003): if we denote

Kσ(x,y) = exp

{
−|x− y|2

σ2

}
, with σ > 0, (9)

is the function set

H0 = ∪σ>0

{
f (x) = ∑`

i=1 ciKσ(xi,x) : ∑`
i, j=1 ciKσ(xi,x j)c j ≤ 1,

xi ∈ [0,1]n, and ` ∈ N

} (10)

involving the Gaussian kernels (9) with isotropic variances uGC? Using Theorem 3, we know that
the answer to the question is positive.
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Theorem 4 Let X = [0,1]n and Kσ be given by (9). Define H0 by (10). Then H0 is uGC. It is
contained in the unit ball of C(X), but its closure in C(X) is not compact.

Proof The first statement follows from Theorem 3 and the fact that any subset of a uGC set is uGC.
Since each function f from H0 satisfies ‖ f‖C(X) ≤ 1, this set is contained in the unit ball of

C(X).
To see the last statement, we apply the Arzelá-Ascoli Theorem (see Yosida, 1980, P.85) which

asserts that a subset of C(X) has compact closure if and only if it is bounded and equicontinuous.

Take fσ(x) = Kσ(x,0) = exp{− |x|2
σ2 } ∈ H0 with σ ∈ (0,∞). For the neighborhood [0,ε)n of 0 with

ε > 0, we see that

sup
σ∈(0,∞)

sup
t∈[0,ε)n

| fσ(t)− fσ(0)| = sup
σ∈(0,∞)

∣∣∣∣exp{−nε2

σ2 }−1

∣∣∣∣ = 1 6→ 0.

Therefore, the set of functions H0 is not equicontinuous. By the Arzelá-Ascoli Theorem, the closure
of H0 is not compact.

The rest of the paper is organized as follows. In the next section we show the implications of the
above main theorems to the error analysis for the regularization scheme (4). In particular, we present
error rates of two examples involving Gaussian kernels with flexible variances. Sections 3 and 4 are
distributed to prove Theorem 2 and 3 respectively. In Sections 5 and 6 we develop error bounds for
the multi-kernel regularization scheme (4), especially for Gassian kernels with flexible variances.
This is the last purpose of this paper. We postpone the derivation of error rates for regression with
least square loss and classification with hinge loss to the end of this paper.

2. Applications to Error Analysis: Two Examples

The theorems in Section 1 give us qualitative results on the learnability of multi-kernel scheme (4).
They can be deepened, which yields quantitative error rates for E( fz,λ)−E( f V

ρ ). In particular,
we expect to derive explicit rates for multi-kernel regularized learning algorithms associated with
Gaussian kernels with flexible variances.

To see how E( fz,λ) approximate E( f V
ρ ), assume fz,λ ∈ HKσ for some σ ∈ Σ and choose some

σ′ ∈ Σ and fλ ∈ HKσ′ called a regularizing function (Smale and Zhou, 2004). Write

E( fz,λ)−E( f V
ρ ) =

{
{E( fz,λ)−Ez( fz,λ)}+{Ez( fλ)−E( fλ)}

}
−λ‖ fz,λ‖2

Kσ

+

{
(Ez( fz,λ)+λ‖ fz,λ‖2

Kσ)− (Ez( fλ)+λ‖ fλ‖2
Kσ′ )

}

+

{
E( fλ)−E( f V

ρ )+λ‖ fλ‖2
Kσ′

}
.

The definition (4) tells us that the middle term above is at most 0. The first term
{
{E( fz,λ)−

Ez( fz,λ)}+ {Ez( fλ)− E( fλ)}
}

is called the sample error. Its second part Ez( fλ)− E( fλ) =
1
m ∑m

i=1 ξ(zi)−E(ξ) involving a single random variable ξ = V (y, f (x)) on Z can be easily estimated.
The last term called the regularization error is independent of the samples (Niyogi and Girosi,
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1996; Cucker and Smale, 2001; Smale and Zhou, 2003) and measures the approximation ability of
the multi-kernel space ∪σ∈ΣHKσ .

Definition 5 The regularization error associated with the regularizing function fλ ∈HKσ with σ∈Σ
is defined as

D(λ) = E( fλ)−E( f V
ρ )+λ‖ fλ‖2

Kσ .

The regularization error of the system (4) is

D̃(λ) = min
σ∈Σ

min
f∈HKσ

{E( f )−E( f V
ρ )+λ‖ f‖2

Kσ}, (11)

where fλ takes the special form

fλ = f V
λ := argmin

σ∈Σ
min

f∈HKσ
{E( f )+λ‖ f‖2

Kσ}. (12)

Thus we have the error decomposition:

E( fz,λ)−E( f V
ρ ) ≤

{
{E( fz,λ)−Ez( fz,λ)}+{Ez( fλ)−E( fλ)}

}
+D(λ). (13)

What is left for the error analysis is the term E( fz,λ)−Ez( fz,λ). It involves a set of random variables
ξz = V (y, fz,λ(x)) with z ∈ Zm. That is also the motivation to study the uniform convergence of H
(Vapnik, 1998).

By the error decomposition (13), the learning rate depends on trading off the sample error and
the regularization error. The decay of regularization error D̃(λ) relies on the regularity (smooth-
ness) of the target function f V

ρ for most commonly used loss functions which will be discussed in

Section 6. Sample error estimates depend on the capacity of the hypothesis space
√

M/λ H which
can be studied (see, e.g., Koltchinskii and Panchenko, 2002) by means of its covering numbers and
Rademacher complexity (see Section 5). However, it is not easy to estimate the Rademacher com-
plexity of

√
M/λ H . In Section 5 we provide an alternative way to estimate the sample error by

computing the Rademacher complexity of the fundamental set F .
Let us give two examples both involving the Gaussian kernels (8) with flexible variances to

illustrate the learning rates whose proofs will be given in Section 6.
The first example is regularized regression with the least square loss V (y, t) = (y− t)2. Here

Y = R. Then the multi-kernel least square regularized regression algorithm (4) associated with
Gaussian kernels (8) can be written as

fz,λ = argmin
σ∈Σ

min
f∈HKσ

{ 1
m

m

∑
i=1

(yi − f (xi))
2 +λ‖ f‖2

Kσ

}
. (14)

By the special feature of the least square loss, the distance between fz,λ and the target function fρ is

often measured by the weighted L2 metric in L2
ρX

defined as ‖ f‖L2
ρX

= (
R

X | f (x)|2dρX)1/2. When ρX

is the Lebesgue measure, we denote the metric as ‖ f‖L2(X) in Example 1. Also, denote H s(X) to be
the Sobolev space (e.g., Stein, 1970) with index s > 0 on X .

For this multi-kernel algorithm, we have the following learning rates achieved by special choices
of the regularization parameter λ = λ(m).
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Example 1 Let X ⊆R
n be a domain with Lipschitz boundary. Define fz,λ by (14) with the Gaussians

(8). Assume fρ ∈ Hs(X) for s > 0 and |y| ≤ M0 almost surely.

(1) If n/2 < s ≤ n/2+2 then for any 0 < ε < 2s−n, we have

E

[
‖ fz,λ − fρ‖2

L2
ρX

(X)

]
= O

(
(logm)

1
2 m− 2s−n−ε

4(4s−n−2ε)
)

by taking λ = m− 2s−ε
4(4s−n−2ε) .

(2) If X is bounded, ρX is the Lebesgue measure, and s ≤ 2 then by choosing λ = m− 2s+n
4(4s+n) , we get

E

[
‖ fz,λ − fρ‖2

L2(X)

]
= O

(
(logm)

1
2 m− s

2(4s+n)

)
.

In the above example we are considering the function approximation (De Vito et al., 2005;
Smale and Zhou, 2005) on a domain of R

n, so the learning rate is poor if the dimension n is large.
However, in many situations, the input space X is a low-dimensional manifold embedded in the
large-dimensional space R

n. In such a situation, the learning rates may be greatly improved. This
will not be discussed in this paper because the discussion involves the function approximation on
Riemannian manifolds (see, e.g., Ye and Zhou, 2007), which is out of our scope here.

The second example is regularized classification with the hinge loss V (y, t) = (1 − yt)+ :=
max{1 − yt,0}. Here Y = {1,−1} and we are interested in functions C : X → Y called binary
classifiers which divide X into two classes. The target function is the Bayes rule fc.

The multi-kernel SVM regularized classification algorithm (4) associated with Gaussian kernels
(8) is defined to be a minimizer of the following optimization problem

fz,λ = argmin
σ∈Σ

min
f∈HKσ

{ 1
m

m

∑
i=1

(1− yi f (xi))+ +λ‖ f‖2
Kσ

}
. (15)

Then the sign function sgn( fz,λ) is used as a classifier where sgn( f )(x) = 1 for f (x) ≥ 0 and
sgn( f )(x) = −1 otherwise.

The prediction power of classifiers is measured by the misclassification error. The misclassifi-
cation error for a classifier C : X → Y is defined to be

R (C ) := Pr{C (x) 6= y} =
Z

X
P(y 6= C (x)|x)dρX . (16)

The Bayes rule is the classifier which minimizes the misclassification error.
The error analysis of classification algorithms often aims at understanding the approximating

behaviors of the excess misclassification error

R (sgn( fz,λ))−R ( fc)

as the sample size m becomes large. Our learning rate for the hinge loss assumes a separable
condition which was introduced by Chen et al. (2004) as follows.

Definition 6 We say that ρ is separable by HΣ if there is some fsp ∈ HKσ with some σ ∈ Σ such that
y fsp(x) > 0 almost surely. It has separation exponent θ ∈ (0,∞] if we can choose fsp and positive
constants ∆,cθ such that ‖ fsp‖Kσ = 1 and

ρX
{

x ∈ X : | fsp(x)| < ∆t
}
≤ cθtθ, ∀t > 0. (17)
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Observe that condition (17) with θ = ∞ is equivalent to

ρX{x ∈ X : | fsp(x)| < γt} = 0, ∀ 0 < t < 1.

That is, | fsp(x)| ≥ γ almost everywhere. Thus, separable distributions with separation exponent
θ = ∞ are exactly strictly separable distributions. Recall (Shawe-Taylor et al., 1998; Vapnik, 1998)
that ρ is said to be strictly separable with margin γ > 0 if ρ is separable together with the require-
ment y fsp(x) ≥ γ almost everywhere. The separation condition is different from the Tsybakov’s
noise condition (Tsybakov, 2004): the former involves a function fsp from HKσ and describes the
approximation of the RKHS (Chen et al., 2004), while the latter is about the distribution ρ only.

The learning rates for the multi-kernel SVM algorithm (15) can be stated as follows.

Example 2 Let fz,λ be defined by (15) with {Kσ} given by (8). If ρ is separable by HΣ with some

separation exponent θ > 0, then by choosing λ = m− 2+θ
2(2+3θ) , we have

E

[
R (sgn( fz,λ))−R ( fc)

]
= O

(
(logm)

1
2 m− θ

2(2+3θ)

)
.

It is observed in applications that allowing flexible variances improves the learnability of Gaus-
sian kernels. As we shall see in Section 6 for the least square loss, when the regression function
fρ has Sobolev smoothness, the regularization error (11) associated with Gaussians with flexible
variances decays as O(λs) for some s > 0. This has also been confirmed theoretically by Steinwart
and Scovel (2005) for classification with the hinge loss, under some geometric noise condition for
the distribution. Such a decay is impossible for the regularization error associated with a single
Gaussian kernel, at least when ρX is the Lebesgue measure on X , as shown by Smale and Zhou
(2003). This demonstrates that learning algorithms using Gaussian kernels with flexible variances
have advantages for many applications.

Another way to obtain improved error rates is to take kernels changing with the sample size.
Kernels of this kind include polynomial kernels with changing degrees (Zhou and Jetter, 2006) and
Gaussian kernels with changing variances (Steinwart, 2001; Steinwart and Scovel, 2005). Though
the learning rates given by Steinwart and Scovel (2005) is comparable to those in Example 2, the
main difficulty there is a requirement of some information about the distribution ρ for the choice
of the kernel (similar to the choice of the regularization parameter according to some regularity
properties of ρ). Compared to that, when no information about ρ is available, the algorithm (4) still
produces the empirically optimal kernel from the kernel set, as part of the optimization problem.

3. Reducing the Hypothesis Set

In this section we show how the uGC property of the normalized hypothesis set can be reduced
to that of the normalized fundamental set, hence establish Theorem 2. For σ ∈ Σ, denote Hσ =
HKσ ,〈·, ·〉σ = 〈·, ·〉Kσ , and κσ = supx∈X

√
Kσ(x,x). Assume κσ < ∞.

Let µ be a Borel probability distribution on X . For {xi}m
i=1 drawn according to µ, we denote

Em( f ) = 1
m ∑m

i=1 f (xi) and E( f ) =
R

X f (x)dµ.
To prove Theorem 1, we need the following proposition about the function

Fσ(x) :=
Z

X
Kσ(x,y)dµ(y), x ∈ X . (18)
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Proposition 7 Let Kσ be a Mercer kernel on X and µ be a Borel probability distribution. Define
the function Fσ by (18). Then we have

(a) Fσ ∈ Hσ;

(b) 〈 f ,Fσ〉σ =
R

X f (y)dµ(y) for every f ∈ Hσ.

Proof Define a linear functional Tσ on Hσ as

Tσ( f ) =
Z

X
f (y)dµ(y).

Since µ is a Borel probability measure on X , we know by the reproducing property (3)

|Tσ( f )| ≤
Z

X
|〈 f ,Kσ

y 〉σ|dµ(y) ≤ κσ‖ f‖σ, ∀ f ∈ Hσ.

This means Tσ is a bounded linear functional on the Hilbert space Hσ. By the Riesz Representation
Theorem of Hilbert spaces, we know that there exists a function gσ ∈ Hσ such that

Tσ( f ) = 〈 f ,gσ〉σ, ∀ f ∈ Hσ. (19)

In particular, for the function f = Kσ
x lying in Hσ with x being an arbitrarily fixed point in X , there

holds
Tσ(Kσ

x ) =
Z

X
Kσ

x (y)dµ(y) =
Z

X
Kσ(x,y)dµ(y) = 〈Kσ

x ,gσ〉σ = gσ(x).

This equals to Fσ(x) according to the definition (18). Hence Fσ(x) = gσ(x) for every x ∈ X . There-
fore Fσ = gσ ∈ Hσ which proves property (a). Property (b) is an immediate consequence of equality
(19) since gσ = Fσ.

Property (a) of Proposition 7 means that the integral and the inner product with Kσ
y can be

interchanged:

〈 f ,
Z

X
Kσ(·,y)dµ(y)〉σ =

Z

X
f (y)dµ(y) =

Z

X
〈 f ,Kσ

y 〉σdµ(y).

Lemma 8 Let Kσ be a Mercer kernel on X and µ be a Borel probability distribution. Denote
Gσ(x) = 1

m ∑m
i=1 Kσ(xi,x)−Fσ(x) for m ∈ N and x = (xi)

m
i=1 ∈ Xm. Then, the following statements

are true.

(a) Gσ ∈ Hσ and sup f∈Hσ,‖ f‖σ≤1|Em( f )−E( f )| = ‖Gσ‖σ.

(b) ‖Gσ‖σ ≤
√

2‖Gσ‖C(X) and ‖Gσ‖C(X) ≤ κσ‖Gσ‖σ.

Proof By property (a) of Proposition 7, Gσ = 1
m ∑m

i=1 Kσ
xi
−Fσ ∈ Hσ. This in connection with (3)

and property (b) of Proposition 7 tells us that for any f ∈ Hσ,

Em( f )−E( f ) = 〈 f ,
1
m

m

∑
i=1

Kσ
xi
−Fσ〉σ = 〈 f ,Gσ〉σ.

Then
sup

f∈Hσ,‖ f‖σ≤1
|Em( f )−E( f )| = sup

f∈Hσ,‖ f‖σ≤1
|〈 f ,Gσ〉σ| = ‖Gσ‖σ.
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This proves the first statement.
To verify the second statement, we compute the norm ‖Gσ‖σ by the definition and property (b)

of Proposition 7. It yields

‖Gσ‖2
σ =

1
m2

m

∑
i, j=1

Kσ(xi,x j)−
2
m

m

∑
i=1

Z

X
Kσ

xi
(y)dµ(y)+

Z

X
Fσ(y)dµ(y).

But
R

X Kσ
xi
(y)dµ(y) =

R

X Kσ(xi,y)dµ(y) = Fσ(xi). So we have

‖Gσ‖2
σ = 1

m

m

∑
i=1

{
1
m

m

∑
j=1

Kσ(xi,x j)−Fσ(xi)

}

−
Z

X

{
1
m

m

∑
i=1

Kσ(xi,y)−Fσ(y)

}
dµ(y)

=
1
m

m

∑
i=1

Gσ(xi)−
Z

X
Gσ(y)dµ(y)

≤ 2sup
y∈X

|Gσ(y)| = 2‖Gσ‖C(X).

This gives the first inequality of the second statement.
The second inequality of the second statement follows directly from the reproducing property:

|Gσ(y)| = |〈Gσ,Kσ
y 〉σ| ≤ ‖Gσ‖σ‖Kσ

y ‖σ ≤ κσ‖Gσ‖σ, ∀y ∈ X .

This completes the proof of the lemma.

Now we are ready to prove Theorem 2 stated in Section 1.
Proof of Theorem 2. Recall κ = supσ∈Σ κσ and the definition (5) of the set H . By Part (a) of Lemma
8,

sup
f∈H

|Em( f )−E( f )| = sup
σ∈Σ

sup
f∈Hσ,‖ f‖σ≤1

|Em( f )−E( f )| = sup
σ∈Σ

‖Gσ‖σ.

On the other hand, since {Kσ
y : σ ∈ Σ,y ∈ X} is exactly the set F according to its definition (7), we

see that

sup
f∈F

|Em( f )−E( f )| = sup
σ∈Σ

sup
y∈X

∣∣∣ 1
m

m

∑
i=1

Kσ
y (xi)−Fσ(y)

∣∣∣ = sup
σ∈Σ

‖Gσ‖C(X).

This in connection with Lemma 8 implies that for any ε > 0 and ` ∈ N, there holds

{
supm≥` sup f∈F |Em( f )−E( f )| > κε

}
⊆

{
supm≥` sup f∈H |Em( f )−E( f )| > ε

}

⊆
{

supm≥` sup f∈F |Em( f )−E( f )| > ε2

2

}
.

Therefore, H is uGC if and only if F is. This proves Theorem 2.
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4. Gaussian Kernels Provide uGC Hypothesis Sets

In this section we establish the uGC property of Gaussians with flexible variances stated in The-
orem 3. This will be done by verifying a criterion for uGC sets in terms of empirical covering
numbers given by Dudley et al. (1991). For 1 ≤ p < +∞ and x = (xi)

m
i=1 ∈ Xm, we denote the l p

empirical metric of two functions f ,g as

dx,p( f ,g) =
( 1

m

m

∑
i=1

| f (xi)−g(xi)|p
)1/p

and for p = ∞
dx,∞( f ,g) = max

1≤i≤m
| f (xi)−g(xi)|.

Definition 9 Let G be a set of functions on X, 1 ≤ p ≤ +∞ and x = (xi)
m
i=1 ∈ Xm. The empirical

covering number Np(G ,x,η) is defined to be the minimal integer N such that there are N functions
{g j}N

j=1 ⊂ G satisfying

min
1≤ j≤N

dx,p(g,g j) ≤ η, ∀g ∈ G .

The metric entropy of G is defined as

Hm,p(G ,η) = sup
x∈Xm

logNp(G ,x,η), m ∈ N,η > 0.

The following criterion was established by Dudley et al. (1991).

Lemma 10 A set G of functions from X to [0,1] is uGC if and only if for some 1 ≤ p ≤ +∞, there
holds

lim
m→∞

Hm,p(G ,η)

m
= 0, ∀η > 0.

To continue, we need the following combinatorial dimensions.

Definition 11 Let G be a set of functions from X to [0,1]. We say that A ⊂ X is Vγ shattered (Pγ
shattered) by G if there is a number α ∈ R (a function s : A → [0,1]) with the following property:
For every subset E of A there exists some function fE ∈ G such that fE(x)≤ α−γ ( fE(x)≤ s(x)−γ)
for every x ∈ A \E, and fE(x) ≥ α + γ ( fE(x) ≥ s(x)+ γ) for every x ∈ E. The Vγ dimension of G ,
Vγ(G), (The Pγ dimension of G , Pγ(G),) is the maximal cardinality of a set A ⊂ X that is Vγ shattered
(Pγ shattered) by G .

Based on Lemma 10, Alon et al. (1997) showed that G is uGC if and only if the Vγ dimension
or Pγ dimension of G is finite for every γ > 0.

In addition, we need the following relation between the dimensions and the empirical covering
numbers essentially proved by Alon et al. (1997). A complete proof is given in Appendix A.

Lemma 12 Let G be a set of functions from X to [0,1].

(a) Vγ(G) ≤ Pγ(G) ≤ ( 2
γ +1)Vγ/2(G) for any γ > 0.
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(b) For every m ∈ N and 0 < ε < 1, there holds

sup
x∈Xm

N∞(G ,x,ε) ≤ 2

(
4m
ε2

)1+d log( 2em
ε )

, d := Pε/4(G).

With the above preparations, we can prove Theorem 3. First, let us begin with the univariate
case.

Lemma 13 Let X be a subset of R and F be given by (7) with Kσ(x,y) = exp{− (x−y)2

σ2 } and
Σ = (0,+∞). Then Vγ(F ) ≤ 2 for every γ > 0.

Proof Suppose to the contrary that Vγ(F ) ≥ 3 for some γ > 0. It means that there is a set A =
{x1,x2,x3} ⊂ X with x1 < x2 < x3 which is Vγ-shattered by F . That is, there is some α ∈ R such
that for every E ⊆ A there exists some function fE ∈ F satisfying

{
fE(x) ≤ α− γ, for x ∈ A\E,
fE(x) ≥ α+ γ, for x ∈ E.

Take E = {x1,x3} ⊂ A. Then there is a function fE ∈ F such that fE(x2) ≤ α− γ and fE(x1),

fE(x3) ≥ α + γ. The function fE can be represented as fE(x) = exp{− (x−y)2

σ2 } for some y ∈ X and
σ ∈ (0,∞). It can be extended to the whole real line with the same expression and we denote this
extended function as f̃E . The function f̃E has no local minimum on R. However, it is continuous
and satisfies

f̃E(x1) = fE(x1) > fE(x2) = f̃E(x2), f̃E(x3) = fE(x3) > fE(x2) = f̃E(x2).

So the minimum value of f̃E on the closed interval [x1,x3] is achieved on the open interval (x1,x3).
Consequently, f̃E has a local minimum on R, which is a contradiction.

Next, we prove Theorem 3 by Lemmas 10 and 13. Here the tensor product form of the functions
in the set F plays an essential role.
Proof of Theorem 3. By Theorem 2, we need to show that F is uGC. Consider another set of
functions on R

n defined as

F̃ = {Kσ
x = Kσ(x, ·) : σ ∈ Σ,x ∈ R

n}.

If F̃ is uGC as a set of functions from R
n to [0,1], then its restriction onto X is also uGC, which

would imply the uGC property of F . Therefore, it suffices to prove the uGC of F̃ .
Define sets of univariate functions as

F j =

{
e−(t−s j)

2/σ2
j : σ j ∈ (0,∞),s j ∈ R

}
, j = 1,2, . . . ,n.

Fix j ∈ {1,2, . . . ,n}. Consider the set F j of functions from R to [0,1]. Lemma 13 tells us that
Vγ(F j) ≤ 2 for every γ > 0. Applying Lemma 12 to G = F j of functions on R, we find that for
every 0 < ε < 1, Pε/4(F j) ≤ 16

ε +2 and

sup
t∈Rm

N∞(F j, t,ε) ≤ N0 := 2

(
4m
ε2

)1+( 16
ε +2) log( 2em

ε )
. (20)
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Now we apply (20) to estimate the empirical covering number of the set F̃ . To this end, let
0 < ε < 1 and x = (xi)

m
i=1 where each point xi ∈ R

n can be expressed as a vector xi = (xi,1, . . . ,xi,n).
Let j ∈ {1,2, . . . ,n}. Consider t := (xi, j)

m
i=1 ∈ R

m. The bound (20) tells us that there are N0 pairs

{(σ j,`,s j,`)}N0
`=1 with σ j,` ∈ (0,∞) and s j,` ∈R representing N0 functions

{
g`(t) = e−(t−s j,`)

2/σ2
j,`

}N0

`=1
⊂ F j such that

min
1≤`≤N0

dt(g,g`) = min
1≤`≤N0

{
max

1≤i≤m
|g(xi, j)−g`(xi, j)|

}
≤ ε, ∀g ∈ F j.

That is, for any σ j ∈ (0,∞) and s j ∈ R, we can find some ` ∈ {1, . . . ,N0} satisfying
∣∣∣∣exp

{
−(xi, j − s j)

2

σ2
j

}
− exp

{
−(xi, j − s j,`)

2

σ2
j,`

}∣∣∣∣ ≤ ε, ∀i = 1, . . . ,m. (21)

Now we choose a set Fε of functions on R
n consisting of N n

0 functions

f`1,`2,...,`n(·) = exp

{
−

n

∑
j=1

(· j − s j,` j)
2

σ2
j,` j

}
, `1, `2, . . . , `n ∈ {1,2, . . . ,N0}.

Each function f ∈ F̃ can be expressed as

f (xi) = exp

{
−

n

∑
j=1

(xi, j − s j)
2

σ2
j

}

with {σ j}n
j=1 ⊂ (0,∞)n and {s j}n

j=1 ⊂ R
n. We can choose some {` j}n

`=1 ∈ {1, . . . ,N0}n satisfying
(21). Then

| f (xi)− f`1,`2,...,`n(xi)| ≤
n

∑
p=1

exp

{
−

n

∑
j=p+1

(xi, j − s j)
2

σ2
j

}
ε ≤ nε.

Thus, we have
dx,∞( f , f`1,`2,...,`n) = max

1≤i≤m
| f (xi)− f`1,`2,...,`n(xi)| ≤ nε.

By the definition of empirical covering numbers, we have

N∞(F̃ ,x,nε) ≤ N n
0 = 2n

(
4m
ε2

)n+( 16
ε +2)n log( 2em

ε )
.

Therefore, for any 0 < ε < 1,

Hm,∞(F̃ ,nε) ≤ n log2+

(
n+

(
16
ε

+2

)
n log

(
2em

ε

))
log

4m
ε2 . (22)

Observe that N∞(F̃ ,x,ε) = 1 for any ε ≥ 1. Hence Hm,∞(F̃ ,nε) = 0 for any ε ≥ 1. Combining this
observation with (22) implies that

lim
m→∞

Hm,∞(F̃ ,nε)
m

= 0, for any ε > 0.

Hence F̃ is uGC by Lemma 10. This completes the proof of Theorem 3.
The proof of Theorem 3 actually gives estimates for the empirical covering number which can

be used to bound the sample error in (13) as we shall do in the following section.
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5. Error Bound by Rademacher Averages

In order to bound the error E( fz,σ)−E( f V
ρ ), we know from the error decomposition (13) that it is

sufficient to estimate the sample error and the regularization error. In particular, we will provide the
error bounds for the multi-kernel scheme (4) generated by Gaussians with flexible variances.

5.1 Sample Error Estimate

In this subsection we are mainly concerned about the sample error. The regularization error will be
discussed in the next subsection. The estimate of the sample error for the regularized multi-kernel
scheme (4) involves the hypothesis space

Hλ =
[

σ∈Σ

{
f ∈ HKσ : ‖ f‖Kσ ≤

√
M
λ

}
. (23)

Below, we show how to get sample error estimates by Rademacher complexities (Bartlett and
Mendelson, 2002; Koltchinskii, 2001; Koltchinskii and Panchenko, 2002) of the reduced hypothesis
space F defined by (7), which is potentially easier to compute than that of Hλ. Let’s first introduce
Rademacher average over a set of functions F on Ω.

Definition 14 Let µ be a probability measure on Ω and F be a class of uniformly bounded functions.
For every integer m, let

Rm(F) := EµEε

[ 1
m

sup
f∈F

∣∣∣
m

∑
i=1

εi f (zi)
∣∣∣
]

where {zi}m
i=1 are independent random variables distributed according to µ and {εi}m

i=1 are inde-
pendent Rademacher random variables, that is, P(εi = +1) = P(εi = −1) = 1/2.

Turn to the multi-kernel regularization scheme (4). If the loss function V (y, t) is convex with
respect to t, its left and right partial derivatives with respect to the second variable, denoted as
V ′
−(y, t),V ′

+(y, t) respectively for simplicity, exist for every y ∈ Y . Throughout this section, we
assume the loss function is admissible in the following sense.

Definition 15 We say that the loss function V : Y ×R → R+ is admissible (with respect to ρ) if it
is convex with respect to the second variable, M = ‖V (y,0)‖L∞

ρ (Z) < +∞ and, for any λ > 0 there
holds

Cλ = sup
{

max(|V ′
−(y, t)|, |V ′

+(y, t)|) : y ∈ Y, |t| ≤ κ
√

M
λ

}
< +∞. (24)

We also need the following lemma (Bartlett and Mendelson, 2002; Ledoux and Talagrand, 1991)
summarizing some of the properties of Rademacher averages. A complete proof is given in Ap-
pendix A.

Lemma 16 Let F be a class of uniformly bounded real-valued functions on (Ω,µ) and m ∈ N.

(a) For every c ∈ R, Rm(cF) = |c|Rm(F), where cF = {c f : f ∈ F}.
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(b) If for each i ∈ {1, . . . ,m}, φi : R → R is a function with φi(0) = 0 having a Lipschitz constant ci,
then for any {xi}m

i=1,

Eε

[
sup
f∈F

|
m

∑
i=1

εiφi( f (xi))|
]
≤ 2Eε

[
sup
f∈F

∣∣∣
m

∑
i=1

ciεi f (xi)|
]
.

The sample error analysis of multi-kernel regularization scheme (4) involves the Rademacher
complexity of the fundamental space F denoted by

Rm(F ) = EρX Eε

[ 1
m

sup
f∈F

|
m

∑
i=1

εi f (xi)|
]
.

Lemma 17 Let Hλ be defined by (23), then

E

[
sup
f∈Hλ

|E( f )−Ez( f )|
]
≤ 4Cλ

√
M
λ

(
Rm(F )

)1/2
+

2M√
m

.

Proof Let Vλ be a set of functions on Z defined as

Vλ =
{

V (y, f (x)) : f ∈ Hλ

}
.

Using standard symmetrization arguments (e.g., Van der Vaart and Weller, 1996, Lemma 2.3.1), one
can see that

EρEε

[
sup
f∈Hλ

|E( f )−Ez( f )|
]
≤ 2EρEε

[
sup
f∈Hλ

1
m
|

m

∑
i=1

εiV (yi, f (xi))|
]

:= 2Rm(Vλ).

To handle Rm(Vλ), we apply Lemma 16. To this end, note that ‖ f‖∞ ≤ κ
√

M/λ for all f ∈ Hλ,
for fixed {yi}m

i=1 ∈ Y m. If we define functions

φi(t) =





V (yi, t)−V (yi,0) when |t| ≤ κ
√

M/λ
V (yi,κ

√
M/λ)−V (yi,0) when t ≥ κ

√
M/λ

V (yi,−κ
√

M/λ)−V (yi,0) when t ≤−κ
√

M/λ,

then φi(t) : R → R has the Lipschitz constant ci = Cλ and φi(0) = 0 for any i. Applying Lemma 16

to the space Hλ, then Eε

[
sup f∈Hλ

∣∣∣
m

∑
i=1

εiV (yi, f (xi))
∣∣∣
]

is bounded by

Eε

[
sup f∈Hλ

∣∣∣
m

∑
i=1

εiφi( f (xi))
∣∣∣
]
+Eε

[
sup
f∈Hλ

∣∣∣
m

∑
i=1

εiV (yi,0)
∣∣∣
]

≤ 2Eε

[
sup f∈Hλ

|
m

∑
i=1

Cλεi f (xi)
∣∣∣
]
+

[
Eε

∣∣∣
m

∑
i=1

εiV (yi,0)
∣∣∣
2]1/2

= 2Cλ

√
M
λ Eε

[
sup f∈H |

m

∑
i=1

εi f (xi)|
]
+

(
Eε

[ m

∑
i, j=1

εiV (yi,0)V (y j,0)ε j

])1/2

.

It follows that

Eε

[
sup f∈Hλ

∣∣∣
m

∑
i=1

εiV (yi, f (xi))
∣∣∣
]

≤ 2Cλ

√
M
λ Eε

[
sup f∈H |

m

∑
i=1

εi f (xi)|
]

+M
√

m.

(25)
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For the first term on the right hand side of the above inequality, we use the reproducing property (3)
and obtain

sup f∈H |∑m
i=1 εi f (xi)| = supσ∈Σ sup f∈HKσ

‖ f‖Kσ≤1

|〈∑m
i=1 εiKσ

xi
, f 〉Kσ | = supσ∈Σ

∥∥∥∥
m

∑
i=1

εiK
σ
xi

∥∥∥∥
Kσ

=

[
supσ∈Σ ∑m

i, j=1 εiKσ(xi,x j)ε j

]1/2

.

(26)

But by the definition of the fundamental set F , we know that

supσ∈Σ ∑m
i, j=1 εiKσ(xi,x j)ε j ≤ msupσ∈Σ sups∈X |

m

∑
i=1

εiK
σ(xi,s)|

= msup f∈F |
m

∑
i=1

εi f (xi)|.
(27)

Combining the estimates (25), (26), and (27) implies that

Rm(Vλ) ≤ 2Cλ

√
M
λ EρX Eε

[
1
m sup f∈F |

m

∑
i=1

εi f (xi)|
]1/2

+
M√
m

≤ 2Cλ

√
M
λ

(
Rm(F )

)1/2
+ M√

m .

This finishes Lemma 17.

The following error bound for the multi-kernel scheme (4) is a straightforward consequence of
the sample error estimate and the error decomposition (13).

Theorem 18 Let V be admissible with Cλ given by (24). Define fz,λ by (4). Then we have

E

[
E( fz,λ)−E( f V

ρ )
]
≤ 4Cλ

√
M
λ

(
Rm(F )

)1/2
+

2M√
m

+ D̃(λ).

Proof By the error decomposition (13), a special choice f V
λ ∈ HKσ with some σ ∈ Σ defined by (12)

gives us that

E( fz,λ)−E( f V
ρ ) ≤

{
E( fz,λ)−Ez( fz,λ)+Ez( f V

λ )−E( f V
λ )

}
+ D̃(λ).

Together with the fact E(Ez( f V
λ )) = E( f V

λ ) and fz,λ ∈ Hλ defined in (23), we know that

E

[
E( fz,λ)−Ez( fz,λ)+Ez( f V

λ )−E( f V
λ )

]
≤ E

[
sup
f∈Hλ

|E( f )−Ez( f )|
]

which in connection with Lemma 17 yields the desired estimate.

To estimate the Radmacher average Rm(F ) in Theorem 18, one can resort to the following
bound using the empirical l2 covering number, which is due to Dudley (1999); Van der Vaart and
Weller (1996).
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Lemma 19 Let F be a class of uniformly bounded functions. Then there exists an absolute constant
C such that, for any sample {xi}m

i=1, there holds

1√
m

Eε

[
sup
f∈F

|
m

∑
i=1

εi f (xi)|
]
≤C

Z +∞

0

√
logN2(F,x,ε)dε.

Applying the estimate in the proof for Theorem 3, we can compute the Radmacher average
Rm(F ) for Gaussian kernels with flexible variances, and hence yields the subsequent error bound.

Theorem 20 Let X be a subset of R
n and V be admissible. Define fz,λ by (4) and the Gaussian

kernels by (8). Then we have

E

[
E( fz,λ)−E( f V

ρ )
]
≤Cλ

√
C′M

λ

( log2 m
m

)1/4
+

2M√
m

+ D̃(λ), (28)

where C′ is a constant independent of m or λ.

Proof Recall the fundamental function set F defined by (7). Consider the larger set

F̃ = {Kσ
x = Kσ(x, ·) : σ ∈ Σ,x ∈ R

n}.

The estimate (22) tells us that for 0 < ε < 1,

logN2(F̃ ,x,ε) ≤ logN∞(F̃ ,x,ε)
≤ n log2+

(
n+

(
16n

ε +2
)

n log
(

2enm
ε

))
log 4n2m

ε2 .

Since Kσ ≤ 1 for each σ ∈ Σ, we see that logN2(F̃ ,x,ε) = 0 for any ε ≥ 1. Applying Lemma 19,
we have

Rm(F̃ ) ≤C′′ log2 m√
m

,

where C′′ is an absolute constant independent of m. The trivial fact Rm(F ) ≤ Rm(F̃ ) together with
Theorem 18 gives us the desired result.

In order to get explicit error rates, we see from Theorems 18 and 20 that what left is to estimate
the regularization error.

5.2 Regularization Error with Gaussians

In this subsection we exclusively focus on the multi-kernel regularization error (11) associated with
the least square loss and Gaussian kernels. We show that how the Fourier analysis (Stein, 1970)
can be applied to get the polynomial decay of the regularization error under Sobolev smoothness
condition on the regression function.

Before we go to the main point, it is worth briefly mentioning why the multi-kernel regulariza-
tion error can improve the error rates. To this end, note that, for the regularization error of a single
Gaussian kernel, it was proved by Smale and Zhou (2003) that the polynomial decay O(λs) for
some s > 0 is impossible under the Sobolev smoothness hypothesis on the regression function fρ.
Actually, it only decays logarithmically O((log(1/λ))−s) for some s > 0. Putting this logarithmical
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decay back into (28) and trading off λ and m, we notice that the error rate is unacceptably slow.
Below we show that the multi-kernel scheme (4) associated with the least square loss and Gaussian
kernels (9) with flexible isotropic variances can give regularization errors D̃(λ) of polynomial de-
cays O(λβ) for some β > 0, under the assumption of Sobolev smoothness on fρ. Combining this
polynomial decay with (28) can give rise to tighter bounds compared to the single kernel case.

To estimate the multi-kernel regularization error (11), we introduce some basic facts about
RKHS (Aronszajn, 1950). Let Ω be a domain (bounded or not) in R

n. Let σ > 0. Consider the

RKHS induced by the Gaussian kernel given in (9) as Kσ(x,y) = exp{− |x−y|2
σ2 } : Ω×Ω → R. We

denote it as HKσ(Ω) with norm ‖ ·‖HKσ (Ω) for simplicity. Let Ω̃ ⊂ Ω. By restricting the kernel Kσ to
Ω̃× Ω̃, it also induces an RKHS in Ω̃ denoted as HKσ(Ω̃). Then we know (Aronszajn, 1950) that

HKσ(Ω̃) =
{

g = f |Ω̃ : f ∈ HKσ(Ω)
}

(29)

with norm
‖g‖HKσ (Ω̃) = inf{‖ f‖HKσ (Ω) : f |Ω̃ = g}. (30)

Define the integral operator LK associated with a Mercer kernel K and a Borel measure µ on Ω
as

LK f (x) :=
Z

Ω
K(x, t) f (t)dµ(t), x ∈ Ω, f ∈ L2

µ(Ω).

If Ω is a compact domain in R
n, then LK is a positive, self-adjoint, compact operator and its range

lies in C(Ω). Take the square root L1/2
K of LK , then

‖L1/2
K f‖K = ‖ f‖L2

µ(Ω) ∀ f ∈ L2
µ(Ω). (31)

When Ω = R
n and µ is the Lebesgue measure, we define for σ > 0

f σ(x) = LKσ f (x) =
Z

Rn
Kσ(x,y) f (y)dy, x ∈ R

n, f ∈ L2(Rn).

As in Steinwart and Scovel (2005), we shall use these functions as approximations of fρ to estimate
the regularization error.

Lemma 21 Let f σ be defined for f ∈ L2(Rn) as above. Then f σ ∈ HKσ(R
n) and

‖ f σ‖HKσ (Rn) ≤ (
√

πσ)n/2‖ f‖L2(Rn). (32)

Proof We shall use notations and results on limits of reproducing kernels (see Theorem I in Sec-
tion 9 of Aronszajn (1950)).

Denote E j as the closed ball of R
n with radius j centered at zero. Then R

n =
S

j∈N E j. For j ≤ j′

and f j′ ∈ HKσ(E j′), the properties (29) and (30) of the restriction of RKHS tell us that

f j′ |E j
∈ HKσ(E j) and ‖ f j′ |E j

‖HKσ(E j)
≤ ‖ f j′‖HKσ (E j′ )

.

In order to show that f σ ∈ HKσ(R
n) and (32) holds, by Theorem I in Section 9 of Aronszajn (1950)

it is sufficient to prove for fσ, j := f σ|E j
that

fσ, j ∈ HKσ(E j) and liminf
j→∞

‖ fσ, j‖HKσ (E j) ≤ (
√

πσ)n/2‖ f‖L2(Rn). (33)
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To this end, for j ≤ j′, define

fσ, j, j′(x) :=
Z

E j′
Kσ(x,y) f (y)dy → fσ, j(x) uniformly in C(E j). (34)

Then fσ, j, j′ ∈ HKσ(E j′) by (31) since f ∈ L2(E j′). Using (29) and (30) with Kσ, j′ := Kσ|E j′×E j′ , it
yields

‖ fσ, j, j′ |E j
‖2

HKσ (E j)
≤ ‖LKσ, j′ ( f |E j′ )‖

2
HKσ (E j′ )

. (35)

By (31), we have

‖LKσ, j′ ( f |E j′ )‖2
HKσ (E j′ )

= ‖L1/2
Kσ, j′

( f |E j′ )‖L2(E j′ )
= 〈LKσ, j′ ( f |E j′ ), f |E j′ 〉L2(E j′ )

≤ ‖LKσ, j′ ( f |E j′ )‖L2(E j′ )
‖ f |E j′‖L2(E j′ )

.
(36)

Note that for each x ∈ E j′ , there holds
R

E j′
Kσ(x, t)dt ≤ R

Rn Kσ(x, t)dt = (
√

πσ)n. We get by the
Schwarz inequality

‖LKσ, j′ f‖2
L2(E j′ )

=
Z

E j′

∣∣∣∣
Z

E j′
Kσ(x, t) f (t)dt

∣∣∣∣
2

dx

≤
Z

E j′

{Z

E j′
Kσ(x, t)dt

}{Z

E j′
Kσ(x, t)| f (t)|2dt

}
dx

≤ (
√

πσ)n
Z

E j′
| f (t)|2

{Z

E j′
Kσ(x, t)dx

}
dt

≤ (
√

πσ)2n‖ f‖2
L2(Rn)

.

Putting this estimate into (36), it follows from (35) that

‖ fσ, j, j′ |E j
‖HKσ (E j) ≤ ‖LKσ, j′ ( f |E j′ )‖HKσ (E j′ )

≤ (
√

πσ)n/2‖ f‖L2(Rn).

Since the fixed ball of HKσ(E j) with radius (
√

πσ)n/2‖ f‖L2(Rn) centered at zero is weakly compact,
there exists a subsequence { j′`}`∈N of { j′} such that

fσ, j, j′`
|E j

⇀ f ∗ in HKσ(E j) as ` → ∞.

Therefore
‖ f ∗‖2

HKσ (E j)
= lim`→∞〈 f ∗, fσ, j, j′`

|E j
〉HKσ (E j)

≤ ‖ f ∗‖HKσ (E j) liminf`→∞ ‖ fσ, j, j′`
|E j

‖HKσ (E j)

which tells us that

‖ f ∗‖HKσ (E j) ≤ liminf
`→∞

‖ fσ, j, j′`
|E j

‖HKσ (E j) ≤ (
√

πσ)n/2‖ f‖L2(Rn). (37)

By the reproducing property (3), we also have, for each x ∈ E j

fσ, j, j′`
|E j

(x) = 〈 fσ, j, j′`
|E j

,Kσ, j(x, ·)〉HKσ (E j) → 〈 f ∗,Kσ, j(x, ·)〉HKσ (E j) = f ∗(x)

which in connection with (34) gives us that

fσ, j = f ∗ ∈ HKσ(E j).

Together with (37) and (33), we know that Lemma 21 holds true.
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Proposition 22 Let X be a domain in R
n with Lipschitz boundary. Suppose fρ ∈ Hs(X) for some

s > 0. Consider the multi-kernel scheme (4) with the least square loss V (y, t) = (y− t)2 and the
Gaussian kernels (9) with Σ = (0,∞). Then, the following statements hold true.

(1) If n/2 < s ≤ n/2+2, then there holds

D̃(λ) ≤ inf
σ∈(0,∞)

inf
f∈HKσ

{
‖ f − fρ‖2

C(X) +λ‖ f‖2
Kσ

}
.

For any 0 < ε < 2s−n, there exists a constant Cε,s,X such that

D̃(λ) ≤Cε,s,X‖ fρ‖2
Hs(X) λ

2s−ε−n
2s−ε .

(2) If X is bounded, ρX is the Lebesgue measure on X and s ≤ 2, then there exists a constant
Cs,n,X independent of λ such that

D̃(λ) ≤Cs,n,X‖ fρ‖2
Hs(X) λ

2s
2s+n . (38)

Proof For the least square loss, we have

E( f )−E( fρ) = ‖ f − fρ‖2
L2

ρX
(X). (39)

Since X has a Lipschitz boundary, we know (Stein, 1970) that there exists an extension function
f̃ρ ∈ Hs(Rn) and an absolute constant Cs,X such that

f̃ρ|X = fρ and ‖ f̃ρ‖Hs(Rn) ≤Cs,X‖ fρ‖Hs(X). (40)

Define the normalized kernel K̃σ = (
√

πσ)−nKσ. Let

f σ
ρ (x) = (

√
πσ)−nLKσ( f̃ρ)(x) =

Z

Rn
K̃σ(x,y) f̃ρ(y)dy, x ∈ R

n.

Then we know that f σ
ρ belongs to HKσ(R

n) by Lemma 21. Combined with the fact (29), it follows

that gσ
ρ := f σ

ρ |X ∈ HKσ(X). Take f = gσ
ρ in the definition of the regularization error D̃(λ). We see

by (39) that
D̃(λ) ≤ inf

σ∈(0,∞)
{‖gσ

ρ − fρ‖2
L2

ρX
(X) +λ‖gσ

ρ‖2
Kσ
}. (41)

By the relations (29) and (30) on the restriction of RKHS and Lemma 21, we see that

‖gσ
ρ‖Kσ ≤ ‖ f σ

ρ ‖HKσ (Rn) = (
√

πσ)−n‖LKσ f̃ρ‖HKσ (Rn) ≤ (
√

πσ)−n/2‖ f̃ρ‖L2(Rn).

Together with (40), it yields

‖gσ
ρ‖Kσ ≤Cs,X(

√
πσ)−n/2‖ fρ‖Hs(X). (42)

To bound the right hand side of (41), we need the Fourier transform defined for f ∈ L1(Rn) as

f̂ (ξ) =
Z

Rn
f (x)e−ix·ξdx, ξ ∈ R

n.
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It has a natural extension to L2(Rn) satisfying ‖ f̂‖L2(Rn) = (2π)n/2‖ f‖L2(Rn) (the Plancherel for-
mula). The norm for functions in the Sobolev space H s(Rn) can be expressed as ‖ f‖Hs(Rn) =

(2π)−n/2(
Z

Rn
(1 + |ξ|2)s| f̂ (ξ)|2dξ)1/2. One nice property of the Fourier transform says that the

Fourier transform of the convolution f∗g(x) =
Z

Rn
f (x− y)g(y)dy equals f̂ (ξ)ĝ(ξ). It implies that

f̂ σ
ρ (ξ) = e−σ2|ξ|2/4 ̂̃fρ(ξ) since the Fourier transform of the function (

√
πσ)−ne−|x|2/σ2

is e−σ2|ξ|2/4.
(1) For any marginal distribution ρX , there holds ‖ f‖L2

ρX
≤ ‖ f‖C(X). Then the first inequality

follows from (39).
Since X ⊆ R

n and (n + ε)/2 > n/2, we know that the Sobolev space H (n+ε)/2(Rn) can be em-
bedded into C(Rn)∩L∞(Rn), there exists a constant C′

ε,X such that ‖ f‖L∞(Rn) ≤C′
ε,X‖ f‖H(n+ε)/2(Rn).

It follows that
‖gσ

ρ − fρ‖C(X) ≤ ‖ f σ
ρ − f̃ρ‖L∞(Rn) ≤C′

ε,X‖ f σ
ρ − f̃ρ‖H(n+ε)/2(Rn).

Write

‖ f σ
ρ − f̃ρ‖2

H(n+ε)/2(Rn)
= (2π)−n

Z

Rn
(1+ |ξ|2)(n+ε)/2

∣∣∣∣(e−σ2|ξ|2/4 −1)
̂̃fρ(ξ)

∣∣∣∣
2

dξ.

Since s
2 − n+ε

4 < 1, we have |e−σ2|ξ|2/4 −1| ≤ (σ2|ξ|2/4)
s
2− n+ε

4 . Hence

‖ f σ
ρ − f̃ρ‖2

H(n+ε)/2(Rn)
≤ σ2s−(n+ε)

(2π)n

Z

Rn
(1+ |ξ|2)(n+ε)/2(|ξ|2)s−(n+ε)/2| ̂̃fρ(ξ)|2dξ

≤ σ2s−(n+ε)

(2π)n

Z

Rn
(1+ |ξ|2)s| ̂̃fρ(ξ)|2dξ = σ2s−(n+ε)‖ f̃ρ‖2

Hs(Rn).

In connection with (40), this implies that

‖gσ
ρ − fρ‖C(X) ≤C′

ε,X σs−(n+ε)/2Cs,X‖ fρ‖Hs(X).

Combining with (42) and choosing σ = λ1/(2s−ε) this proves the first statement of the proposition.
(2) If X is bounded and ρX is the Lebesgue measure on X , then ‖gσ

ρ − fρ‖2
L2

ρX
= ‖gσ

ρ − fρ‖2
L2(X)

and by the Plancherel formula,

‖gσ
ρ − fρ‖2

L2(X) ≤ ‖ f σ
ρ − f̃ρ‖2

L2(Rn) = (2π)−n
Z

Rn

∣∣∣∣(e−σ2|ξ|2/4 −1)
̂̃fρ(ξ)

∣∣∣∣
2

dξ.

Observe from the restriction s ≤ 2 that 1− e−t ≤ (1− e−t)s/2 ≤ ts/2 for t > 0. Applying this to
t = σ2|ξ|2/4 we obtain

‖gσ
ρ − fρ‖2

L2(X)
≤ σ2s

(2π)n4s

Z

Rn
|ξ|2s| ̂̃fρ(ξ)|2dξ

≤ σ2s‖ f̃ρ‖2
Hs(Rn) ≤C2

s,X σ2s‖ fρ‖2
Hs(X),

where we have used (40) in the last inequality. Putting this estimate and (42) into (41) gives us the
second statement of the proposition corresponding to the choice σ = λ1/(2s+n).

Finally, we are able to derive error rates for the multi-kernel regularization scheme (4) associated
with Gaussian kernels (8) with flexible variances. This is done by putting the improved regulariza-
tion error bound in Proposition 22 into the total error bound in Theorem 20. We demonstrate the
approach for regression with least square loss and for classification with hinge loss.
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6. Error Rates with Gaussians

In this section we prove Examples 1 and 2. First, let us consider Example 1, that is, the case of the
least square regularized regression: Y = R. If |y| ≤ M0 almost surely, the least square loss V (y,s) =
(y− s)2 is admissible with respect to ρ and M = ‖V (y,0)‖L∞

ρ (Z) ≤ M2
0 , Cλ ≤ 2M0(1 + κ/

√
λ). By

Theorem 20 and the special property (39) of the loss function, we immediately get the following
result.

Proposition 23 Let V (y, t) = (y− t)2, X ⊆ R
n and {Kσ} be given by (8). Define fz,λ by (14). If

0 < λ ≤ 1, then there exists a constant C̃ independent of m,λ such that

E

[
‖ fz,λ − fρ‖2

ρ

]
≤ C̃

( log2 m
mλ4

)1/4
+ D̃(λ). (43)

Using this proposition, we can provide the proof of Example 1.
Proof of Example 1. Since the set (8) of Gaussian kernels with general variances σ = (σ1, . . . ,σn) ∈
(0,∞)n contains the set (9) of Gaussian kernels with isotropic variances, we see that

D̃(λ) ≤ inf
σ∈(0,∞)

inf
f∈HKσ

{
E( f )−E( fρ)+λ‖ f‖2

Kσ

}
.

(1) When n/2 < s ≤ n/2+2 and 0 < ε < 2s−n, we know from Proposition 22 that

D̃(λ) ≤Cε,s,X‖ fρ‖2
L2

ρX
(X)λ

2s−ε−n
2s−ε .

Putting this into (43) and choosing λ = m− 2s−ε
4(4s−n−2ε) verifies the first error estimate in Example 1.

(2) If X is bounded, ρX is the Lebesgue measure on X , and s ≤ 2, we apply the bound (38) in
Proposition 22. Together with the above inequality, we know that

D̃(λ) ≤Cs,n,X‖ fρ‖2
L2

ρX
(X)λ

2s
2s+n .

In connection with the error bound (43) we see that when λ = m− 2s+n
4(4s+n) , the error estimate in Part

(2) holds true.
Now we move on to establish Example 2 for the regularized classification with the hinge loss

V (y,s) = (1− ys)+. In this case we take Y = {1,−1}. It is easy to see that V is admissible with
M = 1 and Cλ = 1. An important relation between the excess misclassification error and the excess
error was given by Zhang (2004) as

R (sgn( f ))−R ( fc) ≤ E( f )−E( fc), ∀ f : X → R.

Then the following result is an easy consequence of Theorem 20.

Proposition 24 Let Y = {1,−1}, V (y, t) = (1−yt)+, X ⊆R
n and {Kσ} be given by (8). Define fz,λ

by (15). If 0 < λ ≤ 1, then there exists a constant C′ independent of m,λ such that

E

[
R (sgn( fz,λ))−R ( fc)

]
≤

√
C′

λ

( log2 m
m

)1/4
+ D̃(λ).
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We are in a position to prove Example 2 by Proposition 24.
Proof of Example 2. It was shown by Chen et al. (2004) that if ρ is separable with some exponent

θ > 0 then there exists some constant c′ such that D̃(λ) ≤ c′λ
θ

2+θ . Choosing λ = m− 2+θ
2(2+3θ) gives us

the desired result.
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Appendix A.

This appendix includes complete proofs of two lemmas which are essentially proved in Alon et al.
(1997); Ledoux and Talagrand (1991) with slightly different forms.
Proof of Lemma 12. Part (a) is an easy consequence of Lemma 2.4 in Alon et al. (1997).

Set d0 = min{m,d}. As in the proof of Lemma 3.5 of Alon et al. (1997), one can bound the
empirical covering number by packing numbers which can then be estimated by Lemma 3.3 in Alon
et al. (1997) as

sup
x∈Xm

N∞(G ,x,ε) ≤ 2

(
m

(2
ε

)2
)logy+1

,

where

y =
d0

∑
i=1

( m
i

)(2
ε

)i
≤

(2
ε

)d0
(em

d0

)d0
≤

(2em
ε

)d0
≤

(2em
ε

)d
.

This verifies Part (b).
Proof of Lemma 16. The first statement is immediate from the definition of Rademacher averages.

For the second statement, we use Theorem 4.12 in Ledoux and Talagrand (1991). It tells us the
following result: If T is a bounded subset of R

m, each function φi with the Lipschitz constant not
more than 1 satisfies φi(0) = 0, and a function G : R+ → R+ is convex and nondecreasing, then
there holds

EεG
(1

2
sup
t∈T

|
m

∑
i=1

εiφi(ti)|
)
≤ EεG

(
sup
t∈T

|
m

∑
i=1

εiti|
)
. (44)

Fixed {xi}m
i=1. Then T := {(c1 f (x1), · · · ,cm f (xm)) : f ∈ F} is a bounded subset of R

m since F is
uniformly bounded. Applying (44) with G(u) = u and φ̃i(x) = φi(x/ci), we have

Eε

[
sup f∈F |

m

∑
i=1

εiφi( f (xi))|
]

= Eε

[
supt∈T |

m

∑
i=1

εiφ̃i(ti)|
]
≤ 2Eε

[
sup
t∈T

|
m

∑
i=1

εiti|
]

= 2Eε

[
sup f∈F

∣∣∣
m

∑
i=1

ciεi f (xi)|
]

which proves our second statement.
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Appendix B.

The arguments in this paper do not change much if we replace a minimizer of the optimization
problem (4) by an ε-minimizer f ε

z,λ ∈ HKσ (with some σ ∈ Σ) satisfying

1
m

m

∑
i=1

V (yi, f ε
z,λ(xi))+λ‖ f ε

z,λ‖2
Kσ ≤ min

σ∈Σ
min

f∈HKσ

{
1
m

m

∑
i=1

V (yi, f (xi))+λ‖ f‖2
Kσ

}
+ ε.

The existence of an ε-minimizer for any given 0 < ε ≤ 1 can be seen in Wu et al. (2007) where
it was shown that min f∈HKσ{ 1

m ∑m
i=1V (yi, f (xi))+ λ‖ f‖2

Kσ} is continuous as a function of σ ∈ Σ if
Kσ(x,x′) is continuous with respect to σ ∈ Σ for each fixed pair (x,x′) ∈ X ×X .

In this appendix, we verify the existence for the scheme (4) involving the least-square loss and
Gaussians (9) with flexible variances under some mild conditions on the sample z. Note that the
shortest distance between pairs of distinct points from {x1, . . . ,xm} is achieved by some pair (xi1 ,xi2)
with i1 6= i2. The condition for our existence result is that such a minimizing pair is unique and the
sample values yi1 ,yi2 have the same sign. Since xi1 and xi2 are close, this assumption of having the
same sign for the sample values is reasonable.

Proposition 25 Let λ > 0, X be a compact subset of R
n and Kσ(x,y) = exp{− |x−y|2

σ2 } for x,y ∈ X.
Consider the scheme with 0 < b < ∞

fz,λ := arg min
σ∈(0,b]

min
f∈HKσ

{
1
m

m

∑
i=1

( f (xi)− yi)
2 +λ‖ f‖2

Kσ

}
. (45)

If we can find {i1 6= i2} ⊂ {1, . . . ,m} such that

yi1yi2 > 0 and |xi1 − xi2 | ≤ |xi − x j| for any {i 6= j} ⊂ {1, . . . ,m}

with equality valid only for (i, j) = (i1, i2) or (i2, i1), then the existence of a solution to (45) holds
true.

Proof For σ > 0 we denote

ez,λ(σ) = min
f∈HKσ

{
1
m

m

∑
i=1

( f (xi)− yi)
2 +λ‖ f‖2

Kσ

}
.

The minimizer of this one-layer optimization problem exists, is unique, and can be expressed as
f σ
z,λ = ∑m

i=1 cσ
i Kσ

xi
. The coefficient vector cσ := (cσ

i )m
i=1 is the solution of the linear system

([Kσ]x +mλIm)c = y

where y is the vector (yi)
m
i=1 and [Kσ]x is the m×m matrix (Kσ(xi,x j))

m
i, j=1. Each main diagonal

entry of [Kσ]x is 1. A simple computation yields 1
m ∑m

i=1( f σ
z,λ(xi)− yi)

2 = mλ2‖cσ‖2,‖ f σ
z,λ‖2

Kσ =

(cσ)T [Kσ]xcσ and
ez,λ(σ) = λyT ([Kσ]x +mλIm)−1 y.

In the following, we will show that limσ→0 ez,λ(σ) is strictly larger than ez,λ(σ) for any σ ∈
(0,σ2] with some σ2 > 0. Thereby, the minimizer of ez,λ should be achieved at a positive number in
(0,b] since ez,λ(·) is a continuous function.
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Without loss of generality, we assume that i1 = 1, i2 = 2. Denote aσ = exp{− |x1−x2|2
σ2 }. We see

that aσ > 0 and limσ→0 aσ = 0. Our assumption on the distances |xi − x j| ≥ |x1 − x2| (i 6= j) tells us
that the off-diagonal entries of [Kσ]x decays to 0 faster than aσ except for the two entries at (1,2)
and (2,1). That is,

[Kσ]x +mλIm = Aσ +aσBσ, Aσ :=




mλ+1 aσ 0
aσ mλ+1 0
0 0 (mλ+1)Im−2




and limσ→0 Bσ = 0. The inverse of Aσ has a nice form

A−1
σ =




mλ+1
(mλ+1)2−a2

σ
− aσ

(mλ+1)2−a2
σ

0

− aσ
(mλ+1)2−a2

σ

mλ+1
(mλ+1)2−a2

σ
0

0 0 1
mλ+1 Im−2


 .

Recall that the norm of an m×m matrix A is defined by ‖A‖= sup{‖Ax‖ : ‖x‖= 1}. If in addition, A
is symmetric, then ‖A‖ = max{|λi| : i = 1,2, . . . ,m} where {λi : i = 1,2, · · · ,m} are the eigenvalues
of A. Hence,

‖A−1
σ ‖ ≤ 1

mλ+1−aσ
≤ 1

mλ
.

Moreover, since limσ→0 Bσ = 0, there exists 0 < σ1 ≤ b such that

‖A−1/2
σ BσA−1/2

σ ‖ ≤ 1 ∀0 < σ ≤ σ1.

Therefore, for any 0 < σ ≤ σ1 there holds

‖(I +aσA−1/2
σ BσA−1/2

σ )−1‖ ≤ 1
1−aσ

.

If we write ([Kσ]x +mλIm)−1 as A−1/2
σ (I +aσA−1/2

σ BσA−1/2
σ )−1A−1/2

σ , then

([Kσ]x +mλIm)−1 −A−1
σ = −aσA−1/2

σ (I +aσA−1/2
σ BσA−1/2

σ )−1A−1/2
σ BσA−1

σ .

Consequently,

‖([Kσ]x +mλIm)−1 −A−1
σ ‖ ≤ aσ

1−aσ

( 1
mλ

)2
‖Bσ‖.

This implies that

ez,λ(σ) ≤ λyT A−1
σ y+λ

aσ‖Bσ‖
1−aσ

( 1
mλ

)2
.

But

λyT A−1
σ y =

λ
mλ+1

‖y‖2 +
λa2

σ(y2
1 + y2

2)

(mλ+1)((mλ+1)2 −a2
σ)

− 2λaσy1y2

(mλ+1)2 −a2
σ
,

which means that ez,λ(σ)− λ
mλ+1‖y‖2 is bounded by

λaσ

[ ‖Bσ‖
1−aσ

( 1
mλ

)2
+

aσ(y2
1 + y2

2)

(mλ+1)((mλ+1)2 −a2
σ)

− 2y1y2

(mλ+1)2 −a2
σ

]
.
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Using the properties that y1y2 > 0, limσ→0 aσ = 0 and limσ→0 ‖Bσ‖ = 0 again, we know there exists
0 < σ2 ≤ σ1 such that

ez,λ(σ) <
λ

mλ+1
‖y‖2, ∀0 < σ ≤ σ2.

We also observe that limσ→0[Kσ]x +mλIm = (mλ+1)Im. Hence

lim
σ→0

ez,λ(σ) =
λ

mλ+1
‖y‖2 > ez,λ(σ) ∀0 < σ ≤ σ2.

It means that the infimum in (45) cannot be achieved as σ → 0. By the continuity of ez,λ(·), the ex-
istence of a solution to (45) follows from that of the optimization problem for σ lying in a compact
subset of (0,b] proved in Wu et al. (2007).

The above existence result largely depends on the least square loss and the assumption on the
data. It remains an open problem on how to prove the existence of the minimizer of the multi-kernel
scheme (4) associated with general loss functions and data.
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