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Abstract
We introduce a computationally feasible, “constructive” active learning method for binary classi-
fication. The learning algorithm is initially formulated for separable classification problems, for
a hyperspherical data space with constant data density, and for great spheres as classifiers. In or-
der to reduce computational complexity the version space is restricted to spherical simplices and
learning procedes by subdividing the edges of maximal length. We show that this procedure op-
timally reduces a tight upper bound on the generalization error. The method is then extended to
other separable classification problems using products of spheres as data spaces and isometries in-
duced by charts of the sphere. An upper bound is provided for the probability of disagreement
between classifiers (hence the generalization error) for non-constant data densities on the sphere.
The emphasis of this work lies on providing mathematically exact performance estimates for active
learning strategies.

Keywords: active learning, spherical subdivision, error bounds, simplex halving

1. Introduction

Active learning methods seek a solution to inductive learning problems by incorporating the selec-
tion of training data into the learning process. In these schemes, the labeling of a data point occurs
only after the algorithm has explicitly asked for the corresponding label, and the goal of the “active”
data selection is to reach the same accuracy as standard “passive” algorithms—but with less labeled
data points. In many practical tasks, the acquisition of unlabeled data can be automated, while
the actual labeling must often be done by humans and is therefore time consuming and costly. In
these cases, active learning methods—which usually trade labeling costs against the computational
burden required for optimal data selection—can be a valuable alternative.

There are two approaches to active learning. So-called query filtering methods (Freund et al.,
1997; Opper et al., 1992) operate on a given pool of unlabeled data and select—at every learning
step—a “most informative” data point for subsequent labeling. So-called constructive methods lit-
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erally “construct” an unlabeled datum and ask the user to provide a label. There is strong empirical
evidence for many learning scenarios and for different selection procedures, that active learning
methods can reduce the number of labeled training data which are needed to reach a predefined
generalization performance (see Balcan et al., 2006; Fine et al., 2002; Freund et al., 1997; Tong and
Koller, 2001; Warmuth et al., 2002). In addition, theoretical work has shown that active learning
strategies can achieve an exponential reduction of the generalization error with high probability (see
Balcan et al., 2006; Freund et al., 1997). In this contribution, we put the emphasis on a mathe-
matically rigorous derivation of hard upper bounds for the generalization error. This is in contrast
to other studies which give bounds in probability (see Freund et al., 1997) or discuss asymptotic
behavior (see Bach, 2007).

We use a geometrical approach to active learning which is based on the concept of a version
space (see Mitchell, 1982; Tong and Koller, 2001). Loosely speaking, given a set of predictors
and a set of labeled training data, “version space” denotes the set of models whose predictions
are consistent with the training data. If a version space can be defined, active learning strategies
should evaluate data points which allow the learning machine to maximally reduce the “size” of its
version space at every learning step. Some active learning algorithms try to halve the volume of the
version space (see Tong and Koller, 2001). In contrast to this, our approach is to reduce the maximal
distance between pairs of points that belong to the version space. We prefer distance over volume
simply because it is impossible to compute the exact volume of version space in high dimensions.
A detailed discussion of this problem can be found at the end of Section 7. For special types of data
spaces, our method of maximal length reduction coincides with volume reduction. In this case, we
observe a rapid (that is, exponential) progress in learning, as is explicitly shown in Section 4 and
Proposition 9 of Section 6 for data which is arbitrarily distributed on an n-dimensional torus.

In the following we will consider the simple case of a separable, binary classification problem.
Assuming the knowledge of the data density µ on the data space M, the generalization distance
dG(c1,c2) of two classifiers c1,c2 : M → �

2 := {0,1} is given by the integral

dG(c1,c2) :=
1

Vol(M)

Z

D(c1,c2)
ω,

where D(c1,c2) := {x ∈ M | c1(x) 6= c2(x)} is the set of points which are classified differently by
the two classifiers, and ω denotes the volume form of M (see Section 2). If we further assume the
labeling of the data to be generated by an unknown classifier c∗ : M → �

2, the important question is:
Can we give tight upper bounds on the generalization error dG(c,c∗) of some classifier c, and can
we reduce this bound during learning in an optimal way? Inspired by this question, we introduce a
constructive active learning algorithm which reduces such a bound by successive subdivisions of the
version space on a hypersphere. This then allows us to compute exact and tight generalization error
bounds for several classes of data densities. After deriving the bounds for the case of an uniform
distribution on the hypersphere, we use the notion of Riemannian isometries to extend the algorithm
and the error bounds to a set of selected data densities on other data spaces including � n. In a second
step, we extend our results to product manifolds in order to obtain sharp error bounds for a larger
set of data densities. Finally, we provide bounds for arbitrary densities on � n, hyperspheres and
products thereof.

The article is organized as follows: After introducing the geometric setup of active learning
for binary classification (Section 2), we formulate a learning method for data distributed on the
unit sphere Sn ⊂ � n+1 (Section 3). Thereafter, we extend the basic algorithm to a broader class
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of separable, binary classification problems using isometries induced by charts of the sphere and
products of hyperspheres (Sections 4, 5). This will include perceptrons (that is, linear classifiers
with bias on � n) as a special case. Upper bounds are provided for the generalization error for non-
constant data densities for binary classification problems on the sphere (Section 6) and for linear
classifiers without bias in � n (Section 7). Finally, Section 8 provides an empirical evaluation of
the geometric method. As our focus lies on a theoretical analysis of active learning algorithms,
applications of the proposed algorithm to concrete problems have to be of second importance.

2. A Geometric Setup for Active Learning

In the sequel, we will apply some standard constructions from differential geometry. We refer to
Appendix B for a quick introduction to the terminology.

Let M be an n-dimensional compact manifold, the data space, equipped with a Riemannian
metric g. One might object to this type of data space, since the compactness assumption seems to
rule out the most important instance of data space, the Euclidean space � n. However, this is not
the case, because � n, or any submanifold therein, can be embedded into Sn, the n-sphere, by the
inverse of stereographic projection (see Section 4). Recently, spherical data spaces have received
some attention in machine learning (see Lebanon and Lafferty, 2004; Belkin and Niyogi, 2004;
Minh et al., 2006).

We assume the existence of an unknown binary classifier c∗ : M → �
2 := {0,1} and a given set

of labeled data points {(x1,y1), . . . ,(xI,yI))}, (xi,yi) ∈ M× �
2, with correct labels, that is, c∗(xi) =

yi. Now, the binary classification problem asks for an approximation c : M → �
2 which minimizes

the generalization error, that is, the probability of misclassification of data points. This can be
formalized as follows.

The Riemannian volume form ω which belongs to the metric g is given in local coordinates
x : M ⊃U → � n by

ω =
√

det(g)dx1 ∧ . . .∧dxn, (1)

where U is some open chart domain in M. We assume that the Riemannian volume form ω (see
Equation 1) represents up to a scaling factor Vol(M) :=

R

M ω the p.d.f. of the data points x ∈ M.
This allows us to interpret the probability of disagreement between two classifiers c1,c2 as a distance
measure1 on the set of all classifiers:

dG(c1,c2) :=
1

Vol(M)

Z

D(c1,c2)
ω, (2)

where D(c1,c2) := {x ∈ M | c1(x) 6= c2(x)} is called the disagreement area. In these terms, the
generalization error of c is given by dG(c,c∗).

3. Subdivisions of the Sphere

In order to be able to compute upper bounds on dG, we need to impose restrictions on the data space
M as well as on the set of classifiers.

1. Depending on the regularity conditions imposed on the classifiers, it might happen that dG(c1,c2) = 0 while c1 6= c2
on a set of measure zero.
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We start with the following simple setup: Let M = Sn = {x ∈ � n+1 | 〈x,x〉 = 1}, the n-sphere
with its canonical Riemannian metric and denote by C the set of hemisphere classifiers

c : Sn → �
2, c(x) :=

{
1 : 〈x, p〉 ≥ 0
0 : 〈x, p〉 < 0

.

Here, p ∈ Sn is the center of the hemisphere, and 〈., .〉 denotes the Euclidean scalar product in
� n+1. This setup implies that the data are uniformly distributed on the sphere. The use of closed
hemispheres as classifiers is appropriate for spherical data, since hemispheres are the direct analog
to half spaces in Euclidean geometry. A simple, yet crucial, observation is the duality C = Sn.
By a slight abuse of notation, we use the symbol c to denote both, the classifier and the center of
the hemisphere. Concerning the generalization distance of two classifiers we have the following
proposition.

Proposition 1 For hemispheres c1,c2 ∈C

dG(c1,c2) =
1
π

d(c1,c2),

where d(c1,c2) := arccos(〈c1,c2〉) is the geodesic distance on Sn.

Proof The disagreement area D(c1,c2) consists of two congruent lunes on the sphere. The area of
a lune is proportional to its opening angle α = d(c1,c2). Since the total volume of the unit sphere
V :=

R

Sn ω with respect to its canonical Riemannian metric and volume form is not equal to one, we
have to normalize:

dG(c1,c2) =
1
V

Z

D(c1,c2)
ω =

1
V

(α
π

V
)

=
1
π

d(c1,c2).

We assume the true classifier c∗ to be some unknown hemisphere. If (x,1) is a labeled data
point, it follows that c∗ is contained in the closed hemisphere around x. Thus, given a labeled
set {(x1,y1), . . . ,(xI,yI))}, c∗ is contained in the intersection V of the corresponding hemispheres.
The version space of a labeled set (see Mitchell, 1982; Tong and Koller, 2001) is defined as the set
of classifiers which are consistent with the given labeled data. In our case, the version space coin-
cides with the intersection V . Geometrically, V is a convex spherical polytope, a high-dimensional
generalization of a spherical polygon whose edges are segments of great circles and whose (n−1)-
dimensional facets are segments of (n−1)-dimensional great spheres within Sn.

In theory, one can compute the vertices of the version space of any finite labeled set. An iterative
algorithm would reduce this polytope by taking intersections with hemispheres corresponding to
new data points. Unfortunately, during this process, the number of vertices of the polytope grows
exponentially. Thus, the computational costs render its explicit computation impossible even for
low dimensions.

One possibility to reduce the immense computational complexity of polytopes is to work with
spherical simplices. This motivates the following active learning algorithm:
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Definition 2 (Simplex algorithm)

1. Specify some maximal edge length ε > 0 as termination criterion. Choose a random orthog-
onal matrix. Ask for the labels of the n+1 column vectors. This results in a set of admissible
classifiers S ⊂ Sn which is an equilateral simplex on Sn.

2. Select one of the edges of maximal length of the current simplex S. If its length is less than ε,
go to step 7. Otherwise, compute its midpoint m.

3. Compute a unit normal u of the plane in � n+1 spanned by m together with all vertices of S
which do not belong to the edge through m.

4. Ask for the label l of u. If l = 0, replace u by −u.

5. Replace the old simplex S by the part in direction of u, that is, the simplex which has as
vertices m as well as all vertices of S with exception of that end point e of the chosen longest
edge for which 〈u,e〉 < 0.

6. Repeat with step 2.

7. Return the simplex’ center of mass c ∈ S as the learned classifier.

Figure 1 illustrates one iteration of the simplex algorithm on the sphere S2. The “random orthogonal

b

m

a

o

u

c
longest edge

Figure 1: The drawing above shows one iteration of the simplex algorithm for the two-dimensional
case, that is, for spherical triangles on the unit sphere S2. The current version space is
the spherical triangle (a,b,c). The longest edge (b,c) is about to be cut at its midpoint
m. Together with the origin o, the vertex a and the point m define a plane in � 3 one of
whose unit normal vectors is u ∈ S2. Depending on the label of u, the new triangle will
be either (a,b,m) or (a,m,c).

matrix” that occurs in step one of the algorithm is meant to be drawn from the uniform distribution
on the Lie group

O(n) = {A ∈ GL(n) | AAt = I}
of orthogonal real matrices. A practical approach to the problem of generating such matrices can be
found in Stewart (1980). The worst case generalization error after each iteration can be computed
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by evaluating the maximum spherical distance of the chosen classifier to the vertices of the spherical
simplex. To be explicit, the following statement holds:

Proposition 3 If S is the current simplex from the simplex algorithm (see Definition 2) with vertices
v1, . . . ,vn+1 ∈ Sn, and c ∈ S some classifier,

dG(c∗,c) ≤ max
i, j

d(vi,v j) = max
i, j

arccos〈vi,v j〉.

This bound is tight and attainable if we allow any element of the version space to be the learned
classifier. Moreover, if c ∈ S denotes the center of mass, then

dG(c∗,c) ≤ max
i

d(c,vi) = max
i

arccos〈c,vi〉

is a tight and attainable upper bound for the generalization error.

Proof Within a simplex, the maximal distance of two points is realized by pairs of vertices. Now the
first inequality follows from proposition 1. If all elements of the simplex are admissible classifiers,
the bound is tight. The second inequality follows from the convexity of the simplex.

Clearly, the maximal edge length of the simplex S converges to zero. In Appendix A, we derive
O((n+1)3) as a rough complexity estimate for one iteration of the simplex algorithm (see Definition
2).

Another question concerning the convergence of the algorithm is: How many iterations are
needed until the maximum edge length of the initial simplex starts to drop? To this end, we have
the following proposition whose proof is given in Appendix A.

Proposition 4 Let S be the initial equilateral simplex from the simplex algorithm (see Definition 2).
Let k ∈ � be the number of steps needed until the maximum of the edge lengths drops. Then

n ≤ k ≤ n(n+1)

2
,

and these bounds are tight and attainable.

4. Extensions by Isometries

We will now extend our results to other data spaces by applying the concept of isometries. The
easiest method to obtain isometries from the n-sphere to other data spaces is to consider charts of
the sphere together with the induced metric. Being isometries, they preserve the geometry, and
any generalization bounds derived for the sphere can be applied without modifications. Combining
isometries with the product construction of Section 5, we end up with a large family of data densities
on � n to which our results are directly applicable. In Section 6, we will loosen our preconditions
even further and consider the general case of arbitrary data densities.

We begin with the discussion of the stereographic chart of the n-sphere.

Stereographic chart. The stereographic projection

σN : Sn \{N}→ � n,

(x1, . . . ,xn+1) 7→
(x1, . . . ,xn)

1− xn+1
,
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where N = (0, . . . ,0,1) denotes the north pole, is an isometry of Sn \ {N} to ( � n,g), where the
Riemannian metric g is given by

gx(v,w) =
4

(1+‖x‖2)2
〈v,w〉.

See Figure 2 for an illustration of the two-dimensional case. Hence, we can identify Sn \{N} with

north pole N of the sphere

point on the sphere

plane of projection ( � 2)

image under projection

Figure 2: The stereographic projection S2\{N}→ � 2 is a diffeomorphism from the sphere with the
north pole removed to the plane. It distorts lengths but preserves angles. If one considers
a ray from the north pole to some point on the plane, the stereographic projection will
map the intersection point of this ray with the sphere onto its intersection point with the
plane.

( � n,g), and the induced Riemannian volume form is

ωx =
2n

(1+‖x‖2)n
dx1 ∧ . . .∧dxn,

where dx1 ∧ . . .∧ dxn denotes the Euclidean volume on � n (the determinant). If the given data
density on � n is (up to a constant factor) equal to ω, the data can be considered to lie on Sn with
constant density, and our error bounds hold. When viewed under stereographic projection, our
spherical classifiers fall in three categories: If the boundary of the hemisphere, which is a great
(n− 1)-sphere within Sn, contains the north pole, its projection is a hyperplane through the origin
in � n. The equatorial great sphere {x ∈ Sn ⊂ � n+1 | xn+1 = 0} is projected onto Sn−1 ⊂ � n. All
other great spheres become spheres intersecting Sn−1 ⊂ � n orthogonally. Hence, any data which is
separable by these classes of hypersurfaces in � n is separable by great spheres on Sn and vice versa.

Gnomonic chart. The gnomonic projection

ϕ : Sn ⊃ {xn+1 > 0}→ � n,

(x1, . . . ,xn+1) 7→
(x1, . . . ,xn)

xn+1
,

generates on � n the metric

g =
1

(1+ x2
1 + . . .+ x2

n)
2




s1 −xix j
. . .

−xix j sn


 ,
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point on the sphere

image under projection

plane of projection ( � 2)

north pole N of the sphere

Figure 3: Illustration of the gnomonic projection for the case S2 ⊃ {x3 > 0} → � 2. In this case,
we embed � 2 at height one into � 3, such that it touches the sphere at the north pole.
Rays are sent from the center of the sphere. Their intersection points with the sphere are
mapped to the corresponding intersection points with the plane. The gnomonic projection
distorts lengths as well as angles, but maps great circles to straight lines.

where we have used the abbreviation si := 1 + x2
1 + . . .+ x2

n − x2
i . Figure 3 illustrates the gnomonic

projection in two dimensions. As was the case with the stereographic chart, gnomonic projection is
an isometry from the upper half-sphere to ( � n,g). Using Equation 1, we have for x2 = . . . = xn = 0

√
det(g) =

1

(1+ x2
1)

n+1
2

.

Since the scaling function of the volume form ω has to be rotationally symmetric, it follows that

ωx =
1

(1+‖x‖2)
n+1

2

dx1 ∧ . . .∧dxn. (3)

Note that our separating great spheres are projected to affine hyperplanes in � n. Therefore, the
classical approach to the binary classification problem using linear classifiers with bias can be
considered a special case of our spherical setup. More precisely, the strict error bounds derived for
our algorithm apply to linear classifiers with bias on � n if and only if the data density on � n is
given by Equation 3. For an analysis that applies to a greater variety of densities we refer to Section
6.

As a byproduct, formula 3 also clarifies the arguments given in the proof of Theorem 4 of Freund
et al. (1997) which estimates the information gain of queries made by the Query by Committee
algorithm. In the proof, the scaling factor of the volume form of the gnomonic chart is estimated
using infinitesimals. The explicit formula for the volume form given above makes this more lucid.

5. Products of Spheres

We now extend the simplex algorithm (see Definition 2) to other data manifolds and other sets
of classifiers using a simple product construction. The main purpose of this section is to obtain
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building blocks for data manifolds and data densities which later can be combined to produce more
sophisticated examples. We consider product data manifolds of the type

(M,g) = (Sn1 ,g1)× . . .× (Snk ,gk), (4)

where each factor (Sn j ,g j) is a unit sphere of dimension n j with its standard metric g j. For a point
x = (x1, . . . ,xk) ∈ M and tangent vectors X = (X1, . . . ,Xk),Y = (Y1, . . . ,Yk) ∈ TxM we have

gx(X ,Y ) =
k

∑
j=1

g j
x j
(X j,Yj).

The Riemannian volume form of the product is given in local coordinates by

ω =
k

∏
j=1

√
det(g j) =

k̂

j=1

ω j,

where ω j denotes the volume form of the jth factor. On the product manifold M, we consider
classifiers which are products of hemispheres, that is, C = C1 × . . .×Ck, where the C j = Sn j are the
individual sets of hemispheres defined in Section 3 and a classifier c ∈C is given by

c : M → �
2, c(x) :=

{
1 : 〈x,c j〉 ≥ 0∀ j
0 : otherwise

.

Due to the simplicity of the product structure, we arrive at the following formula for the generaliza-
tion metric:

Proposition 5 For products of hemispheres c1,c2 ∈C,

dG(c1,c2) =
1

2k−1

(
1− 1

πk

k

∏
j=1

(π−d j(c
1
j ,c

2
j)),

)

where d j is the geodesic distance on Sn j .

Proof Since each component of a classifier is a hemisphere,

Vol(c1
j ∩ c2

j) = Vol(Sn j)
π−d j(c1

j ,c
2
j)

2π
.

Furthermore, the volume of a product of such hemispheres is given by

Vol(c1) =
k

∏
j=1

Vol(c1
j) =

k

∏
j=1

Vol(Sn j)

2
=

Vol(M)

2k .

Inserting this into
Vol(D(c1,c2)) = Vol(c1)+Vol(c2)−2Vol(c1 ∩ c2)

where D(c1,c2) denotes the disagreement area, yields the proposition.

This leads to the extended spherical simplex algorithm:
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Definition 6 (Extended simplex algorithm)

1. Specify some maximal edge length ε > 0 as termination criterion. For each factor Sn j , create
an initial simplex using a random orthogonal matrix whose columns are interpreted as a basis
for � n j+1. This results in a product S of equilateral simplices.

2. Find one of the edges of maximal length of each factor of the current simplex product S. If
all the respective lengths are less than ε, go to step 7. Otherwise, compute the midpoints
m1, . . . ,mk.

3. Compute the corresponding unit normals u j.

4. Ask for the labels l j of u j. If l j = 0, replace u j by −u j.

5. Replace the old simplex product S by the product of the parts in direction of u j.

6. Repeat with step 2.

7. For each factor, compute its center of mass c j, and return (c1, . . . ,ck) ∈ S as the learned
classifier.

In parallel to the case of a single sphere, the minimization of maximal edge lengths forces
convergence. Note, that if k denotes the number of factors in the product of spheres, then k training
points are needed to carry out one iteration of the algorithm. The worst case generalization error
after each step is bounded as follows.

Proposition 7 If S is the current product simplex from the extended simplex algorithm (see Defini-
tion 6) with maximal edge lengths d1, . . . ,dk of its factors, and c ∈ S some classifier,

dG(c∗,c) ≤ 1
2k−1

(
1− 1

πk

k

∏
j=1

(π−d j)

)
.

This bound is tight and attainable if we allow any element of the version space to be the learned
classifier.

Proof In analogy to the case of a single sphere, this follows from proposition 5.

The complexity estimate for one iteration of the extended simplex algorithm is

O((n1 +1)3 + . . .+(nk +1)3).

Here, n1, . . . ,nk denote the dimensions of the k individual factors of the product data space. This
estimate can be deduced directly from the complexity analysis of the simplex algorithm given in
Appendix A.
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Products combined with isometries. We now apply the isometries discussed in Section 4 to
product manifolds. For each factor in Equation 4, we may choose one of stereographic or gnomonic
projection.

Mn1+...+nk = Sn1 × . . .× Snk ,
f1 ↓ . . . ↓ fk

� n1+...+nk = � n1 × . . .× � nk .

This results in product densities on � n = � n1+...+nk , represented by the volume form

ω =
k

∏
j=1

ω j

with factors ω j given by either

ω j
x =

2n j

(1+‖x‖2)n j
dx1 ∧ . . .∧dxn j

(stereographic projection) or

ω j
x =

1

(1+‖x‖2)
n j+1

2

dx1 ∧ . . .∧dxn j

(gnomonic projection). Similarly, the projected separating hypersurfaces are products of the indi-
vidual projections. One could now go on to produce many more families of compatible densities by
working with different charts, but instead we turn our attention to an important special case.

The n-torus. A particular case is the gnomonic projection of the n-torus

T n = S1 × . . .×S1
︸ ︷︷ ︸

n factors

,

which yields a scaled version of the Cauchy distribution on � n:

ωx =
n

∏
i=1

1

1+ x2
i

dx1 ∧ . . .∧dxn.

Here, we take S1 to be the unit circle which results in T n having total mass (2π)n. Since there is
one circle S1 per axis, the projected classifiers are axis parallel corners in � n. One iteration of the
algorithm consumes n labeled data points, because T n is made up of n individual factors. At each
step of the extended simplex algorithm, the version space is a hypercube of equal edge length l.
Therefore, we do not need to compare edge lengths. One step results in halving all the edges, and
the volume is divided by 2n. Hence, if Vi denotes the volume after i iterations, we have

Vi =
π

2in .

In analogy, the maximal generalization error Gi of the center of mass classifier after i steps is given
by

Gi =

√
nπ

2i .

Thus, we observe an exponential decrease in volume and in the tight upper bound for the general-
ization error.
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6. Aspherical Data Manifolds

Up to now, our methods apply only to such data manifolds which are isometric to products of
subsets of unit spheres. We now loosen this assumption by looking at all oriented Riemannian data
manifolds M which admit an orientation preserving2 diffeomorphism

Φ : M → Sn,

that is, Φ is a smooth bijective map which has a smooth inverse. The Riemannian volume form
belonging to the metric g on M induces a volume form ω̃ on Sn which, in general, is not equal to the
spherical volume ω. More precisely,

ω̃ = f ω

with some smooth positive scaling function f : Sn → � +. Note that all volume forms (or smooth
positive densities) on Sn can be written in this form. This results in the formula

dG(c1,c2) :=
1

Ṽol(Sn)

Z

D(c1,c2)
f ω

for the generalization metric. An illustation of a non-uniform density on the sphere is given in
Figure 4 in Section 8 where the reader also finds empirical results for this case.

Concerning the set of admissible classifiers, let us keep the assumption that the Φ-image of the
data is separable by hemisphere classifiers. If we know that the true classifier c∗ lies in some subset
S ⊂ Sn the worst case generalization error of some classifier c ∈ S is bounded from above by

dG(c,c∗) ≤ sup
c̃∈S

dG(c̃,c∗).

Therefore, the simplex algorithm (see Definition 2) will still converge, as it reduces an upper bound
of the generalization error. Its rate of convergence will depend on the properties of the density.

Nevertheless, we can force a simple upper bound by assuming the deviation of the induced
volume form from spherical volume to be small:

sup
x∈Sn

|1− f (x)| < ε.

This implies

Proposition 8 Let ω be the canonical volume form of Sn. Denote by dG̃ the generalization distance
induced by the scaled volume form ω̃ = f ω where f : Sn → � + is some positive smooth scaling
function. If supx∈Sn |1− f (x)| < ε for some ε > 0 then

dG̃(c1,c2) ≤
(1+ ε)Vol(Sn)

πṼol(Sn)
d(c1,c2),

where d is the canonical geodesic distance of Sn. In this formula, Vol(Sn) :=
R

Sn ω and Ṽol(Sn) :=
R

Sn ω̃ denote the volumina of Sn with respect to ω and ω̃ := f ω.

2. A map between oriented Riemannian manifolds is orientation preserving if its functional determinant is positive.
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Proof Using the definition of the generalization distance in Equation 2 and applying proposition 1,
we compute

dG̃(c1,c2) =
1

Ṽol(Sn)

Z

D(c1,c2)
f ω

≤ 1

Ṽol(Sn)

Z

D(c1,c2)
(1+ ε)ω

=
(1+ ε)Vol(Sn)

Ṽol(Sn)
dG(c1,c2)

=
(1+ ε)Vol(Sn)

πṼol(Sn)
d(c1,c2).

Inserting the above upper bound into proposition 3 we obtain

Proposition 9 Let S be the current simplex from the simplex algorithm (see Definition 2) with ver-
tices v1, . . . ,vn+1 ∈ Sn, and c ∈ S ⊂ Sn an arbitrary classifier, not necessarily the center of mass. If
c∗ ∈ Sn denotes the unknown true classifier, the generalization error of c is bounded by

dG̃(c,c∗) ≤ (1+ ε)Vol(Sn)

πṼol(Sn)
max

i, j
d(vi,v j),

where d(vi,v j) denotes the spherical distance of the vertices.

The usefulness of the above proposition depends on how much the scaled volume form f ω deviates
from the canonical spherical volume ω. In the case of the n-torus, the same arguments as given at
the end of Section 4 yield an exponential decrease of the volume of the version space as well as of
the upper bound for the generalization error—regardless of the data density under consideration.
The only difference is the newly introduced constant ε which may affect the absolute rate but not
the functional form of convergence.

7. Linear Classifiers without Bias

We now return to the case of linear classifiers on the Euclidean space � n which commonly appear
in the machine learning literature. The corresponding separating hypersurfaces are linear subspaces,
that is, hyperplanes through the origin, of � n.

Consider the data space M = � n. Then, the set C of linear classifiers without bias consists of
maps

c : � n → �
2, c(x) :=

{
1 : 〈x, p〉 ≥ 0
0 : 〈x, p〉 < 0

,

where p ∈ Sn is the unit normal vector of an oriented (n−1)-dimensional plane through the origin.
Therefore, we can identify C with the unit n-sphere, C = Sn. In the following, we use c to denote
both, the classifier and its corresponding unit normal.
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Consider some data density f : � n → � . Since the origin is always classified as +1 by all
classifiers we may remove it from the data space, and the remaining data space is given by

M = � n \{0}.

Using polar coordinates (s,r), we can write M as the product3

M = Sn−1 × � +, s =
x
‖x‖ ,r = ‖x‖ .

For a given s ∈ Sn−1, we will call the subset Fs := {(s,r) | r > 0} the fiber over s. Since the data
is assumed to be separable by at least one element of C any two points belonging to the same fiber
have the same label.

The area D(c1,c2) of disagreement between two classifiers c1,c2 is given by

D(c1,c2) = {(s,r) ∈ M | 〈c1,rs〉〈c2,rs〉 < 0} = {(s,r) ∈ M | 〈c1,s〉〈c2,s〉 < 0}.

The generalization distance is given by

dG(c1,c2) =
Z

D(c1,c2)
f dx =

Z

{s∈Sn−1 | Fs⊂D(c1,c2)}

(
Z

Fs

f (s, .)dr

)
ds, (5)

where dx, dr, ds denote the canonical volume forms on � n, Fs, and Sn−1. It may happen that
different fibers Fs have different mass in the sense that

Sn−1 → � , s 7→
Z

Fs

f (s, .)dr

is a non-constant function. If we rule out this case we end up with the following proposition:

Proposition 10 The generalization distance of any two linear classifiers c1,c2 is given by

dG(c1,c2) =
λ
π

d(c1,c2),

where d(c1,c2) = arccos〈c1,c2〉 is the geodesic distance on Sn, if and only if the fiber mass is equal
to a positive constant,

Z

Fs

f (s, .)dr = λ > 0 ∀s ∈ Sn.

Proof This follows by applying proposition 1 to Equation 5.

The precondition of proposition 10 does not assume that the density f is rotationally invariant
on � n+1. Instead, it assumes the accumulated density to be invariant on the sphere. Linear classifi-
cation problems on non-constant densities which fulfill this condition map to classification problems
with hemisphere classifiers for the uniform density on the sphere. Consequently, all results derived
for the spherical simplex algorithm (see Definition 2) apply, including the hard upper bounds on the
generalization error. In particular, we deduce the following result from Proposition 3

3. We use the convention � + := {r ∈ � | r > 0}.
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Proposition 11 If S is the current simplex from the simplex algorithm (see Definition 2) with ver-
tices v1, . . . ,vn+1 ∈ Sn, c∗ denotes the unknown true classifier and c ∈ S an arbitrary classifier,

dG(c∗,c) ≤ λmax
i, j

d(vi,v j) = λmax
i, j

arccos〈vi,v j〉.

As in Proposition 10, λ > 0 denotes the fiber mass. This bound is tight and attainable if we allow
any element of the version space to be the learned classifier. Moreover, if c ∈ S denotes the center
of mass, then

dG(c∗,c) ≤ λmax
i

d(c,vi) = λmax
i

arccos〈c,vi〉.

is a tight and attainable upper bound for the generalization error.

Relation to SVM methods. Proposition 10 also sheds new light on some active learning strategies
that use Support Vector Machines (SVM). A SVM classifier can be interpreted as an approximation
of the center of the largest inscribable hypersphere of the version space on Sn−1 (see Herbrich,
2002). Let us denote this center by p∗ ∈V ⊂ Sn−1, where V ⊂ Sn−1 is the version space (a spherical
polytope, see Section 3) on the hypersphere.

Tong and Koller (2001) argue that, despite its dependence on the particular shape of the version
space, the center of the maximal inscribable hypersphere often lies close to “the center of the version
space”. Motivated by these insights, they propose the following pool-based strategy for selecting
an unlabeled data point x ∈ Sn−1 to be labeled: Choose x such that the (spherical) distance from the
(n−2)-dimensional great sphere

X := {s ∈ Sn−1 | 〈x,s〉 = 0}

to p∗ is minimal. After the data point x is labeled, the version space will be cut into two pieces along
the great sphere X ⊂ Sn−1. The goal of this strategy is to reduce the volume of the spherical polytope
V as quickly as possible. Similar strategies can be found in Warmuth et al. (2002). Up to now, a
closed formula for the volume of a n-spherical simplex is not known, not to speak of polytopes,
hence, there is no way of computing the exact volume of a version space on a hypersphere. We refer
to Milnor (1994) for a detailed discussion of this topic. Nevertheless, Monte-Carlo methods can be
applied to obtain volume estimates.

Proposition 10 can now be applied. The SVM algorithm works with the Euclidean scalar product
on � n, and therefore implicitly assumes the canonical Riemannian metric and volume form on the
unit sphere. Proposition 10 tells us that the SVM approximation is theoretically justified if and only
if the given data density induces (up to a constant factor) the uniform density on the sphere.

8. Experimental Results

The following results were obtained from a C++ implementation of the simplex algorithm (see
Definition 2). The numerically most sensitive operation of the algorithm is the computation of a
normal vector u ∈ Sn to the hyperplane H ⊂ � n+1 whose intersection I = H ∩ Sn with Sn cuts the
current simplex S into two pieces. In higher dimensions, say n > 50,

Z

Sn\{x∈Sn | d(x,I)<δ}
ω
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becomes very small even for small values δ > 0.4 This means, nearly all the mass of Sn is concen-
trated within a thin tube of radius δ around I, which makes it hard to compute normal vectors. We
avoid numerical problems by using the following procedure:

1. Select the basis of H given by the midpoint of the longest edge and all vertices of the simplex
excluding the end points of the longest edge. Construct a corresponding orthonormal basis
using the modified Gram-Schmidt algorithm (see Meyer, 2000).

2. Choose random points x ∈ Sn until the projected length
√

∑i〈x,hi〉, where hi are the orthonor-
mal basis vectors of H, is less than a given constant ε < 1.

3. Use x to construct a unit vector which is orthogonal to all basis vectors hi.

In order to test the performance of the simplex algorithm on spheres of different dimensions a
series of numerical experiments was conducted, where the following quantities were measured.

Maximal edge length: If (v1, . . . ,vn+1) denote the vertices of the current simplex S of the simplex
algorithm, the maximal edge length

max
i, j

d(v1,v j)

is an upper bound on the generalization error, regardless which point of the simplex is chosen
as the learned classifier.

Maximal distance from center of mass: Let c ∈ S denote the center of mass of S. Then the maxi-
mal distance between c and any other classifier from S is given by

max
i

d(c,vi).

This yields a tight upper bound on the generalization error if we choose the center of mass as
the learned classifier.

Approximate generalization error for the center of mass classifier c: We estimated the general-
ization error of c using the empirical average of the individual errors for 50,000 randomly se-
lected “test” data points. Test data were sampled (i) from a uniform density on the sphere and
(ii) from an aspherical density with two distinct “clusters” at opposite poles. The aspherical
density was constructed by mapping the uniform distribution from an open parameter cuboid
onto the sphere using n-spherical coordinates.

Figure 4 illustrates the relation between a sample drawn from this density on the sphere S2

and its stereographic projection onto the plane � 2. Densities of this kind are typical for
binary classification problems. Any density with two peaks at p1, p2 ∈ � n can be identified
with a density on Sn with peaks at opposite poles: Firstly, we apply a translation to move
the midpoint of the line p1 p2 to the origin. Then we use a rotation to place p1, p2 on the x1-
axis. After a scaling, p1 = (−1,0, . . . ,0) and p2 = (+1,0, . . . ,0). Now inverse stereographic
projection will map the peaks onto opposite poles.

4. For a comprehensive discussion of these effects we refer to Gromov (1999).
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Figure 4: A data sample from a density with two peaks on � 2 (left) and S2 (right). The data points
on the plane are the stereographic projections of the points on the sphere. On S2, the two
peaks are located at opposite poles.

The above quantities were computed for each step of the simplex algorithm. Averages and variances
were calculated for 1,000 simulations, and averages were normalized to lie within the interval [0,1].
For every simulation, a true classifier was drawn from the uniform distribution on the sphere. Fig-
ures 5 and 6 show the resulting learning curves for the spheres S9 ⊂ � 10, S29 ⊂ � 30,S49 ⊂ � 50, and
S79 ⊂ � 80. The average maximal edge length as a function of the number of selected training data
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Figure 5: Learning curves on S9 ⊂ � 10 (left) and on S29 ⊂ � 30 (right). The figures show the average
maximal edge length (upper solid line), the average maximal distance from the simplex’s
center of mass (upper dashed line), and the average approximate generalization errors
for the uniform (lower dashed line) and aspherical (lower solid line) data densities as
a function of the number of selected training examples. Error bars indicate variances,
however, only the approximate generalization error for the aspherical data density shows
large fluctuations between simulation runs. Proposition 4 yields the bounds 9 ≤ k9 ≤ 45
and 29 ≤ k29 ≤ 435 for the number k of steps needed before the maximal edge length
starts to drop on S9 and S29.
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Figure 6: Learning curves on S49 ⊂ � 50 (left) and S79 ⊂ � 80 (right). For details see legend of
Figure 5. Proposition 4 yields the bounds 49 ≤ k49 ≤ 1225 and 79 ≤ k79 ≤ 3160 for the
number k of steps needed before the maximal edge length starts to drop on S49 and S79.

shows an initial plateau, until the values begin to decrease in an approximately exponential fashion.
The length of the plateau increases with the dimensionality of the sphere and is a direct result of
Proposition 4. The average maximal distance from the center of mass rises initially (see Figure 7
for a magnified version of the initial segment of the learning curve), until a sudden drop occurs,
again followed by a roughly exponential decrease. This can be explained as follows. The simplex
algorithm is initialized with an equilateral simplex. During the first learning steps, the center of
mass moves towards those vertices whose adjacent edges are cut already. This results in a slight
increase of the maximal distance of the vertices from the center of mass. The simplex becomes a
“thin pyramid” with small base, and the following drop in the plots then corresponds to a cut of a
line connecting the apex to the base. The ratio between the edges connecting the apex to the base
and the edges which are contained within the base is given by 2

n−1 , where n is the dimensionality
of the sphere. Since this number tends to zero for n → ∞ the sudden drop disappears in higher
dimensions.
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Figure 7: Initial learning curves on S9 ⊂ � 10 (see Figure 5, left), now plotted on a linear scale. For
details see legend of Figure 5.
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If the data is drawn from the spherical distribution, the approximate generalization error changes
smoothly with the number of selected training data, and its variance is very small. For data dis-
tributed according to the aspherical (two cluster) density, the average approximate generalization
error is similar, but the variance increases dramatically. Nevertheless, the numerical experiments
show that the spherical simplex algorithm performs well even in the case of non-uniform densities.

Experimental results on product manifolds. So far, we restricted the experiments to single
spheres instead of products, because the simulation of the extended simplex algorithm on

M = Sn1 × . . .×Snk ,

is equivalent to the parallel execution of several copies of the basic algorithm. Nevertheless, it might
be interesting to consider the special case of the n-torus T n (see Section 5):

T n = S1 × . . .×S1
︸ ︷︷ ︸

n factors

.

The product structure of the torus reflects the fact that data is distributed independently on each
factor. For the standard product density on T n, volume and distances can be computed explicitly.
Therefore, we consider only the non-uniform case. We consider a von Mises density (see Devroye,
1986) on the unit circle:

f : S1 = � /2π → � , f (x) =
exp(κcos(x−µ))

2πI0(κ)
.

with center µ ∈ [0,2π] and width κ ≥ 0. The symbol I0 in the equation above denotes the modified
Bessel function of the first kind of order zero. A technique for simulating the von Mises distribution
can be found in Best and Fisher (1979). In order to obtain a density with two peaks on opposite
poles of the circle, we superimpose two copies of f with µ = 0 and µ = π. This construction is
applied to every factor S1 of the torus T n = S1 × . . .×S1.

We implemented the extended simplex algorithm on the n-torus. Due to the product structure,
numerical problems like those described at the beginning of Section 8 do not arise. For the case
n = 2, the torus can be embedded into � 3 using

S1 ×S1 → � 3, (s, t) 7→




(2+ cos t)coss
(2+ cos t)sins

sin t


 .

Using this mapping, we can visualize the iterations of the extended simplex algorithm on von Mises
distributed data. Figure 8 shows a data sample as well as several iterations of the algorithm on
the embedded torus. Figure 9 depicts the stereographic projection of a sample drawn from the von
Mises distribution together with the projected classifier in � 2.

Finally, we conducted experiments on the n-torus in order to obtain learning curves analogous
to those on the n-sphere. As was shown in Section 5 distances and volumina on the n-torus can
be computed explicitly provided the data density is uniform. Therefore, we focus on the approxi-
mal generalization error for data distributed according to the modified von Mises density described
above. The approximation was done by evaluating the performance of the classifier on a data sam-
ple of 50,000 test points after each training step. The resulting values were averaged over 1,000
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Figure 8: The extended simplex algorithm on the 2-torus. The large dot on the upper part of the
torus represents the true classifier. Small dots depict positively (light gray) and negatively
(dark) classified points drawn from the modified von Mises distribution. The meaning of
the nested regions is the following (light to dark): positively classified area of the true
classifier, version space after initialization (step one of the extended simplex algorithm),
version space after first iteration, version space after second iteration.

Figure 9: The image of a data sample from two superposed von Mises distributions on the two-
dimensional torus under the stereographic projection (defined in Section 4) to � 2. The
black square represents the projected classifier. Light dots are classified positively, dark
dots negatively.
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Figure 10: Learning curves on the 5-dimensional torus (left) and on the 10-dimensional torus
(right). The figures show the average approximate generalization errors for the mod-
ified von Mises density as a function of the number of selected training examples. Since
the variances are almost zero, they are not included in the diagram.

simulations. For every simulation, a true classifier was drawn from the uniform distribution on the
torus. The resulting learning curves for dimensions n = 5 and n = 10 are shown in Figure 10.

Due to the product structure of the torus, volumina of rectangular subsets are given by the prod-
ucts of their side lengths. For higher dimensions, the volume of the initial version space becomes
very small. Therefore, the initialization of the extended simplex algorithm yields a classifier whose
error is by far smaller than the average generalization error of its spherical counterpart. This ef-
fect reflects the statistical independence of the data which makes the learning task a lot easier. For
dimensions n > 15, the initialization of the algorithm alone provides a classifier with almost van-
ishing average generalization error. As the curves depicted in Figure 10 show the error decreases
exponentially.

9. Conclusion

In this contribution we provided exact upper bounds for the generalization performace of binary
classifiers. In order to do so, we used an active learning scheme for model selection, and we de-
signed a constructive method which reduces such a bound by successive subdivisions of a version
space.

The algorithm was first formulated for the generic case of a binary classification problem,
where data lies on a n-dimensional hypersphere and where both classes are separable using (n−1)-
dimensional great spheres as classifiers. We derived tight upper bounds for the case that the density
of data is constant (cf. Proposition 3) as well as for cases, where at least an upper bound of the
deviation from the constant density is known (cf. Proposition 9).

We then showed, using the concept of isometries, that abovementioned results are not restricted
to hyperspherical data spaces. We showed that if a data space can be mapped onto (a subset of) a
hypersphere using an isometry, the constructive active learning method can be applied and Propo-
sitions 3 and 9 remain valid and can be used to calculate the bound. In particular, the constructive
algorithm can be applied to linear classification in the widely used Euclidean data space � n, and
the corresponding bounds hold. A further extension to binary classification on products of spheres
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is straightforward. As a simple example, we considered binary classification on products of circles
and proved the exponential decrease of the upper bound for arbitrary densities. Using isometries we
showed that this problem can be mapped, for example, onto a binary classification problem in � n

with axis-parallel hypercube classifiers for which the same exponential decrease holds.
The theoretical results were illustrated using a number of classification tasks using flat as well

as non-constant densities, and the derived bounds were compared with the classification error on a
test set as a standard method for assessing prediction quality. Since our focus lies on a theoretical
analysis of active learning methods (the constructive methods being a vehicle of this analysis),
an empirical evaluation and applications of the proposed algorithm to real world problems are of
second importance here. Still, a few comments can be made. The computational complexity of
the method is O((n + 1)3) where n is the dimension of the hypersphere, hence the method works
in practice. Empirically, it also provides good results for non-constant densities. The main current
limitation, however, is the restriction of the method to separable classification problems.
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Appendix A.

The purpose of this appendix is to give a more detailed analysis of the complexity of the simplex
algorithm (see Definition 2) as well as a proof of Proposition 4.

Complexity analysis. We first consider step two. The edge lengths

d(vi,v j) := arccos(〈vi,v j〉),

between vertices vi,v j of the simplex must be computed in order to determine which edge is to be
cut next. To reduce the number of scalar products that actually need to be evaluated we keep a
record of all edge lengths of the current simplex. After step 2, the current simplex is cut by a plane
through the midpoint m of some edge (a,b). Assume b gets thrown out. Then all n(n−1)

2 edges of
the facet opposite to b stay untouched. Further, the length of the new edge (a,m) is one half of the
length of (a,b). It is left to compute the lengths of all other edges that contain m. Therefore, we
need to compute

n(n+1)

2
− n(n−1)

2
−1 = n−1

scalar products of vectors in � n+1 which gives us an additive term of order O(n−1). In step three,
one has to apply an orthonormalization procedure. The modified Gram-Schmidt algorithm (see
Meyer, 2000) gives us another summand O((n + 1)3). Since the computational complexity of the
other steps is negligible we obtain O((n + 1)3) as a rough complexity estimate for one iteration
of the simplex algorithm (see Definition 2). Steps one and seven are performed only once. The
initialization by choosing a random orthogonal matrix can be implemented by using an algorithm
of Stewart (1980). The complexity of this algorithm is O(n2) plus the time needed for generating
n pseudo-random vectors according to the standard normal distribution. The computation of the
center of mass in step seven amounts to adding up all vertex vectors of the current simplex and
normalizing their sum to length one. Hence, O((n+1)3) is a complexity estimate for the final step.
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We now restate and prove Proposition 4 from Section 3:

Proposition 12 Let S be the initial equilateral simplex from the simplex algorithm (see Definition
2). Let k ∈ � be the number of steps needed until the maximum of the edge lengths drops. Then

n ≤ k ≤ n(n+1)

2
,

and these bounds are tight and attainable.

Proof The proof consists of four steps:
1. n is a lower bound: Assume k ≤ n−1 and do k iterations of the algorithm. Since the degree

of each vertex is n, each vertex of the initial simplex is end point of an edge of full length. Thus, if
one of these initial vertices is contained in the new subsimplex, the subsimplex contains the adjacent
edge of full length, too. The k ≤ n−1 subdivisions have created at most n−1 new vertices. Thus,
the new subsimplex contains at least two vertices of the initial simplex. Hence, its maximal edge
length is still π

2 .
2. The lower bound is tight: Choose some vertex e. Subdivide all n edges adjacent to e and keep

the subsimplex containing the vertex e. All edges starting from e now have length π
4 . The angle

enclosed by any two edges at e is π
2 . Now the spherical law of cosines tells us that all edges not

adjacent to e have length π
3 . This implies that the constructed subsimplex realizes the lower bound.

3. n(n+1)
2 is an upper bound: This is clear since n(n+1)

2 is the number of edges of the simplex.
4. The upper bound is tight: This is clear for n = 1.

The induction step (n− 1) → n goes as follows: Use n(n−1)
2 steps to subdivide a facet F of the

simplex. Then all edges contained in F are shortened, while the n edges connecting F with the
opposite vertex e still have full length. Now subdivide the connecting edges, and always choose
the subsimplex which contains e. In this case, e is the only common vertex belonging to the newly
subdivided edge and the rest of the edges of full length. Hence, in each of these last n steps, only
one edge length is reduced. An illustration of this case is shown in Figure 11.

Appendix B.

The purpose of this appendix is to introduce some differential geometric notions used in the main
text. For a comprehensive treatise of Riemannian manifolds we refer to Gallot et al. (1990).

A manifold M is a generalization of Euclidean space � n. It is covered by coordinate charts,
that is, bijective maps u : U → � n, where U ⊂ M is an open subset. The inverse of u is called a
parametrization. For our work, the most important example of a manifold is the n-sphere Sn = {p ∈

� n+1 | ‖p‖= 1}. It can be covered by two charts, stereographic projection from the north and south
pole. Another system of charts is given by the gnomonic projections. Both are discussed in detail
in Section 4.

At each point p ∈ M, the manifold is approximated by its tangent space TpM, which generalizes
the tangent of a smooth curve. In the case of Sn, the space TpSn can be identified with the linear
subspace

TpSn = {X ∈ � n+1 | 〈p,X〉 = 0}.
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Figure 11: The figure shows a subdivision of a spherical simplex on S3 ⊂ � 4 under stereographic
projection (see Section 4). The initial simplex, a tetrahedron, is (a,b,c,e). All of its
edges have spherical length π

2 . After three iterations, indicated by their midpoints 1,2,3,
the subsimplex with edges drawn in bold face still contains three edges (those starting
from vertex e) of full length.

A Riemannian metric is a choice of a scalar product gp for each tangent space TpM. The pair
(M,g) is called a Riemannian manifold. The canonical Riemannian metric of Sn is given by the re-
striction of the Euclidean scalar product on � n+1 to the subspace TpSn. Given some parametrization
f : � n →U ⊂ Sn ⊂ � n+1 of a subset U of the sphere, the matrix representation of g is computed by

gi j = 〈 ∂ f
∂xi

,
∂ f
∂x j

〉,

where 〈,〉 denotes the Euclidean scalar product on � n+1. We use this equality in Section 4 to
compute the metric in stereographic and gnomonic coordinates.

Let M,N be manifolds of dimensions dimM = m and dimN = n. Let p ∈ M be some point in M.
A map f : M → N is called smooth at p if there are charts u : M ⊃U → � m, v : N ⊃V → � n with
p ∈ U , f (p) ∈ V such that the composition f̃ = v ◦ f ◦ u−1 : � m → � n is infinitely differentiable
in the usual sense. We denote by d f : TpM → Tf (p)N the total differential of f at p. The map f is
called smooth if it is smooth at all points of M.

A smooth bijective map f : (M,g) → (N,h) with smooth inverse is called a diffeomorphism. If
f additionally preserves the metric,

gp(X ,Y ) = h f (p)(d f (X),d f (Y )),

we call f an isometry.
Given a metric g we can measure the length of a curve γ : [a,b] → M by integrating the norm of

its tangent vector:

L(γ) =
Z b

a
‖γ̇(t)‖dt =

Z b

a

√
gγ(t)(γ̇(t), γ̇(t))dt.

The geodesic distance d(p,q) of two points p,q ∈ M is defined to be the infimum of lengths of all
curves joining p with q. The minimizing curves are called geodesics. In the majority of cases, there
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is no explicit formula for d(p,q). Nevertheless, in the case of Sn with its canonical metric it is given
by d(p,q) = arccos(〈p,q〉). Here, the geodesic distance is realized by segments of great circles.

For each Riemannian metric g, there exists a corresponding Riemannian volume form ω given
in local coordinates u = (u1, . . . ,um) : M ⊃U → � m by

ω =
√

det(g)du1 ∧ . . .∧dun.

This can be viewed as a scaled version of the determinant that depends on the base point. Using a
coordinate chart u, the volume of a subset A of M is given by

Volg(A) =
Z

A
ω =

Z

u(A)

√
det(g)du,

where the integration on the right hand side is performed in � n.
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