
Journal of Machine Learning Research 9 (2008) 2803-2846 Submitted 6/08; Published 12/08

Magic Moments for Structured Output Prediction

Elisa Ricci ELISA.RICCI@DIEI.UNIPG.IT

Dept. of Electronic and Information Engineering
University of Perugia
06125 Perugia, Italy

Tijl De Bie TIJL.DEBIE@GMAIL.COM

Dept. of Engineering Mathematics
University of Bristol
Bristol, BS8 1TR, UK

Nello Cristianini NELLO@SUPPORT-VECTOR.NET

Dept. of Engineering Mathematics and Dept. of Computer Science
University of Bristol
Bristol, BS8 1TR, UK

Editor: Michael Collins

Abstract

Most approaches to structured output prediction rely on a hypothesis space of prediction functions
that compute their output by maximizing a linear scoring function. In this paper we present two
novel learning algorithms for this hypothesis class, and a statistical analysis of their performance.
The methods rely on efficiently computing the first two moments of the scoring function over the
output space, and using them to create convex objective functions for training. We report exten-
sive experimental results for sequence alignment, named entity recognition, and RNA secondary
structure prediction.

Keywords: structured output prediction, discriminative learning, Z-score, discriminant analysis,
PAC bound

1. Introduction

The last few years have seen a growing interest in learning algorithms that operate over structured
data: given a set of training input-output pairs, they learn to predict the output corresponding to
a previously unseen input, where either the input or the output (or both) are more complex than
traditional data types such as vectors.

Examples of such problems abound: learning to align biological sequences, learning to parse
strings, learning to translate natural language, learning to find the optimal route in a graph, learning
to understand speech, and much more. This problem setting subsumes as a special case the standard
regression, binary classification, and multiclass classification problems. In fact in many cases the
structured output prediction approach matches practice more closely. However, this broad generality
and applicability comes with a number of significant theoretical and practical challenges.

In standard regression the output space is real-valued, and in classification the output space
consists of a relatively small unstructured set of labels. In contrast, in structured output prediction
the output space is typically massive, containing a rich structure relating the different output values

c©2008 Elisa Ricci, Tijl De Bie and Nello Cristianini.

RICCI, DE BIE AND CRISTIANINI

with each other. Because of this, even the prediction task itself requires a search (or optimization)
over the complete output space, which in itself is often nontrivial. A fortiori, the task of learning to
predict poses important new challenges in comparison with standard machine learning approaches
such as regression and classification.

1.1 Graphical and Grammatical Models for Structured Data

An immediate approach for structured output prediction would be to use a probabilistic model
jointly over the input and the output variables. Probabilistic graphical models (PGMs) or stochastic
context free grammars (SCFGs) are two examples of techniques that allow one to specify proba-
bilistic models for a variety of inputs and outputs, explicitly encoding the structure that is present.
For a given input, the predicted output can then be found as the one that maximizes the a posteriori
probability. This way of predicting structured outputs is referred to as maximum a posteriori (MAP)
estimation. The learning phase then boils down to modeling the distribution of the joint of input and
output data.

However, it is well known that this indirect approach of first modeling the distribution (dis-
regarding the prediction task of interest) and subsequently using MAP estimation for prediction,
risks to be suboptimal. Instead a direct discriminative approach is more appropriate, which directly
focuses on the prediction task of interest. Such methods, known as discriminative learning algo-
rithms (DLAs), make predictions by optimizing a scoring function over the output space, where this
scoring function has not necessarily a probabilistic interpretation.

Recently studied DLAs include maximum entropy Markov models (McCallum et al., 2000),
conditional random fields (CRFs) (Lafferty et al., 2001), re-ranking with perceptron (Collins, 2002b),
hidden Markov perceptron (HMP) (Collins, 2002a), sequence labeling with boosting (Altun et al.,
2003a), maximal margin (MM) algorithms (Altun et al., 2003b; Taskar et al., 2003; Tsochantaridis
et al., 2005), Gaussian process models (Altun et al., 2004), and kernel conditional random fields
(Lafferty et al., 2004).

Interestingly, both the generative modeling approach and the DLAs mentioned above make use
of formally the same hypothesis class of prediction functions. In particular, they all make use of
a scoring function that is linear in a set of parameters to score each element of the output space.
In the generative approach, this linear function is the log-probability of the joint of the input and
output data; in the discriminative approach this can be any linear function. The actual prediction
function then selects the output that achieves the highest value of the scoring function (i.e., the
highest score). In the generative approach this means that the a posteriori (log)-probability of the
output is maximized, such that the MAP estimate is obtained as pointed out above.

1.2 The Contributions of this Paper

In this paper we will adopt the hypothesis space of prediction functions defined as above. The
distribution of scores induced by any hypothesis over all possible outputs is a central concept in
various approaches, and can be used to compare hypotheses, and hence to train. For example MM
approaches (Altun et al., 2003b; Taskar et al., 2003; Tsochantaridis et al., 2005) prescribe to seek
hypotheses that make the score of the correct outputs in the training set larger than all incorrect ones
(by a certain margin).

We argue that the problem can be better approached by considering the entire distribution of
the scores over the output space, and in particular by computing its first two moments. Different

2804

MAGIC MOMENTS FOR STRUCTURED OUTPUT PREDICTION

choices of parameters can be assessed by comparing (a function of) those moments. Such an ap-
proach would account for all possible output values at once, rather than just the ones with a high
score as in the maximum margin approaches. However these moments cannot be computed by
brute force enumeration: in all practical cases the output space is far too large to exhaustively tra-
verse it. Nevertheless in this paper we show how the first and second order moments can often be
computed efficiently by means of dynamic programming (DP), without explicitly enumerating the
output space. We provide specific examples of how these moments can be computed for three types
of structured output prediction problems: the sequence alignment problem, sequence labeling, and
learning to parse with a context free grammar for RNA secondary structure prediction.

We then present two ways in which these moments can be used to design a convex objective
function for a learning algorithm. The first approach is the maximization of the Z-score, a common
statistical measure of surprise, which is large if the scores of the correct outputs in the training set are
significantly different from the scores of all incorrect outputs in the output space. We show that the
Z-score is a convex cost function, such that it can be optimized efficiently. A second approach—
also convex—is reminiscent of Fisher’s discriminant analysis (FDA). We call this new algorithm
SODA (structured output discriminant analysis) since the optimization criterion is a similar function
of the first and second order statistics as in FDA.

We report extensive experimental results for the proposed algorithms applied to three different
problem settings: learning to align, sequence labeling, and RNA folding.

Finally we derive learning-theoretic bounds on the performance of these algorithms, showing
that the SODA cost function is related to the rank of the correct output among the other outputs
and analyzing its statistical stability within the Rademacher framework; additionally, we present a
general PAC bound that applies to any algorithm using this hypothesis class.

1.3 Outline of this Paper

The rest of the paper is structured as follows: Section 2 formally introduces the problem of struc-
tured output learning and the hypothesis space considered. Section 3 deals with the computation of
the first and second order moments of the score distribution through DP. In Section 4 we introduce
the two algorithms. In Section 5 we present our experimental results, and in Section 6 we outline
learning-theoretical bounds, whose proof is however left for the appendix.

2. Learning to Predict Structured Outputs

We address the general problem of learning a prediction function h : X → Y , with Y a potentially
highly structured space containing a potentially large number N of elements. The learning is based
on a training set of input-output pairs T = {(x1, ȳ1),(x2, ȳ2), . . . ,(x`, ȳ`)} drawn i.i.d. from some
fixed but unknown distribution P(x,y) over X ×Y . The inputs and the outputs may be highly
structured objects that parameterize sequences, trees or graphs. For example in sequence alignment
learning the output variables parameterize the alignment between two sequences, in sequence la-
beling y is the label sequence associated to the observed sequence x, and when learning to parse y
represents a parse tree corresponding to a given sequence x.

2805

RICCI, DE BIE AND CRISTIANINI

2.1 Scoring Functions, Prediction Functions, and the Hypothesis Space

As in standard machine learning approaches, we consider learning methods that choose the pre-
diction function from a hypothesis space by minimizing a cost function evaluated on the training
data. To establish the type of hypothesis space we will consider, we will rely on the notion scoring
function, which is a function s : X ×Y → R that assigns a numerical score s(x,y) to a pair (x,y) of
input-output variables. Furthermore, we will assume that s is linear in a parameter vector θ ∈ R

d :

Definition 1 (Linear scoring function) A linear scoring function is a function sθ : X ×Y → R

defined as:

sθ(x,y) = θT φ(x,y), (1)

where the vector φ(x,y) = (φ1(x,y), φ2(x,y), . . . , φd(x,y))T is defined by a specified set of integer-
valued feature functions φi : X ×Y → [0,C] for a fixed upper bound C.

Based on this, we can define prediction functions as considered in this paper as follows:

Definition 2 (Prediction function) Given a linear scoring function sθ, we can define a prediction
function hθ : X → Y as:

hθ(x) = argmax
y∈Y

sθ(x,y). (2)

This type of prediction function has been used in previous approaches for structured output predic-
tion. For example, when using a discrete-valued PGM to model the joint distribution of the input
and output data, the logarithm of the probability distribution is a linear scoring function as defined
above. The vector φ(x,y) is then the vector of sufficient statistics, and the parameter vector θ corre-
sponds to the logarithms of the clique potentials or conditional probabilities. Then, a MAP estimator
corresponds to a prediction function as defined above. Furthermore, note that each feature function
φi that counts a sufficient statistic is either an indicator function, or the sum of an indicator function
evaluated on a set of cliques over which the parameter θi is reused. Therefore, each of the features
must be an integer between 0 and the number of cliques C, as required for linear scoring functions
in Definition 1.

Typically, in PGMs the parameters θ would be inferred by Maximum Likelihood. On the con-
trary in DLAs θ is computed by minimizing criteria that are more directly linked to the prediction
performance. Moreover with DLAs richer feature vectors (with features not necessarily associated
to clique potentials or conditional probabilities) are allowed to describe more effectively the relation
between input and output variables. This means that the score sθ(x,y) looses its interpretation as a
log-likelihood function.

In summary, the hypothesis space we consider in this paper is defined as:

H = {hθ : θ ∈ R
d}. (3)

This is a slightly larger hypothesis space as compared to the one considered in PGMs, since the
parameters θ are not restricted to represent log probabilities.

While we choose to abandon the probabilistic interpretations, it is often worthwhile to keep
the analogy with PGMs in mind: they teach us when the evaluation of the prediction function
(2) can be carried out efficiently by means of Viterbi-like algorithms, despite the huge size of the

2806

MAGIC MOMENTS FOR STRUCTURED OUTPUT PREDICTION

output space Y . In fact, it is often convenient to define or derive the scoring function starting from
a PGM, to ensure that it is easily maximized by a dynamic programming procedure such as the
Viterbi algorithm. Subsequently the constraints on the parameters that are meant to guarantee that
the scoring function is a log-probability function can be removed, in order to arrive at a hypothesis
space of the form (3).

2.2 Ideal Loss Functions

In order to select an appropriate prediction function from the hypothesis space, a cost function needs
to be defined. Here we will provide an overview of a few conceptually interesting cost functions,
but which are unfortunately hard to optimize. Nevertheless, they can often be approximated as seen
from literature, and as we will demonstrate further on.

Consider a loss function Lθ that maps the input x and the true training output ȳ to a positive
real number Lθ(x, ȳ), in some way measuring the discrepancy between the prediction hθ(x) and ȳ.
Empirical risk minimization strategies attempt to find the vector θ ∈R

d such that the empirical risk,
defined as:

Rθ(T) =
1
`

`

∑
i=1

Lθ(xi, ȳi)

is minimized, in hopes that this will guarantee that the expected loss E{Lθ(x, ȳ)} is small as well.
Often it is beneficial to introduce regularization in order to prevent overfitting to occur, but let us
first consider on the empirical risk itself.

Clearly the choice of the loss function is critical, and different choices may be appropriate in dif-
ferent situations. The simplest one is a natural extension of the zero-one loss in binary classification
task, defined as:

LZO
θ (x, ȳ) = I(hθ(x) 6= ȳ)

where I(·) is an indicator function. Unfortunately the zero-one loss function is discontinuous and
NP-hard to optimize. Therefore algorithms such as CRFs (Lafferty et al., 2001) and MM methods
(Altun et al., 2003b) minimize an upper bound on this loss rather than the loss itself, combined with
an appropriate regularization term.

However, in structured output prediction, the zero-one loss is quite crude, in the sense that it
makes no distinction in the type of mistake that has been made. For example, assume that the
outputs y are sequences of length m, or vectors: y = (y1,y2, . . . ,ym). In that case, a wrong prediction
is likely to be less damaging if it is due to only one or a few incorrectly predicted symbols in the
sequence. A better loss function that distinguishes incorrect predictions in this way is the Hamming
loss, originally proposed in Taskar et al. (2003) for MM algorithms:

LH
θ (x, ȳ) = ∑

j

I(hθ, j(x) 6= ȳ j),

counting the number of elements (i.e., the symbols in a sequence, or coordinates in a vector) of the
output where a mistake has been made.

However, the Hamming loss is not necessarily a good measure for the severity of an incorrect
prediction. For example, certain sentences can be parsed in totally different ways that can all be
correct, with a large Hamming distance separating them. Similarly, RNA molecules can have two

2807

RICCI, DE BIE AND CRISTIANINI

totally different stable fold states, both with functional relevance. Therefore, where perfect predic-
tion of the data cannot be achieved using the hypothesis space considered, it could be more useful
to measure the fraction of outputs for which the score is ranked higher than for the correct output.
This is the main motivation to use what we call the relative ranking (RR) loss:

LRR
θ (x, ȳ) =

1
N

N

∑
j=1

I(s(x, ȳ) ≤ s(x,y j)),

We refer to this loss as the relative ranking loss, since the rank divided by the total size of the
output space N is computed. This loss and related loss functions have been proposed in Freund et
al. (1998), Schapire and Singer (1999) and Altun et al. (2003a).

2.3 Playing with Sequences: Labeling, Aligning and Parsing

In order to further clarify the framework of structured output learning we present three typical
problems which we will use in the rest of the paper as illustrative examples: sequence labeling
learning, sequence alignment learning and parse learning.

2.3.1 SEQUENCE LABELING LEARNING

In sequence labeling tasks a sequence is taken as an input, and the output to be predicted is a se-
quence that annotates the input sequence, that is, with a symbol corresponding to each symbol in
the input sequence. This problem arises in several application such as gene finding or protein struc-
ture prediction in computational biology or named entity recognition and part of speech tagging in
the natural language processing field. Traditionally a special type of PGM, namely hidden Markov
models (HMMs) (Rabiner, 1989), is used in sequence labeling, where the parameters can be learned
by maximum likelihood, and subsequently predictions can be made by MAP estimation. In order
to derive a DLA for this setting, we will first derive the prediction function corresponding to MAP
estimation based on HMMs, and subsequently remove the constraints on the parameters that allow
for the probabilistic interpretation of HMMs. Then an appropriate cost function for discrimination
can be optimized to select a good parameter setting.

In an HMM (Fig. 1) there is a sequence of observed variables x = (x1,x2, ...,xm) ∈ X which
will be the input in the terminology of the paper, along with a sequence of corresponding hidden
variables y = (y1,y2, ...,ym) ∈ Y , in the present terminology corresponding to the output sequence
to be predicted. Each observed symbol xi is an element of the observed symbol alphabet Σx, and
the hidden symbols yi are elements of Σy, with no = |Σx| and nh = |Σy| the respective alphabet sizes.
Therefore the output space is Y = Σy

m, while X = Σx
m. The number of cliques C = 2m−1 of the

HMM graphical model is equal to the number of edges.

An HMM is defined as a probabilistic model for the joint distribution of the hidden and observed
sequence, whereby it is assumed that the probability distribution of each hidden symbol yk depends
solely on the value of the previous symbol in the sequence yk−1 (this is the Markov assumption
which is quantified by P(yk|yk−1)). Furthermore, it is assumed that the probability distribution of
the observed symbol xk depends solely on the value of yk (quantified by the emission probability
distribution P(xk|yk)). For simplicity, we ignore the probability distribution of the first element of
the hidden chain in this exposition. The MAP estimator predicts the hidden sequence y that is most

2808

MAGIC MOMENTS FOR STRUCTURED OUTPUT PREDICTION

Figure 1: The graph of an HMM with m = 4.

likely given the observation sequence x. In formulas:

h(x) = argmax
y∈Y

P(y|x) = argmax
y∈Y

P(y,x)

P(x)
= argmax

y∈Y
P(y)P(x|y),

= argmax
y∈Y

m

∏
k=2

P(yk|yk−1)
m

∏
k=1

P(xk|yk),

= argmax
y∈Y

[
m

∑
k=2

logP(yk|yk−1)+
m

∑
k=1

logP(xk|yk)

]
,

where we made use of the fact that the argmax of a function is equal to the argmax of its logarithm.
Thus, to fully specify the HMM, one needs to consider all the transition probabilities (denoted

ti j for i, j ∈ Σy for the transition from symbol i to j), and the emission probabilities (denoted eio for
the emission of symbol o ∈ Σx by symbol i ∈ Σy). Using this notation, we can rewrite the prediction
function as follows (with I(·) equal to one if the equalities between brackets hold):

h(x) = argmaxy∈Y ∑
i, j∈Σy

log(ti j)
m

∑
k=2

I(yk−1 = i,yk = j)

+ ∑
i∈Σy,o∈Σx

log(eio)
m

∑
k=1

I(yk = i,xk = o).

For simplicity of notation let us replace all logarithms of parameters ti j and eio by parameters
θi summarized in a d = nhno + n2

h dimensional parameter vector θ. Additionally, let us summa-
rize the corresponding sufficient statistics ∑m

k=2 I(yk−1 = i,yk = j) and ∑m
k=1 I(yk = i,xk = o) in a

corresponding feature vector φ(x,y) = [φ1(x,y) φ2(x,y) . . . φd(x,y)]T . (Note that these sufficient
statistics count the number of occurrences of each specific transition and emission.) Then we can
rewrite the prediction function in a linear form as required:

hθ(x) = argmax
y∈Y

θT φ(x,y).

This prediction can be evaluated efficiently by means of the Viterbi algorithm. Note that in order
to learn the parameters by means of maximum likelihood estimation, constraints are imposed to
ensure that they represent log-probabilities. In order to arrive at a DLA that operates in the same
setting, it suffices to ignore these constraints, and to minimize an appropriate empirical risk subject
to some regularization, as outlined in Section 2.2. Moreover relaxing also the Markov assumption
the proposed formulation can be extended to the case of arbitrary features. In general in fact the

2809

RICCI, DE BIE AND CRISTIANINI

vector φ(x,y) contains not only statistics associated to transition and emission probabilities but also
any feature that reflects the properties of the objects represented by the nodes of the HMM. For
example in most of the natural language processing tasks, feature vectors also contain information
about spelling properties of words. Sometimes also the so-called ‘overlapping features’ (Lafferty
et al., 2001) are employed, which indicate relations between observations and some previous and
future labels. Most of DLAs dealing with this task have proceeded in this way (McCallum et al.,
2000; Lafferty et al., 2001; Collins, 2002a; Altun et al., 2003a,b; Taskar et al., 2003).

2.3.2 SEQUENCE ALIGNMENT LEARNING

As second case studied, we consider the problem of learning how to align sequences: given as
training examples a set of correct pairwise global alignments, find the parameter values that ensure
sequences are optimally aligned. This task is also known as inverse parametric sequence alignment
problem (IPSAP) and since its introduction in Gusfield et al. (1994), it has been widely studied
(Gusfield and Stelling, 1996; Kececioglu and Kim, 2006; Joachims et al., 2005; Pachter and Sturm-
fels, 2004; Sun et al., 2004).

Consider two strings S1 and S2 of lengths n1 and n2 respectively. The strings are ordered se-
quences of symbols si ∈ S , with S a finite alphabet of size nS . In case of biological applications,
for DNA sequences the alphabet contains the symbols associated with nucleotides (S = {A,C,G,T}),
while for amino acids sequences the alphabet is S = {A,R,N,D,C,Q,E,G,H,I,L,K,M,F,P,S,T,W,Y,V}.

An alignment of two strings S1 and S2 of lengths n1 and n2 is defined as a pair of sequences T1

and T2 of equal length n ≥ n1,n2 that are obtained by taking S1 and S2 respectively and inserting
symbols − at various locations in order to arrive at strings of length n. Two symbols in T1 and T2

are said to correspond if they occur at the same location in the respective string. If corresponding
symbols are equal, this is called a match. If they are not equal, this is a mismatch. If one of the
symbols is a −, this is called a gap.

With each possible match, mismatch or gap a score is attached. To quantify these scores, three
score parameters can be used: one for matches (θm), one for mismatches (θs), and one for gaps
(θg). In analogy with the notation in this paper, the pair of given sequences S1 and S2 represent the
input variable x while their alignment is the output y. The score of the global alignment is defined
as the sum of this score over the length of T1 and T2, that is, as a linear function of the alignment
parameters:

sθ(x,y) = θT φ(x,y) = θmm+θss+θgg

where φ(x,y) = [m s g]T and m, s and g represent the number of matches, mismatches and gaps in the
alignment. Fig. 2 depicts a pairwise alignment between two sequences and the associated path in the
alignment graph. The number N of all possible alignments between S1 and S2 is clearly exponential
in the size of the two strings. However, an efficient DP algorithm for computing the alignment with
maximal score ȳ is known in literature: the Needleman-Wunsch algorithm (Needleman, 1970).

The scoring models presented above consider a local form of gap penalty: the gap penalty is
fixed independently of the other gaps in the alignment. However for biological reasons it is often
preferable to consider an affine function for gap penalties, that is to assign different costs if the gap
starts (gap opening penalty θo) in a given position or if it continues (gap extension penalty θe). Then
the score of an alignment is:

sθ(x,y) = θmm+θss+θoo+θee

2810

MAGIC MOMENTS FOR STRUCTURED OUTPUT PREDICTION

Figure 2: An alignment y between two sequences S1 and S2 can be represented by a path in the
alignment graph.

where m, s, o and e represent the number of match, mismatch, gap openings and gap extensions
respectively and θm, θs, θo, θe are the associated costs. As before we can define the vectors θ =
[θm θs θo θe]

T and φ(x,y) = [m s o e]T . Therefore the score is still a linear function of the parameters
and the prediction can be computed by a DP algorithm.

More often a different model is considered where a (symmetric) scoring matrix specifies dif-
ferent score values for each possible pair of symbols. In general there are d = nS (nS +1)

2 different
parameters in θ associated with the symbols of the alphabet plus two additional ones corresponding
to the gap penalties. This means that to align sequences of amino acids we have 210 parameters
to determine plus other 2 parameters for gap opening and gap extension. We denote with z jk the
number of pairs where a symbol of T1 is j and it corresponds to a symbol k in T2. Again the score is
a linear function of the parameters:

sθ(x,y) = ∑
j≥k

θ jkz jk +θoo+θee

and the optimal alignment is computed by the Needleman-Wunsch algorithm.

2.3.3 LEARNING TO PARSE

In learning to parse the input x is given by a sequence, and the output is given by its associated
parse tree according to a context free grammar. Usually weighted context-free grammars (WCFGs)
(Manning and Schetze, 1999) are used to approach this problem. Learning to parse has been already
studied as a particular instantiation of structured output learning, both in natural language processing
applications (Tsochantaridis et al., 2005; Taskar et al., 2004) and in computational biology for RNA
secondary structure alignment (Sato and Sakakibara, 2005) and prediction (Do et al., 2006). In this
paper we consider the latter and we use WCFGs to model the structure of RNA sequences. Two
examples of RNA secondary structure for two sequences are shown in Fig. 3.

A WCFG is defined as five tuples (ϒ,Σx,R,S,θ), where ϒ = {ϒ1, . . . ,ϒ|ϒ|} is a set of nontermi-
nals, Σx = {X1, . . . ,X|Σx|} is a set of terminals, R = {ϒi → α|ϒi ∈ ϒ,α ∈ (ϒ∪Σx)

∗} is a set of rules,

2811

RICCI, DE BIE AND CRISTIANINI

Figure 3: Two examples of RNA secondary structures for two sequences of the Rfam
database (Griffiths-Jones et al., 2003).

S ∈ ϒ is the starting symbol, and θ is a set of weights. We use rules of the forms ϒi → X , ϒi → ϒ jϒk,
ϒi → Xϒ jX ′, and ϒi → ϒ j′ (j′ > i). R is also indexed by an ordering {r1, . . . ,r|R|} and d = |R|. Each
node in the parse tree y corresponds to a grammar rule and each weight θi ∈ θ is associated with a
rule ri ∈ R. Given a sequence x and an associated parse tree y we can define a feature vector φ(x,y)
which contains a count of the number of occurrences of each of the rules in the parse tree y. Given
a parameter vector θ, the prediction function hθ(x) is computed by finding the best parse tree. For
SCFGs, this can be done efficiently with the Cocke-Younger-Kasami (CYK) algorithm (Younger,
1967).

3. Computing the Moments of the Scoring Function

An interesting corollary of the proposed structured output approach based on linear scoring func-
tions is that certain statistics of the score s(x,y) can be expressed as function of the parameter vector
θ. More specifically given an observed vector x, we can consider the first order moment or mean
M1,θ (x) and the centered second order moment or covariance M2,θ (x) of the scores along all pos-
sible N output variables y j. It is straightforward to see that M1,θ (x) is a linear function of θ, that
is,

M1,θ (x) ,
1
N

N

∑
j=1

sθ(x,y j)

= θT 1
N

N

∑
j=1

φ(x,y j)

= θT µ

with µ = [µ1 . . .µd]
T = 1

N ∑N
j=1 φ(x,y j). Similarly, for the covariance:

M2,θ (x) ,
1
N

N

∑
j=1

(sθ(x,y j)−M1,θ(x))2

= θT

(
1
N

N

∑
j=1

(φ(x,y j)−µ)(φ(x,y j)−µ)T

)
θ

2812

MAGIC MOMENTS FOR STRUCTURED OUTPUT PREDICTION

= θTCθ.

The matrix C is a matrix with elements:

cpq =
1
N

N

∑
j=1

(φp(x,y j)−µp)(φq(x,y j)−µq) (4)

=
1
N

N

∑
j=1

(
φp(x,y j)φq(x,y j)

)
−µpµq = vpq −µpµq

where 1 ≤ p,q ≤ d.

3.1 Magic Moments

It should be clear that in practical structured output learning problems the number N of possible
output vectors associated to a given input x can be massive. At first sight, this leaves little hope that
the above sums can ever be computed for realistic problems. However, it turns out that the same
ideas that allow one to perform inference in PGMs allow one to compute these sums efficiently
using DP, be it with somewhat more complicated recursions.

The underlying ideas to derive the recursions for µ are based on the commutativity of the semi-
ring that is used in the Viterbi (or more generally the max-product and related algorithms) in PGMs.
In particular, this recursion is used in various forms:

E

{
k

∑
i=1

ai

}
= E

{
k−1

∑
i=1

ai

}
+E {ak} ,

where the expectations are jointly over independent random variables ai. For the recursions for the
second order moment (which can be used to compute the centered second order moment as shown
in (4)), the following recursive expression is applied in different variations:

E





(
k

∑
i=1

ai

)2


 = E





(
k−1

∑
i=1

ai

)2


+2E

{
ak

k−1

∑
i=1

ai

}
+E

{
a2

k

}
,

where again the expectations are jointly over independent random variables ai. Note that the middle
term on the right hand side is computed by previous iterations for the first order moment. For
concreteness, we will now consider separately the three illustrative scenarios introduced above.

3.2 Sequence Labeling Learning

Given a fixed input sequence x, we show here for the sequence labeling example that the elements
of µ and C can be computed exactly and efficiently by dynamic programming routines.

We first consider the vector µ and construct it in a way that the first nhno elements contain the
mean values associated with the emission probabilities and the remaining n2

h elements correspond
to transition probabilities. Each value of µ can be determined by Algorithm 1.

In the emission part for each element a nh ×m dynamic programming table µe
pq is considered.

The index p denotes the hidden state (1 ≤ p ≤ nh) and q refers to the observation (1 ≤ q ≤ no). For
example the first component of µ corresponds to the DP table µe

11. In practice each cell of the DP

2813

RICCI, DE BIE AND CRISTIANINI

table correspond to a node of the HMM trellis. At the same time another nh ×m DP table, denoted
by π, is considered and filled in a way that each element π(i, j) contains the number of all possible
paths in the HMM trellis terminating at position (i, j). Then a recursive relation is considered to
compute each element µe

pq(i, j), ∀1 ≤ j ≤ m, ∀1 ≤ i ≤ nh. Basically at step (i, j) the mean value
µe

pq(i, j) is given summing the occurrences of emission probabilities epq at the previous steps (e.g.,
∑i µe

pq(i, j−1)π(i, j−1)) with the number of paths in the previous steps (if the current observation
x j is q and the current state y j is p) and dividing this quantity by π(i, j).

In a similar way the mean values associated to the transition probabilities are computed. Dy-
namic programming tables µt

pz, 1 ≤ p,z ≤ nh are filled with recursive formulas in Algorithm 4 in
appendix E.

Analogously the elements of the covariance matrix C can be obtained. We have five sets of
values: variances of emission probabilities (ce

pq, 1 ≤ p ≤ nh,1 ≤ q ≤ no), variances of transition
probabilities (ct

pz, 1 ≤ p,z ≤ nh), covariances of emission probabilities (ce
pqp′q′ , 1 ≤ p, p′ ≤ nh,1 ≤

q,q′ ≤ no), covariances of transition probabilities (ct
pzp′z′ , 1≤ p, p′,z,z′ ≤ nh) and mixed covariances

(cet
pqp′z, 1≤ p, p′,z≤ nh,1≤ q≤ no). To determine each of them we consider (4) and we compute the

values ve
pq, vt

pz, ve
pqp′q′ , vt

pzp′z′ and vet
pqp′z since the mean values are already known. This computation

is again performed following Algorithm 1 but with recursive relations given in Algorithm 4, in
appendix E (the number 5, 11, 12 in Algorithm 4 are meant to indicate the lines of Algorithm 1
where the formulas must be inserted).

Algorithm 1 Computation of µe
pq for sequence labeling learning

1: Input: x = (x1,x2, ...,xm), p, q.
2:

3: for i = 1 to nh

4: π(i,1) := 1
5: if q = x1 ∧ p = i, then µe

pq(i,1) := 1
6: end
7: for j = 2 to m
8: for i = 1 to nh

9: M := 0
10: π(i, j) := ∑i π(i, j−1)
11: if q = x j ∧ p = i, then M := 1

12: µe
pq(i, j) := ∑i(µ

e
pq(i, j−1)+M)π(i, j−1)

π(i, j)
13: end
14: end
15:

16: Output: ∑i µe
pq(i,m)π(i,m)

∑i π(i,m)

3.2.1 COMPUTATIONAL COST ANALYSIS

At first sight the calculation of µ and C requires running a DP algorithm like Algorithm 1 d times
for µ and d2 times for C. Hence the overall computational cost seems to depend strongly on d.
However, most of the DP routines are redundant since many cells of µ and C have the same values.
In fact, the following can be shown:

2814

MAGIC MOMENTS FOR STRUCTURED OUTPUT PREDICTION

Proposition 3 The number of dynamic programming routines required to calculate µ and C in-
creases linearly with the size of the observation alphabet.

An outline of proof can be found in appendix A.
Algorithms 1 and 4 assume that the HMM is ‘fully connected’, that is, transitions are allowed

from and to any possible hidden states and every symbol can be emitted in every state. However,
this condition is often not satisfied in practical applications. We should point out that their adap-
tation for such situations is straightforward and involves computing only sums that correspond to
allowed paths in the DP table. In this case the number of distinct parameters as well as the compu-
tational cost increases with respect to complete models. However this effect may be offset by the
fact that each DP becomes less time consuming. Furthermore the mean and the covariance values
associated to transition probabilities are independent from observations. To calculate them a closed
form expression can be used without the need of running any DP routine.

Moreover usually in most applications the size of the observation alphabet (for example the size
of the dictionary in a natural language processing system) is very large while the sequences to be
labeled are short. This means that the number of distinct observations in each sequence x is much
lower than no. In such cases the number of different values in µ and C scales linearly with it.

We point out that the proposed algorithm can be easily extended to the case of arbitrary features
in the vector φ(x,y) (not only those associated with transition and emission probabilities). To com-
pute µ and C in these situations the derivation of appropriate formulas similar to those of µe

pq, ce
pq

and cet
pqp′z is straightforward.

3.2.2 ESTIMATING µ AND C BY RANDOM SAMPLING

Still, the computational cost increases with the number of features since for HMMs that are not
‘fully connected’, it may occur that the number of different values in the matrix C scales quadrat-
ically with the observations alphabet size no. However we show that in this case accurate and
efficient approximation algorithms can be used to obtain close estimates of the mean and the vari-
ance values with a significantly reduced computational cost. This can be achieved by considering a
finite subsample of all possible values for the output y, rather than using the DP approaches. This
comment holds generally for all learning problems considered in this paper, and we come back to
this in the theoretical discussion in 6.1 as well as in the experimental results in 5 to support this
claim empirically.

3.3 Sequence Alignment Learning

For the sequence alignment learning task we consider separately the three parameter model, the
model with affine gap penalties and the model with substitution matrices.

3.3.1 THE SIMPLEST SCORING SCHEME: MATCH, MISMATCH, GAP

In this model the vector µ = [µm µs µg]
T contains the average number of matches, mismatches and

gaps computed considering all possible alignments. Its elements can be obtained using Algorithm
2. In a nutshell, the algorithm works as follows. First, a matrix π is filled. Every cell π(i, j) contains
the number of all possible alignments between two prefixes of the strings S1 and S2. In fact each
alignment corresponds to a path in the alignment graph associated with the DP matrix. At the same
time the DP tables for µm, µs and µg are gradually filled according to appropriate recursive relations.

2815

RICCI, DE BIE AND CRISTIANINI

For example each element µm(i, j) is computed dividing the total number of matches by the number
of alignments π(i, j). If a match occur in position (i, j) (M = 1) the total number of matches at
step (i, j) is obtained adding to the number of matches in the previous steps (µm(i, j−1)π(i, j−1),
µm(i− 1, j − 1)π(i− 1, j − 1) and µm(i− 1, j)π(i− 1, j)) π(i− 1, j − 1) times a match. Once the
algorithm is terminated, the mean values can be read in the cells µm(n1,n2), µs(n1,n2) and µg(n1,n2).

The covariance matrix C is the 3×3 matrix with elements cpq, p,q∈{m,s,g} and it is symmetric
(csg = cgs, cmg = cgm, csm = cms). Each value cpq can be obtained considering (4) and computing the
associated values vpq with appropriate recursive relations (see Algorithm 2).

3.3.2 AFFINE GAP PENALTIES

As before we can define the vector µ = [µm µs µo µe]
T and the covariance matrix C as the 4× 4

symmetric matrix with elements cpq with p,q ∈ {m,s,o,e}. The values of µ and C are computed
with DP. In particular µm, µs, vmm, vms and vss are calculated as above, while the other values are
obtained with the formulas in Algorithm 5 in appendix E. The terms vse and vso are missing since
they can be calculated with the same formulas of vme and vmo simply changing M with 1−M and
µm with µs. Note that in some situations for low values of (i, j) some terms are not defined (i.e.,
π(i, j−3) when j = 2). In such situations they must be ignored in the computation.

3.3.3 EXTENSION TO A GENERAL SCORING MATRIX

The formulas illustrated in the previous paragraphs can be extended to the case of a general substi-
tution matrix with minor modifications. Concerning the mean values, µo and µe are calculated as
before. For the others it is:

µzpq(i, j) :=
µzpq(i−1, j)π(i−1, j)+µzpq(i, j−1)π(i, j−1)+(µzpq(i−1, j−1)+M)π(i−1, j−1)

π(i, j)

where M = 1 when two corresponding symbols in the alignment are equal to p and q or vice versa
with p,q ∈ S . The matrix C is a symmetric matrix 212× 212. The values veo, vee and voo are
calculated as above. The derivation of formulas for vzpqzp′q′ is straightforward from vms considering
the appropriate values for M and the mean values. The formulas for vzo and vze follow with minor
modification from vmo and vme.

3.4 Learning to Parse

For a given input string x, let µp and cpq be the mean of occurrences of rule p and the covariance
between the numbers of occurrences of rules p and q, respectively, that is, the elements of µ and C.
The following relations hold:

µp =
1
N

N

∑
j=1

φp(x,y j) =
1
N

ψp,

ncpq =
1
N

N

∑
j=1

(
φp(x,y j)φq(x,y j)

)
−µpµq =

1
N

γpq −µpµq,

where N is the number of all possible parse trees associated to x, ψp is the number of occurrences
of the rule p in all the parse tree y j given x, and γpq denotes the cooccurrences of p and q.

To compute C and µ an algorithm based on a bottom-up dynamic programming can be devel-
oped. Similarly to sequence labeling three types of recurrence equations must be defined: one to

2816

MAGIC MOMENTS FOR STRUCTURED OUTPUT PREDICTION

Algorithm 2 Computation of µ and C with matches, mismatches and gaps.
1: Input: a pair of sequences S1 and S2.
2:
3: π(0,0) := 1
4: µm(0,0) = µs(0,0) = µg(0,0) := 0
5: vmm(0,0) = vms(0,0) = vss(0,0) = vsg(0,0) = vmg(0,0) = vgg(0,0) := 0
6: for i = 1 : n1

7: π(i,0) := 1
8: µg(i,0) := µg(i−1,0)+1
9: vgg(i,0) := vgg(i−1,0)+2µg(i−1,0)+1

10: end
11: for j = 1 : n2

12: π(0, j) := 1
13: µg(0, j) := µg(0, j−1)+1
14: vgg(0, j) := vgg(0, j−1)+2µg(0, j−1)+1
15: end
16: for i = 1 : n1

17: for j = 1 : n2

18: π(i, j) := π(i−1, j−1)+π(i, j−1)+π(i−1, j)
19: if s1(i) = s2(j) then M := 1 else M := 0

20: µm(i, j) := µm(i−1, j)π(i−1, j)+µm(i, j−1)π(i, j−1)+(µm(i−1, j−1)+M)π(i−1, j−1)
π(i, j)

21: µs(i, j) := µs(i−1, j)π(i−1, j)+µs(i, j−1)π(i, j−1)+(µs(i−1, j−1)+(1−M))π(i−1, j−1)
π(i, j)

22: µg(i, j) := µg(i−1, j)+1)π(i−1, j)+(µg(i, j−1)+1)π(i, j−1)+µg(i−1, j−1)π(i−1, j−1)
π(i, j)

23: vmm(i, j) := 1
π(i, j) (vmm(i−1, j)π(i−1, j)+ vmm(i, j−1)π(i, j−1)

24: +(vmm(i−1, j−1)+2Mµm(i−1, j−1)+M)π(i−1, j−1))
25: vss(i, j) := 1

π(i, j) (vss(i−1, j)π(i−1, j)+ vss(i, j−1)π(i, j−1)

26: +(vss(i−1, j−1)+2(1−M)µs(i−1, j−1)+(1−M))π(i−1, j−1))
27: vgg(i, j) := 1

π(i, j) (vgg(i−1, j)+2µg(i−1, j)+1)π(i−1, j)

28: +(vgg(i, j−1)+2µg(i, j−1)+1)π(i, j−1)+ vgg(i−1, j−1)π(i−1, j−1))
29: vmg(i, j) := 1

π(i, j) (vmg(i−1, j)+µm(i−1, j))π(i−1, j)+(vmg(i, j−1)

30: +µm(i, j−1))π(i, j−1)+(vmg(i−1, j−1)+Mµg(i−1, j−1))π(i−1, j−1))
31: vsg(i, j) := 1

π(i, j) (vsg(i−1, j)+µs(i−1, j))π(i−1, j)+(vsg(i−1, j−1)

32: +(1−M)µg(i−1, j−1)+(vsg(i, j−1)+µs(i, j−1))π(i, j−1))π(i−1, j−1))
33: vms(i, j) := 1

π(i, j) (vms(i−1, j)π(i−1, j)+ vms(i, j−1)π(i, j−1)

34: +(vms(i−1, j−1)+Mµs(i−1, j−1)+(1−M)µm(i−1, j−1))π(i−1, j−1))
35: end
36: end
37:
38: Output: µm(n1,n2), µs(n1,n2), µg(n1,n2),
39: cmm(n1,n2) := vmm(n1,n2)−µm(n1,n2)

2,
40: css(n1,n2) := vss(n1,n2)−µm(n1,n2)

2,
41: cgg(n1,n2) := vgg(n1,n2)−µm(n1,n2)

2,
42: cms(n1,n2) := vms(n1,n2)−µm(n1,n2)µs(n1,n2),
43: cmg(n1,n2) := vmg(n1,n2)−µm(n1,n2)µg(n1,n2),
44: csg(n1,n2) := vsg(n1,n2)−µs(n1,n2)µg(n1,n2)
45:

2817

RICCI, DE BIE AND CRISTIANINI

compute the number of parse trees N, another the number of occurrences ψ of each parameter, and
the latter the number of cooccurrences γ of each pair of parameters.

For a given input string x = (x1 x2 . . . xm), xs denotes the s-th symbol of x, and xs|t the substring
from the s-th symbol to the t-th symbol. We count the number of possible trees N given x with a
DP algorithm such as the CYK algorithm. We use two types of auxiliary variables, π(s, t,ϒi) and
π(s, t,ϒi,α) which are the number of possible parse trees whose root is ϒi for substring xs|t , and
the number of possible parse trees whose root is applied to rule ϒi → α for substring xs|t , where
(ϒi → α) ∈ R.

Then π(s, t,ϒi) is calculated as follows:

π(s, t,ϒi) = ∑
α:(ϒi→α)∈ϒ

π(s, t,ϒi,α),

where:

π(s, t,ϒi,α) =





1 α = X ∈ Σx, s = t, and X = xs,
t−1

∑
r=s

π(s,r,ϒk1)π(r +1, t,ϒk2) α = ϒk1 ϒk2 and s < t,

π(s, t,ϒk) α = ϒk,
π(s+1, t −1,ϒk) α = XϒkX ′, X = xs, and X ′ = xt ,
0 otherwise.

Upon completion of the recursion, N = π(1,m,S) is the number of all possible parse trees given x.
We then count the number of occurrences of each rule in all possible parse trees. ψp(s, t,ϒi)

denotes the number of occurrences of rule p in all possible parse trees whose root is ϒi for xs|t . We
compute ψp(s, t,ϒi) as follows:

ψp(s, t,ϒi) = ∑
α:(ϒi→α)∈ϒ

ψp(s, t,ϒi,α),

where:

ψp(s, t,ϒi,α)

=





1 α = X = xs, s = t,
and p = ϒi → X ,

t−1

∑
r=s

(ψp(s,r,ϒk1)π(r +1, t,ϒk2)

+π(s,r,ϒk1)ψp(r +1, t,ϒk1))
+I(p,ϒi → α)π(s,r,ϒk1)π(r +1, t,ϒk2) α = ϒk1 ϒk2 , and s < t,
ψp(s, t,ϒk)+ I(p,ϒi → α)π(s, t,ϒk) α = ϒk,
ψp(s+1, t −1,ϒk)+ I(p,ϒi → α)π(s+1, t −1,ϒk) α = XϒkX ′ and s+1 < t,
0 otherwise.

with I(p,ϒi → α) = 1 if p = (ϒi → α), otherwise it is I(p,ϒi → α) = 0. Then, ψp(1,m,S) is the
number of occurrences of p in all parse trees given x.

We count the number of cooccurrences γpq(s, t,ϒi) in each pair p and q of rules. γpq(s, t,ϒi,α)
denotes the number of cooccurrences in all possible parse trees whose root is ϒi for xs|t . We calculate
γpq(s, t,ϒi) as follows:

γpq(s, t,ϒi) = ∑
α:(ϒi→α)∈ϒ

γpq(s, t,ϒi,α),

2818

MAGIC MOMENTS FOR STRUCTURED OUTPUT PREDICTION

where:

γpq(s, t,ϒi,α)

=





0 α = X and p 6= q,
1 α = X and p = q = (ϒi → α),
t−1

∑
r=s

(
γpq(s,r,ϒk1)π(r +1, t,ϒk2)

+π(s,r,ϒk1)γpq(r +1, t,ϒk2)
+ψp(s,r,ϒk1)ψq(r +1, t,ϒk2)
+ψq(s,r,ϒk1)ψp(r +1, t,ϒk2)
+I(p,ϒi → α) f (p,s,r, t,ϒk1 ,ϒk2)
+I(q,ϒi → α) f (q,s,r, t,ϒk1 ,ϒk2)

+I(p,ϒi → α)I(q,ϒi → α)π(s,r,ϒk1)π(r +1, t,ϒk2)
)

α = ϒk1 ϒk2 and s < t,

γpq(s, t,ϒk)
+I(p,ϒi → α)ψq(s, t,ϒi) +I(q,ϒi → α)ψp(s, t,ϒi)
+I(p,ϒi → α)I(q,ϒi → α)π(s, t,ϒi) α = ϒk,
γpq(s+1, t −1,ϒk)
+I(p,ϒi → α)ψq(s+1, t −1,ϒk)
+I(q,ϒi → α)ψp(s+1, t −1,ϒk)
+I(p,ϒi → α)I(q,ϒi → α)π(s+1, t −1,ϒk) α = XϒkX ′, s+1 < t,

xs = X , and xt = X ′,
0 otherwise

with f (p,s,r, t,ϒk1 ,ϒk2) = ψp(s,r,ϒk1)π(r + 1, t,ϒk2) + π(s,r,ϒk1)ψp(r + 1, t,ϒk2). Finally,
γpq(1,m,S) is the number of cooccurrences of rules p and q in all parse trees given x.

In the following section we discuss how we can use the computed first and second order statistics
to define a suitable objective function which can be optimized for structured output learning tasks.

4. Moment-based Approaches to Structured Output Prediction

Suppose we have a training set of input-output pairs T = {(x1, ȳ1),(x2, ȳ2), . . . ,(x`, ȳ`)}. The task
we consider is to find the parameter values θ such that the optimal given output variables ȳi can
be reconstructed from xi, ∀ 1 ≤ i ≤ `. We want to fulfill this task by defining a suitable objective
function which is a convex function of the first and second order statistics we presented before.
Based on this idea we introduce two possible approaches.

4.1 Training Sets of Size One

To give an intuition of the main idea behind both methods, we first analyze the situation where the
training set in made of only one pair (x, ȳ). In this situation, both methods are identical to each
other.

The idea is to consider the distribution of the scores for all possible y. We then define a measure
of separation between the score of the correct training output, and the entire distribution of all
scores for all possible outputs. More specifically, the objective function we propose is the difference
between the score of the true output and the mean score of the distribution, divided by the square
root of the variance as a normalization. Mathematically:

max
θ

sθ(x, ȳ)−M1,θ (x)√
M2,θ (x)

= max
θ

θT b√
θTCθ

(5)

2819

RICCI, DE BIE AND CRISTIANINI

where b = φ(x, ȳ)− µ is the difference between the feature vector associated to the optimal output
and the average feature vector µ. Maximizing this objective over θ means that we search for a
parameter vector θ that makes the score of the correct output ȳ as different as possible from the
mean score, measured in number of standard deviations. This corresponds to a well known quantity
in statistics: the Z-score. Given the distribution of all possible scores (i.e., given its mean and its
variance), the Z-score of the correct pair (x, ȳ) is defined as the number of standard deviations its
score s(x, ȳ) is away from the mean of the distribution.

The Z-score is an interesting measure of separation between the correct output and the bulk
of all possible outputs corresponding to a given input. Under normality assumptions, it is directly
equivalent to a p-value. Hence, maximizing the Z-score can be interpreted as maximizing the sig-
nificance of the score of the correct pair: the larger the Z-score, the more significant it is, and the
fewer other outputs would achieve a larger score. If the normality assumption is too unrealistic, one
could still apply a (looser) Chebyshev tail bound to show that the number of scores that exceed the
score of a large training output score sθ(x, ȳ) is small.

To quantify this connection between the Z-score of a training pair and the rank of its score among
all other scores, we would like to introduce an alternative formulation for optimization problem (5).

Proposition 4 Optimization problem (5) is equivalent to:

minθ
1
N ∑N

j=1 ξ2
j

s.t. θT
(
φ(x, ȳ)−φ(x,y j)

)
= 1+ξ j ∀ j

(6)

in the sense that it is optimized by the same value of θ or a scalar multiple of it.

Proof Substituting ξ j from the constraint in the objective, the objective of optimization problem
(6) is equivalent to:

1
N

θT
N

∑
j=1

(φ(x, ȳ)−φ(x,y j))(φ(x, ȳ)−φ(x,y j))
T θ− 2

N
θT

N

∑
j=1

(φ(x, ȳ)−φ(x,y j))+1

=
1
N

θT
N

∑
j=1

(µ−φ(x,y j))(µ−φ(x,y j))
T θ+θT (φ(x, ȳ)−µ)(φ(x, ȳ)−µ)T θ

−2(φ(x, ȳ)−µ)+1

= θTCθ+(θT b−1)2.

Hence, the optimization problem (6) is equivalent to:

minθ θTCθ+(θT b−1)2.

Now, note that the objective in optimization problem (5) is invariant with respect to scaling of θ.
Hence, we can fix the scale arbitrarily, and require θT b = 1. The optimization problem then reduces
to (using the monotonicity of the square root):

minθ θTCθ
s.t. θT b = 1.

The optimality conditions of the former are Cθ + bbT θ = b ⇔Cθ = (1−bT θ)b, and the Lagrange
optimality conditions of the latter are Cθ = λb with λ a Lagrange multiplier. Hence, both optimal-
ity conditions and optimization problems are equivalent in the sense that they are optimized by the

2820

MAGIC MOMENTS FOR STRUCTURED OUTPUT PREDICTION

same θ up to a scaling factor.

The following interesting theorem now establishes the link between the relative ranking loss
LRR

θ as defined in Section 2.2 and the above optimization problem.

Theorem 5 (Relative ranking loss upper bound) Let us denote by L RRU
θ (x, ȳ) the value of the ob-

jective of optimization problem (6) evaluated on training pair (x, ȳ):

LRRU
θ (x, ȳ) =

1
N

N

∑
j=1

ξ2
i =

1
N

N

∑
j=1

(
θT (φ(x, ȳ)−φ(x,y j)

)
−1
)2

.

Then,

LRRU
θ (x, ȳ) ≥ LRR

θ (x, ȳ).

(The RRU in the superscript stands for Relative Ranking Upper bound.)
Proof The rank of sθ(x, ȳ) among all sθ(x,y j) for all possible y j is given by the number of y j for
which θT

(
φ(x, ȳ)−φ(x,y j)

)
≤ 0. Hence, this is the number of times that ξi ≤ −1 in optimization

problem (6), such that the objective is at least as large as the rank divided by N, that is, the relative
rank.

Additionally, we would like to point out that optimization problem (5) and equivalently (6) is
also strongly connected to Fisher’s discriminant analysis (FDA). Intuitively, maximizing our objec-
tive function corresponds to maximizing the distance between the mean of the distribution of the
scores for all possible incorrect pairs and the ‘mean’ of the ‘distribution’ of the score for the single
correct output, normalized by the sum of the standard deviations (note that one class reduces to one
data point so the associated standard deviation is zero). Then (5) is equivalent to performing FDA
when one class reduces to a single data point as defined by the correct training label.

4.2 Training Sets of General Sizes

Having introduced the main idea on the special case of a training set of size 1, we now turn back
to the general situation where we are interested in computing the optimal parameter vector given a
training set T of ` pairs of sequences. We will consider two different generalizations to which we
refer as the Z-score based approach, and as structured output discriminant analysis (SODA).

4.3 Z-score Based Algorithm

In the first generalization, we will emphasize the Z-score interpretation. For training sets containing
more than one input-output pair, we need to redefine the Z-score for a set of ` pairs of sequences
T = {(x1, ȳ1),(x2, ȳ2), . . . ,(x`, ȳ`)}. A natural way is to do this based on the global score: the sum
of the scores for all sequence pairs in the set. Its mean is the sum of the means for all sequence
pairs (xi, ȳi) separately, and can be summarized by b̄ = ∑i bi. Similarly, for the covariance matrix:
C̄ = ∑iCi. Hence, the Z-score definition can naturally be extended to more than one input-output
pair by using b̄ and C̄ instead of b and C in (5). In summary, extending the optimization problem (5)
to the general situation of a given training set T , the optimization problem we are interested in is:

maxθ
θT b̄√
θTC̄θ

. (7)

2821

RICCI, DE BIE AND CRISTIANINI

The solution of (7) can be computed by simply solving the linear system C̄θ = b̄, where C̄ is a
symmetric positive definite matrix. If C̄ is not symmetric positive definite, regularization can be
introduced in a straightforward way (similar as in FDA) by solving (C̄ + λI)θ = b̄ instead. This
effectively amounts to restricting the norm of θ to small values. Then the optimal parameter vector
can be obtained extremely efficiently by using iterative methods such as the conjugate gradient
method.

4.3.1 INCORPORATING THE HAMMING DISTANCE

A nice property of this approach is that it can be extended to take into account the Hamming distance
between the output vectors. For each pair (x,y) we consider the score:

s(x,y) = θT φ(x,y)+δH(y, ȳ) = θ′T φ′(x,y)

where we have defined the vectors θ′T =
[
θT 1

]
and φ′(x,y)T =

[
φ(x,y)T δH(y, ȳ)

]
. It is easy

to verify that the associated optimization problem has the same form of (7) when the vectors θ′

and φ′ are considered. In practice the covariance matrix C is augmented with one column (and
one row, since it is symmetric) containing the covariance values between the loss term and all the
other parameters. We refer to this column as cδ. Analogously the mean vector is augmented by
one value (µδ) that represents the mean value of the terms δH(y, ȳ) computed along all negative
pseudoexamples. When the Hamming distance is adopted the computation of µδ and cδ can be
realized with DP algorithms. For example for sequence labeling learning Algorithm 1 is used with
recursive relations similar to those in Algorithm 4.

4.3.2 Z-SCORE APPROACH WITH CONSTRAINTS

As a side remark, let us draw a connection with existing MM approaches such as described in Taskar
et al. (2003) and in Tsochantaridis et al. (2005).

Their approach to structured output learning is to explicitly search for the parameter values θ
such that the optimal hidden variables ȳi can be reconstructed from xi, ∀1 ≤ i ≤ `. In formulas these
conditions can be expressed as:

θT φ(xi, ȳi) ≥ θT φ(xi,yi
j) ∀1 ≤ i ≤ ` ∀1 ≤ j ≤ Ni. (8)

This set of constraints defines a convex set in the parameter space and its number is massive, due to
the huge size of the output space. To obtain an optimal set of parameters θ that successfully fulfill
(8) usually an optimization problem is formulated with these constraints, together with a suitable
objective function. In MM approaches for example this objective function is typically chosen to be
the squared norm of the parameter vector.

Interestingly, using the Z-score as objective function, we observe that most (and often all) of
the constraints (8) are satisfied automatically, which often leads to a satisfactory result with a good
generalization performance without considering the constraints explicitly.

However, in the cases where the result of (7) still violates some of the constraints and one wishes
to avoid this, one can choose to impose these explicitly. The resulting optimization problem is still
convex and it reduces to:

minθ θTC̄θ (9)

s.t., θT b̄ ≥ 1

θT φ(xi, ȳi) ≥ θT φ(xi,yi
j) ∀1 ≤ i ≤ ` ∀1 ≤ j ≤ Ni.

2822

MAGIC MOMENTS FOR STRUCTURED OUTPUT PREDICTION

We have developed an incremental algorithm that implements problem (9), shown in Algorithm
3 (see Tsochantaridis et al., 2005, for a similar approach and a more detailed study). First a feasible
solution is determined without adding any constraints. Then the following steps are repeated until
convergence. For each training example, the most likely hidden variables are determined by a
Viterbi-like algorithm. If its score is higher than the given one, the associated constraint is added
to the set of constraints of the problem (9) and (9) is solved. The convergence is guaranteed from
the convexity of the problem. Each added constraint provides the effect of restricting the feasible
region.

Algorithm 3 Iterative algorithm to incorporate the active constraints.

Input: The training set T = {(x1, ȳ1)(x2, ȳ2) . . .(x`, ȳ`)}

C := �
for i = 1, . . . , ` compute bi and Ci

Compute b̄ := ∑i bi and C̄ := ∑iCi

Find θopt solving (7)
Repeat

exit := 0
for i = 1, . . . , `

Compute ỹi := argmaxy θT
optφ(xi,y)

If θT
opt(φ(xi, ȳi)−φ(xi, ỹi)) ≤ 0

exit := 1
C := C ∪{θT (φ(xi, ȳi)−φ(xi, ỹi)) ≥ 0}
Find θopt solving (7) s.t. C

end
end

until exit = 1

Output: θopt

Often, real data sets do not allow a feasible solution θ. A possible way to deal with this problem
is by the introduction of slack variables or relaxing the constraints by requiring the inequalities to
hold subject to the small possible used-defined tolerance ε (Ricci et al., 2007). However, we argue
that in such cases simply optimizing the Z-score as described earlier without adding any constraints
may offer a natural and computationally attractive alternative to using soft-margin constraints.

4.3.3 RELATED WORK

It is worth noting that the Z-score has previously been used in the context of sequence alignment,
although in previous work it was computed with respect to different distributions. In Doolittle
(1981) Z-scores are used to assess the significance of a pairwise alignment between two aminoacid
sequences and are computed calculating the mean and the standard deviation values over a random
sample taken from a standard database or obtained permuting the given sequence. A high Z-score
corresponds to an alignment that is less likely to occur by chance and therefore biologically signifi-
cant.

2823

RICCI, DE BIE AND CRISTIANINI

To our knowledge, there are no methods to calculate the Z-scores on a set of random sequences
in exact way. The only attempt to this aim is due to Booth et al. (2004). They proposed an efficient
algorithm that finds the standardized score in the case of permutations of the original sequences
but this approach is limited to the ungapped sequences. We have to stress that we consider a much
wider range of applications (not only sequence alignment) and a slightly different definition of
the Z-score: for example, for sequence alignment for each pair of given sequences the mean and
standard deviation are computed over the set of all possible alignments (also with gaps and not only
the optimal ones) without any permutations.

4.4 SODA: Structured Output Discriminant Analysis

Another way to extend problem (5) to the general situation of a training set T is to minimize the
empirical risk associated to the upper bound on the relative ranking loss R RRU , defined in the usual
way as:

R RRU
θ (T) =

`

∑
i=1

LRRU
θ (xi, ȳi).

This simple summing of the loss for individual data points leaves the connection with FDA more
intact, hence the name SODA for structured output discriminant analysis. As usual in empirical
risk minimization, the hope is that minimizing the empirical risk will ensure that the expected loss
E(x,ȳ)

{
LRRU

θ (x, ȳ)
}

(here the relative ranking loss) is small as well, and we will shortly prove that
this is the case in 6.1. Filling everything in, the resulting empirical risk minimization problem
becomes:

minθ

`

∑
i=1

1
Ni

Ni

∑
j=1

ξ2
i j (10)

s.t. θT (φ(xi, ȳi)−φ(xi,yi
j)) = 1+ξi j ∀i.

This is the optimization problem we solve in SODA. To solve it easily, and to elucidate more clearly
the analogy with the Z-score approach, we rewrite it one more time as follows.

Proposition 6 Optimization problem (10) is equivalent to:

max
θ

θT b∗√
θTC∗θ

(11)

where we have defined b∗ = ∑i bi and C∗ = ∑i(Ci + bibi
T). Here, by equivalent we mean that the

optimal values for θ differ by a constant scaling factor only. It can be solved efficiently by solving
the linear system of equations C∗θ = b∗.

Note that this optimization problem has the same shape as (7) and can be solved again with conjugate
gradient algorithms.
Proof We can follow exactly the same procedure as in the proof of Theorem 5 to show that opti-
mization problem (11) is equivalent with:

min
θ

`

∑
i=1

θTCiθ+(θT bi −1)2 ⇔ min
θ

θT
`

∑
i=1

(Ci +bib
T
i)θ−2θT

`

∑
i=1

bi +1

⇔ min
θ

θTC∗θ−2θb∗ +1.

2824

MAGIC MOMENTS FOR STRUCTURED OUTPUT PREDICTION

MM HMP CRFs
Z-score 5.67e−11 1.97e−7 0.016
SODA 5.12e−10 3.13e−6 0.04

Table 1: p-values for level of noise p = 0.4 and for an HMM with nh = 2 and no = 4.

The optimality conditions is C∗θ = b∗. In a similar way as in the proof of Theorem 5, we can show
that the optimality conditions of optimization problem (10) are given by C∗θ = λb∗, leading to the
same value for θ after appropriate scaling.

5. Experimental Results

In this subsection we provide some experimental results for the three illustrative examples proposed:
sequence labeling, sequence alignment and sequence parse learning.

5.1 Sequence Labeling Learning

The first series of experiments, developed in the context of sequence labeling learning, analyzes the
behavior of the Z-score based algorithm and of the SODA using both artificial data and sequences
of text for named entity recognition. The main aim of this section is to compare our approaches
with other existing DLAs on small and medium size data sets.

5.2 Simulation Results

We first present experiments that demonstrate the robustness of our approaches in problems with an
increasing degree of noise. We consider two different HMMs, one with nh = 2, no = 4 and one with
nh = 3, no = 5, with assigned transition and emission probabilities. For these models, we generate
hidden and observed sequences of length 100. The training set size is fixed to 20 pairs, while the
test set is made up of 100 pairs. Then we add some noise with probabilities p ∈ [0,1] flipping labels
in hidden sequences. More specifically we consider three different scenarios: absence of noise
(p = 0), moderate level of noise (p = 0.2) and noisy data (p = 0.4). After learning the parameter,
the labeling error (average number of incorrect labels) is measured. We observe the performance of
the proposed approaches in comparison with other DLAs such as CRFs, hidden Markov perceptron
(HMP) and a MM method with Hamming loss (SVM-struct implementation Tsochantaridis et al.,
2005) and linear kernel. The regularization parameters associated to each method are determined
based on the performance on a separate validation set of 100 sequences generated together with the
training and the test sets. Results are averaged over 1000 training/test samples. In both cases our
algorithms outperform other methods for high level of noise, as can be expected (Fig. 4). We also
observe slightly better performance of the SODA with respect to the Z-score based algorithm for
low p values while with the Z-score a smaller test error is achieved with very noisy data.

To assess the significance of the results obtained comparing our methods with the other DLAs
we also run some paired t-tests and compute the associated p-values for both the HMM models and
all the levels of noise. Here we only show the p-values obtained by the experiments with high level

2825

RICCI, DE BIE AND CRISTIANINI

p=0.0 p=0.2 p=0.4
0

10

20

30

40

50

Noise level

T
es

t e
rr

or

Z−score
SODA
CRFs
HMP
MM

p=0.0 p=0.2 p=0.4
0

10

20

30

40

50

Noise level

T
es

t e
rr

or

Z−score
SODA
CRFs
HMP
MM

(a) (b)

Figure 4: Average number of incorrect labels at varying level of noise for an HMM with (a) nh = 2
and no = 4 and (b) nh = 3 and no = 5.

MM HMP CRFs
Z-score 11.11e−6 3.01e−12 0.0076
SODA 8.8e−4 5.45e−10 0.16

Table 2: p-values for level of noise p = 0.4 and for an HMM with nh = 3 and no = 5.

of noise (Tab. 1 and Tab. 2) in order to demonstrate that our approaches significantly outperforms
HMP and the MM algorithm in situations where data are noisy. In this scenario SODA and Z-
score achieve better performance than CRFs even if in this case the difference of the test error
is less evident. On the other hand we also observe that for separable data (absence of noise) the
MM algorithm does significantly better than our algorithms (e.g., for the HMM model with nh = 2
and no = 4 the p-value is 5.04e−9 for SODA and 1.06e−11 for the Z-score algorithm). A similar
situation occurs also for the HMP (e.g., for the HMM model with nh = 2 and no = 4 the p-value is
8.65e−5 for SODA and 4.86e−6 for the Z-score algorithm). However SODA and Z-score approach
still outperform CRFs (e.g., for the HMM model with nh = 2 and no = 4 the p-value is 3.51e−4 for
SODA and 2.53e−3 for the Z-score algorithm).

For this series of experiments we also depict some typical learning curves computed for all
DLAs considered. We show the curves associated to a HMM model with nh = 3, no = 5, sequences
of length equal to 50 and noise level p = 0.2. In this case for the MM algorithm the soft margin
parameter C is set equal to 1 and a constant ε = 10−12 specifies the accuracy for constraints to be
satisfied. The maximum number of iterations of the averaged perceptron is T = 100. CRFs are
optimized using a conjugate gradient method. Concerning our approaches we plot results just for
the SODA since in this situation (moderate quantity of noise) the learning curves for the Z-score
algorithm is almost superimposed to the SODA’s one. For the SODA the regularization parameter
is λ = 10−8. The SODA performs better than other methods and among the competing DLAs, the
MM approach provides the best performance (Fig. 5.a). Moreover if for the same experiment we
also examine the training time we observe (Fig. 5.b) that SODA is definitely faster than the MM
algorithm especially for larger data sets.

2826

MAGIC MOMENTS FOR STRUCTURED OUTPUT PREDICTION

5 10 15 20 25 30
30

32

34

36

38

40

42

44

Training set size

T
es

t e
rr

or
CRFs
MM
HMP
SODA

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

Training set size

T
im

e

SODA
MM

(a) (b)

Figure 5: (a) Average number of incorrect labels and (b) computational time as function of the
training set size for an HMM with nh = 3 and no = 5.

A further series of experiments have been conducted to confirm the theoretical results presented
in the previous subsection, that is, we want to show that learning with SODA is effectively achieved
when mean and covariance matrices are estimated considering just a small subset of incorrect out-
puts (i.e., incorrect hidden label sequences), taken by random sampling. In fact in the situations
where the size of the hidden and the observed space is large and long sequences must be consid-
ered, the computation of b∗ and C∗ with DP can be quite time consuming. Then using random
sampling, the computational burden of DP is avoided and the labeling accuracy is still reasonably
high, if a sufficient number of possible outputs is sampled. To support this claim we conduct the
following experiment. Sequences of length 10 are considered. The training set is fixed to 50 pairs,
the test set contains 100 pairs. Sequence pairs are generated with a level of noise p = 0.2 obtained
by flipping labels. We pick various HMMs: the hidden alphabet size is fixed, nh = 3, while no

varies. The average labeling error on test set and the time required for computation are reported for
SODA with exact matrices, when matrices are computed on a set of 50 and 200 random paths and
for the MM method. Results are shown in Fig. 6. While the performance in terms of labeling error
are essentially the same for all the algorithms (Fig. 6.a), the computational advantage considering
the training time for the sampling approaches is considerable (Fig. 6.b).

5.3 Named Entity Recognition

The second series of experiments have been performed in the context of named entity recognition
(NER). In NER phrases in text must be classified as belonging to predefined categories such as
persons, organizations, locations, temporal and numerical expressions.

We consider 300 sentences extracted from the Spanish news wire article corpus used for the
Special Session of CoNLL2002 on NER. Our subset contains more than 7000 tokens (about 2000
unique) and each sentence has an average length of 30 words. The hidden alphabet is limited to
nh = 9 different labels, since the expression types are only persons, organizations, locations and
miscellaneous names. Our aim here is not to compete with large scale NER systems but to perform
comparison with previous methods so we deliberately choose a small subset and an experimental

2827

RICCI, DE BIE AND CRISTIANINI

2 4 6 8
0

5

10

15

20

25

30

35

40

n
o

T
es

t e
rr

or
SODA (50 paths)
SODA (200 paths)
SODA (DP)
MM

2 4 6 8
0

2

4

6

8

10

12

14

n
o

T
im

e
(s

ec
)

SODA (50 paths)
SODA (200 paths)
SODA (DP)
MM

(a) (b)

Figure 6: (a) Labeling error on test set and (b) average training time as function of the observation
alphabet size no.

setup similar to that in Altun et al. (2003b). We perform experiments into different settings: HMM
features (the parameters to be determined are the transition and emission probabilities) (S1) and
HMM features of the previous and the next words (S2). Experiments have been made with a 5-fold
cross validation. We compare the performances of our approaches with CRFs, HMP and the MM
algorithm with Hamming loss in (Altun et al., 2003b). For the SODA and the Z-score algorithm
the regularization parameter is λ = 10−8. For CRFs we used a public available software (Kudo,
2005) where a quasi-newton optimization technique method is used for optimization. For the MM
algorithm a linear kernel is considered, C = 1 and ε = 0.01. The number of iterations of the HMP
is T = 200.

The test errors, reported in Tab. 3, demonstrate the competitiveness of the proposed methods.
SODA outperforms all the other approaches for S1, while it performs slightly worse than the MM
algorithm for features S2. On the other hand for S2 the best performance is obtained by the Z-score
algorithm.

Since the length of feature vectors is large, our approaches are generally slower than MM meth-
ods. For very large numbers of parameters, in fact, the time required to compute b∗ and C∗ may
exceed the computation time of competing MM approaches. However, in this case, the sampling
strategy can be used to approximate the matrices C∗ and b∗. For example in the S1 setting, the
average running time for the SODA is about 9967.47 sec while with SVM-struct the same task is
performed in 1043.16 sec. However with the use of approximate matrices computed sampling on
150 random paths and solving the linear system by a conjugate gradient method the computational
time is only 656.46 sec.

Z-score SODA MM HMP CRFs
S1 11.07 10.13 10.97 20.99 11.96
S2 7.89 8.27 8.11 13.78 8.25

Table 3: Classification error on test set on NER (300 sentences).

2828

MAGIC MOMENTS FOR STRUCTURED OUTPUT PREDICTION

Z-score SODA MM HMP CRFs
S1 9.43 8.80 9.35 11.01 9.07
S2 8.57 8.01 7.33 7.83 8.40

Table 4: Classification error on test set on NER (1500 sentences).

To address this problem of scalability of our approach when the number of features is large we
also developed a method for solving the linear systems of SODA and of the Z-score approach which
is ad hoc for problems such as NER where the size of the observation alphabet no (i.e., the size of
dictionary) tends to be huge while the size of the hidden alphabet nh (i.e., the number of different
labels) is moderate.

The main problem of using our algorithms for tasks with a large number of features is repre-
sented by the fact that the matrices C∗ and C̄ needs to be stored into memory. Moreover solving
the corresponding linear systems with conjugate gradient techniques has computational cost O(d2)
which is problematic when d is large. To overcome these difficulties we propose an approach
which exploits the sparsity and the redundancy of the covariance matrices to limit the storage re-
quirements and to solve the corresponding linear system with reduced computational cost. This
approach is briefly presented in appendix B in the case of sequence labeling and HMM features but
an extension of it for other possible configurations of features is possible and quite easy to derive.

Using this method we are able to perform experiments for the NER task on a large subset of
the Spanish news wire article corpus of CoNLL2002. We used 1500 sentences which correspond
to a dictionary of about 10000 different words. The hidden alphabet is again represented by nh = 9
different labels. The experimental setting is the same of the small data set: we consider the same
configuration for features (S1 and S2) and we compare the performances of our approaches with
CRFs (using CRFs toolkit Kudo, 2005), HMP and the MM algorithm with Hamming loss (SVM-
struct implementation Tsochantaridis et al., 2005). Experiments have been made with a 5-fold cross
validation procedure and the regularization parameters which provide better performances have
been set for all the methods.

From the results, shown in Tab. 4, we can draw similar conclusions that for the small data set:
SODA outperforms all the other approaches for S1, while the MM algorithm provides the smallest
test error for S2. It is somehow surprising that the HMP provides the second best performance for
S2 despite its simplicity. We explain this result considering that with an increased set of features the
data tend to be more separable and the HMP tend to outperform our approaches and CRFs.

Note that without having developed an ad hoc method such as that described in appendix B we
would not have been able to run this second series of experiments on a normal machine since our
d ×d covariance matrices are too large to fit into memory (d is about 90000 only for set of features
S1!). For sake of clarity we should also say that sometimes using this method we experienced
numerical problems (especially for small regularization parameters) that are probably due to the
fact that the approach is based on formulas for matrix inversions. Therefore in the future we plan
to develop a better method (e.g., based on updating matrices decompositions such as Cholesky) in
order to overcome numerical difficulties.

2829

RICCI, DE BIE AND CRISTIANINI

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Number of constraints

A
ve

ra
ge

 n
um

be
r

of
 c

or
re

ct
 h

id
de

n
se

qu
en

ce
s

(%
)

Z−score (constr)
MM
HMP

Figure 7: Average number of correctly reconstructed hidden sequences for an HMM with nh = 2
and no = 4.

5.4 Z-score with Constraints

The last series of experiments shows some results associated with the Z-score approach with con-
straints (9). We observe experimentally that this approach improves the performance of the uncon-
strained problem (7) if the noise in the data is limited (i.e., in the feasible or nearly feasible case).
For example for the experiments in Fig. 4 when the noise level is p = 0 with the constrained Z-score
the labeling error is 3.96 and 5.76 respectively for the HMM with nh = 2, no = 4 and for the HMM
with nh = 3, no = 5 while for the unconstrained problem the error is 5.39 and 9.87 respectively.

Moreover, comparing Algorithm 3 with other iterative approaches (HMP Collins 2002b and
MM algorithm Tsochantaridis et al. 2005), the use of the Z-score as objective function ensures
that the number of iterations is generally much smaller. Then the computational cost is greatly
reduced since adding one inequality means running the Viterbi algorithm. To demonstrate this, we
perform the following experiment. A pair of observed and hidden sequences of length m = 100
is considered. The task is to estimate the values of transition and emission probabilities such that
the observed sequences are generated by the hidden one. The number of constraints needed in the
training phase to reconstruct the matrices is averaged on 100 experiments. In Fig. 7 the histograms
obtained binning the number of constraints needed to reconstruct the original transition and emission
probabilities is shown for an HMM with nh = 2 and no = 4. For sake of comparison the number
of constraints needed when learning is performed with the perceptron (Collins, 2002b) and a MM
approach (Tsochantaridis et al., 2005) is also provided. As expected, optimizing the Z-score, much
less constraints are needed.

5.5 Sequence Alignment Learning

The second series of experiments has been performed in the context of sequence alignment learning.
The aim of this section is to compare the performance of our algorithms with a traditional genera-
tive approach. Among the proposed methods we present the results associated to SODA since the
performance obtained with the Z-score algorithm are nearly identical.

We construct substitution matrices with elements generated randomly but such that the values
on the main diagonal are larger than the other. In particular we consider two types of matrices
associated respectively with a 3 parameter model (i.e., matches, mismatches and gaps) and a 211

2830

MAGIC MOMENTS FOR STRUCTURED OUTPUT PREDICTION

n SODA (3) SODA (211) Generative HMP
1 5.1±1.2 96.12±13.3 98.14±14.5 93.8±12.1
2 2.9±0.8 84.7±7.5 98.01±12.2 83.98±8.6
5 2.32±1.0 74.81±6.2 97.4±7.4 76.13±5.2

10 2.11±0.7 60.08±3.2 92.93±5.2 57.93±2.9
20 2.1±0.5 43.18±2.2 79.13±4.2 42.68±2.1
50 1.87±0.3 35.56±1.4 48.31±2.9 31.92±1.2
100 1.53±0.4 30.84±1.0 32.05±1.5 28.4±0.9
500 0.98±0.3 23.47±0.2 26.11±0.6 21.7±0.4

Table 5: Classification error (mean and standard deviation) on test set as function of the training set
size n.

parameter models (substitution matrix plus gap penalty). Starting from these matrices we then
generate random pairs of sequences of length 10 from a 20 letter alphabet. Pairs are constructed
in a way that 50% of symbols between the two sequences are equal. The task we consider is to
reconstruct the given matrices starting from training sets of varying size n.

Table 5 shows the results in terms of the test error (number of incorrectly aligned sequences), av-
eraged on 100 runs. A small regularization value λ = 10−12 is used for SODA. The first two columns
of Tab. 5 present the test error for SODA respectively for the 3 and the 211 parameter model. As
expected from theory, the convergence to zero error is faster for the 3 parameter model. For the
211 parameter model we also compare SODA with a generative sequence alignment model, where
substitution rates between amino acids are computed using Laplace estimates. The gap penalty must
be set manually and we choose the value θg = −0.1 which guarantees the best performance on the
test set. The third column of Tab. 5 shows the associated results: SODA performs better than the
generative approach, especially for training set of small size. We also compare the performance of
our method with another discriminative approach: the hidden Markov perceptron. In this situation
the test error of SODA is slightly larger than that of the HMP. This is in accordance to what we ob-
serve in the sequence labeling learning task: when data are linearly separable other discriminative
approaches appear more suitable than SODA.

For the SODA algorithm with the 211 parameter model and for a training set with n = 100
aligned pairs we also depict the substitution matrix computed by SODA and we compare it with the
given one. As one can easily observe, the computed matrix has a similar structure of the correct
matrix, having the elements with higher values on the diagonal (Fig. 8).

Note that, in the context of sequence alignment, being the number of parameters limited at most
to 211 the training phase is not time consuming even for large training set. In fact the computational
cost is dominated by the calculation of mean and covariance matrices which can be greatly sped up
by sampling while solving the linear system C∗θ = b∗ is indeed very fast. Here we only consider
training sets of size up to 500 pairs of sequences since the advantage in terms of test error for
SODA (and in general for all discriminative approaches) with respect to generative approaches is
more evident for training sets of small sizes.

2831

RICCI, DE BIE AND CRISTIANINI

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

(a) (b)

Figure 8: Comparison between a given substitution matrix (a) and the matrix computed with SODA
(b) for n = 100.

accession no sequences max. length
RF00032 64 27
RF00260 35 51
RF00436 24 55
RF00164 29 43
RF00480 647 52

Table 6: Summary of the data set of RNA sequences

5.6 Learning to Parse

Lastly, we analyze the RNA secondary structure prediction problem: given an RNA sequence, the
task is to predict the basepairs in the sequence. With weighted context-free grammars, this predic-
tion can be accomplished by parsing the RNA sequence. To describe basepairs in RNA sequences,
we used the G6 grammar in Dowell and Eddy (2004), which we call G = {ϒ,Σx,R,S,θ}, where ϒ =
{S,L,F}, Σx = {a,u,g,c}, and R = {S → LS|L,L → aFu|uFa|gFc|cFg|gFu|uFg|a|u|c|g,F →
aFu|uFa|gFc|cFg|gFu|uFg|LS}. We consider RNA sequences of five families (see Tab. 6) ex-
tracted from the Rfam database (Griffiths-Jones et al., 2003). We use sequences including only
standard basepairs, that is, a–u, c–g, and g–u.

Results for the experiments conducted with Z-score with constraints, with a generative model,
and with the hidden Markov perceptron in a 5-fold cross validation setting are shown. Weights of
the grammar are optimized with a training set, and structures associated to sequences in the test set
are predicted by the Viterbi algorithm. For the Z-score with constraints, the best results obtained
varying the regularization parameter are reported. For the HMP, values ranging from T=100 to
T=1000 are used as the number of iterations, and the best result is shown. For the generative model,
parameters are estimated with Laplace smoothing.

We measure the performance of the methods in terms of sensitivity and specificity of predicted
basepairs. The sensitivity is defined as the number of correctly predicted basepairs over the number

2832

MAGIC MOMENTS FOR STRUCTURED OUTPUT PREDICTION

of true basepairs, and the specificity is the number of correctly predicted basepairs over the number
of predicted basepairs. In Tab. 7, the values of sensitivity and specificity corresponding to the
maximum product, are shown for each algorithm. The Z-score and the HMP have comparable
performances and generally outperform the generative approach. For the Z-score approach also the
average number of constraints is shown: it is worth noting that only very few constraints are needed
for each family, often less than the number of iterations in the HMP by an order of magnitude or
more.

6. Statistical Learning Analysis

We present here two learning theory results. The first one is specific for the ranking loss in any
algorithm using this hypothesis space, and hence covers the SODA algorithm. The second one
applies to any algorithm using the zero-one loss with this hypothesis class, and hence covers most
previous approaches.

Z-score (constr) Generative HMP
accession sens. spec. no constraints sens. spec. sens. spec.
RF00032 100 95.98 2.0 100 95.53 100 95.59
RF00260 98.77 94.80 6.0 98.97 100 98.57 98.90
RF00436 91.11 90.61 27.6 44.16 53.30 90.27 86.53
RF00164 76.14 73.47 37.8 65.51 62.55 87.06 78.32
RF00480 99.08 89.89 78.2 99.88 86.43 98.83 94.78

Table 7: Prediction on 5-fold cross validation. Average sensitivity and specificity are shown.

6.1 Rademacher Theory for SODA

Here we present a Rademacher bound for the SODA showing that learning based on this upper
bound on the relative rank is effectively achieved. For full generality, we want our bound to hold
also in the case where the matrices µ and C are estimated by sampling, as we suggested in subsection
3.2.2. We also provide some experimental results for this in the following subsection. Hence, our
bound needs to account for finiteness in two ways. First of all for each input-output pair only a
limited number n of incorrect outputs may be considered to estimate µ and C; secondly only a finite
number ` of input-output pairs is given in the training set.

In appendix C, we prove the following theorem. It shows that the empirical expectation of the
estimated loss (estimated by computing C and b by random sampling) is a good approximate upper
bound for the expected loss. Hereby it is good to keep in mind that this loss itself is an upper bound
for the relative ranking loss, such that the Rademacher bound is also a bound on the expectation of
the relative ranking loss.

Theorem 7 (Rademacher bound for SODA) With probability at least 1− δ over the joint of the
random sample T and the random samples from the output space for each (x, ȳ) ∈ T that are taken
to approximate the matrices C∗ and b∗, the following bound holds for any θ with squared norm
smaller than c:

E(x,ȳ)

{
LRRU

θ (x, ȳ)
}

≤ Ê(x,ȳ)

{
L̂RRU

θ (x, ȳ)
}

2833

RICCI, DE BIE AND CRISTIANINI

+ Ê(x,ȳ)

{
R̂1,(x,ȳ)

}
+ R̂2

+ 3M

√
log(2`/δ)

2n
+3M

√
log(2/δ)

2`
.

whereby we assume that the number of random samples for each training pair is equal to n.
The Rademacher complexity terms R̂1,(x,ȳ) and R̂2 decrease with 1√

n and 1√
`

respectively, such

that the bound becomes tight for increasing n and `, as long as n grows faster than log(`).

For details relating to the exact value of the Rademacher complexity terms, the value of the constant
M, and the proofs, we refer to the appendix C.

6.2 PAC Bound

In appendix D, we prove the following theorem that applies to a generic DLA: given a training set
of sample pairs (xi, ȳi), can we learn to predict the output for a previously unseen observation? For
example, given a training set of aligned protein sequences, can we learn how to align a previously
unseen pair? Or, given a training set of correctly parsed sentences, can we learn how to parse a
previously unseen sentence? To be clear, in this section we consider the zero-one loss only, which
has been considered most often in previous work on structured output learning.

DLAs directly learn the model parameters such that the accuracy of the prediction is somehow
optimized. All these algorithms are in some sense empirical risk minimizers, in that they optimize
the prediction performance on a training set. However till now there have been few works trying to
address the question whether a small empirical risk guarantees a small expected risk. A first gen-
eralization bound has been developed by Collins for the case of the perceptron algorithm (Collins,
2002a) and a capacity bound in terms of covering numbers for the maximum margin approach
has been proposed by Taskar et al. (2003). These bounds have subsequently been reconsidered in
McAllester (2007) and have been improved in order to achieve consistency for any arbitrary loss. In
this paper we answer the learnability question affirmatively from another point of view, independent
of the learning approach taken, and we propose a new PAC bound which makes use of a result which
bounds the cardinality of the hypothesis space of prediction functions derived from DLAs.

We go back to the original problem of structured output learning. Given is a training set T =
{(x1, ȳ1),(x2, ȳ2), . . . ,(x`, ȳ`)} of observation-output pairs, with observations xi ∈ X and outputs
ȳi ∈ Y jointly drawn i.i.d. from an unspecified probability distribution P(x,y). Based on T we want
to infer a prediction function hθ : X → Y such that the probability P(hθ(x) = ȳ) of an observation-
output pair (x, ȳ) with hθ(x) = ȳ is as large as possible. For learnability, the choice of hθ should be
restricted to a limited hypothesis space, and DLAs provide one way to achieve this.

Our hypothesis space H is the space containing all prediction functions hθ with θ ∈ R
d , defined

as:

hθ(x) = argmax
y∈Y

sθ(x,y) = argmax
y∈Y

θT φ(x,y),

and this for a fixed feature map φ with integer features between 0 and C.
For this hypothesis space we can prove (in appendix D) the following theorem.

Theorem 8 (On the PAC-learnability of structured output prediction) Given a hypothesis space
H of prediction functions hθ as defined above. Furthermore, consider a training set T =

2834

MAGIC MOMENTS FOR STRUCTURED OUTPUT PREDICTION

{(x1, ȳ1),(x2, ȳ2), . . . ,(x`, ȳ`)} of observation-output pairs, sampled i.i.d. from a fixed but unknown
distribution. Then, with probability at least 1− δ over the random sample T , for any hθ ∈ H for
which hθ(xi) = ȳi for all (xi, ȳi) ∈ T the expected risk can be bounded as:

E(x,ȳ)∼D{hθ(x) 6= ȳ} ≤ d2 log(2C)− (d −2) log(d −2)+d − log(δ)

`
.

We can thus conclude that learning is guaranteed as soon as ` >> d2 log(2C).
This result proves that learning based on DLAs can be achieved effectively, and d and C are the

factors that are relevant in determining the learning rate. Importantly this bound holds regardless
of the method used to estimate the parameter vector θ. Interestingly, it suggests that the number
C (bounded by to the number of cliques for DLAs derived from PGMs) is less important than the
number of parameters d.

Note that this bound only holds for the realizable case, such that its practical relevance is limited.
Furthermore, unlike the results from McAllester (2007), the bound does not depend on the norm of
the weight vector θ, making it loose for small values of ‖θ‖. Nevertheless, we believe it is of interest
due to the simplicity of its derivation based on results from combinatorics and basic PAC theory.

7. Conclusions

We have presented a formal framework for learning to predict over structured output spaces. The
hypothesis space we consider is based on linear scoring functions, much like most previous ap-
proaches to this problem.

The distribution of this linear scoring function over all possible outputs contains information
that we can use to train the parameters of the learning algorithm. We can compute efficiently the
first two moments of this distribution, and we use them to derive convex objective functions for
parameter optimization.

In this way, we have derived two new efficient algorithms for structured output prediction that
rely on these statistics, both of which can be solved by solving one linear system of equations.

Interestingly, and thanks to the use of the moments, one of the proposed objective functions
(SODA) represents a convex upper bound on the relative ranking loss: the fraction of outputs from
the output space that rank better than the correct output. Thanks to this property, SODA naturally
and adequately deals with the infeasible case where there exists no parameter setting for which the
correct given pairs are optimal. We justify this fact theoretically, providing a Rademacher bound,
and experimentally, reporting results that are competitive with existing methods, and better than
other methods in the infeasible case.

Acknowledgments

We are most grateful to Nobuhisa Ueda since without him the section on SCFG’s would not have
been possible. We also thank the anonymous reviewers for providing us with their valuable com-
ments. This work was partially supported by NIH grant R33HG00 3070-01, the EU project SMART
and the PASCAL network of excellence. The work of Nello Cristianini is partially supported by a
Royal Society Wolfson Merit Award.

2835

RICCI, DE BIE AND CRISTIANINI

Appendix A. Proof of Proposition 3

The number of DP routines needed to compute µ and C are 7no +6.
In fact in general in the mean vector µ there are no + 1 different values. All the elements asso-

ciated to transition probabilities assume the same values while for emission probability µe
pq = µe

e f ,
∀ q = f .

We analyze the structure of the matrix C. It is a symmetric block matrix made basically by
three components: the block associated to emission probabilities, that of transition probabilities and
that relative to mixed terms. To compute it 6no + 5 DP routines are required. In the emission part
there are 2no possible different values since ce

pq = ce
e f , ∀q = f , ce

pqp′q′ = 0, ∀q 6= q′ and ce
pqp′q′ =

ce
e f e′ f ′ ∀q = q′ = f = f ′. In the transition block there are only 5 possible different values. In

particular for the second order moments, it holds that ct
pz = ct

eg, ∀p = z = e = g and ct
pz = ct

eg,
∀p = e, z = g and p 6= z. For the remaining three values there holds that ct

pzp′z′ = 0, ∀p 6= p′, z 6= z′,
ct

pzp′z′ = ct
ege′g′ , ∀p = p′, z 6= z′, e = e′, g 6= g′ and ct

pzp′z′ = ct
ege′g′ , ∀p 6= p′, z = z′, e 6= e′, g = g′.

The block relative to mixed terms is made of 4no possible different value. In fact there are no values
cet

pqp′z with p = p′ = z′, no values cet
pqp′z, with p = p′, p′ 6= z′, no values cet

pqp′z, with p = z′, p′ 6= z′

and no values cet
pqp′z, with p 6= p′, z 6= z′.

The redundancy in the structure of matrix C and of the vector µ can be observed in Fig. 9 for an
HMM with ns = 3 and no = 4.

2

4

6

8

10

12

14

16

18

20

7

7.5

8

8.5

9

9.5

10

10.5

11

5 10 15 20

2

4

6

8

10

12

14

16

18

20 −2

0

2

4

6

8

10

12

14

(a) (b)

Figure 9: Mean vector and covariance matrix for an HMM with ns = 3 and no = 4.

Appendix B. Solving Linear Systems for Large Feature Spaces

This paragraph provides a brief description of an approach for solving the linear systems C∗θ = b∗

and C̄θ = b̄ avoiding to store the entire matrices C∗ and C̄. This approach is suited to sequence
labeling problems and HMM features and it is particularly effective for problems when nh, the size
of the hidden state alphabet, is small and no, the size of the observation alphabet, is large.

We describe the procedure to solve C∗θ = b∗. In fact it subsumes the method for solving C̄θ = b̄.
The main idea behind this procedure is that exploiting the structure of C∗ we can store just a part of
it and compute the optimal parameter vector θ effectively.

The matrix C∗ in case of sequence labeling and HMMs features is sparse and redundant. In fact
this matrix is given by the sum of two parts: C̄ = ∑iCi and BBT = ∑i bib

T
i . We first consider the

2836

MAGIC MOMENTS FOR STRUCTURED OUTPUT PREDICTION

first part C̄ = ∑iCi. Each Ci is very sparse and has a regular structure as discussed in appendix A.
Then also the matrix C̄ has the same structure, that is, is a matrix made by four block:

C̄ =

(
E M

MT T

)
.

Here E denotes the block associated to emission probabilities, T that corresponding to transition
probabilities and M that relative to mixed terms. We are interested in finding the inverse of the
matrix C̄ without storing it entirely. Note that in many situations (e.g., sequence labeling problems
for text analysis such as NER or POS) the emission part represents the main bottleneck in the
computation of the inverse since its size is dependent on no (e.g., the size of the dictionary). The
size of the transition part instead is usually moderate since it is given by n2

h (e.g., the number of
different tags). The inverse of C̄ can be computed by:

C̄−1
=

(
E−1 +E−1MP−1MT E−1 −E−1MP−1

−P−1MT E−1 P−1

)

where P = T −MT E−1M represent the Schur complement of E. The inverse of the matrix E can be
computed easily due to the structure of the matrix E. In fact E is a block matrix:

E =




Ed Eo Eo · · · Eo

Eo Ed Eo · · · Eo
...

.
...

Eo · · · Eo Eo Ed




where Ed and Eo are both diagonal matrices. Therefore we can rewrite the matrix E as:

E =




Ed −Eo 0 0 · · · 0
0 Ed −Eo 0 · · · 0
...

.
...

0 · · · 0 0 Ed −Eo


+




I
I
...
I


Eo

(
I I · · · I

)

= D+HT EoH.

Then the inverse can be computed easily considering the formula for the inverse of a sum of matri-
ces:

E−1 = D−1 −D−1HT (I +EoHD−1HT)−1EoHD−1

where D is a diagonal matrix. Due to the special structure of D, H and E, it turns out that the inverse
of E is also a block matrix with similar structure of E, that is,

E−1 =




Ēd Ēo Ēo · · · Ēo

Ēo Ēd Ēo · · · Ēo
...

.
...

Ēo · · · Ēo Ēo Ēd




where Ēd = (Ed −Eo)
−1 and Ēo = Ēd(I + EoNH Ēd)

−1Ēd (NH is a diagonal matrix with elements
on the main diagonal equal to nh). Then it is not necessary to compute and store the entire matrix
E−1 but only the small blocks Ēd and Ēo.

2837

RICCI, DE BIE AND CRISTIANINI

Once the matrix E−1 has been obtained then the computation of the Schur complement P and
its inverse it is straightforward. This is not a time consuming procedure since its size n2

h is typ-
ically small and E−1 is very sparse. Due to the redundancy and the particular structure of the
matrix M we can also compute quite easily all the other terms. In particular the matrix obtained by
E−1MP−1MT E−1 is a block matrix made by nh ×nh equal blocks. Then it suffices to compute and
to store just one of each block.

The inverse of the matrix C̄ has then been obtained and we can use it directly to compute the
solution of the linear system for the Z-score approach θ = C̄−1b̄. Instead if we want to obtain the
optimal parameter vector associated to SODA we must compute the solution of the linear system
(C̄+BBT)θ = b∗. In practice what we need is a method to perform n rank one updates (one for each
sample in the training set) of the inverse of the matrix C̄ without storing the matrices C̄−1 and BBT

entirely. We can use the Sherman-Morrison-Woodbury formula:

C̄ +BBT = C̄−1 −C̄−1B(I +BTC̄−1B)BTC̄−1

to calculate the solution of our linear system:

θ = (C̄ +BBT)−1b∗ = C̄−1b∗−C̄−1B(I +BTC̄−1B)BTC̄−1b∗.

In practice we first compute z = C̄−1b∗ and use this value to solve the linear system by Cholesky
decomposition:

(I +BTC̄−1B)t = BT z.

Note that the cost of this operation is O(n3) but it is usually moderate since n << d. The compu-
tational cost here is dominated by the calculation of z since in theory it requires d3 multiplications.
However in practice this cost is still reasonable since C̄−1 tend to be sparse. Once we have computed
t we can obtain our solution for SODA simply by θ = z− C̄−1Bt.

Appendix C. Proof of the Rademacher Bound

We consider two types of randomness in our bound: the randomness in choosing the finite sample
of training input-output pairs, and the randomness in sampling from the output space for each of the
training inputs. Our aim is to provide a learning theory bound for the expected relative rank of the
score sθ(x, ȳ) among all scores sθ(x,y) for all y ∈ Y .

More exactly, we are interested in bounding E(x,ȳ)

{
LRRU

θ (x, ȳ)
}

where the value of the loss

LRRU
θ (x, ȳ) = Ey

{[
θT (φ(x, ȳ)−φ(x,y))−1

]2}
is known to be an upper bound on the relative rank

of the score of (x, ȳ) among all scores of (x,y) for all possible y (see Theorem 5).
For clarity, let us first consider a fixed training pair (x, ȳ). We will derive a Rademacher bound

that shows that the loss function LRRU
θ (x, ȳ) is approximately upper bounded by its empirical esti-

mate L̂RRU
θ (x, ȳ) = Êy

{[
θT (φ(x, ȳ)−φ(x,y))−1

]2}
, obtained by averaging over a random sample

of n values of y. In particular we will show that with a probability of at least 1−δ1 over the random
sample of size n:

LRRU
θ (x, ȳ) ≤ L̂RRU

θ (x, ȳ)+ R̂1,(x,ȳ) +3M

√
log(1/δ1)

2n
,

2838

MAGIC MOMENTS FOR STRUCTURED OUTPUT PREDICTION

with R̂1,(x,ȳ) an empirical Rademacher complexity term. The constant M is an upper bound on the
value of LRRU

θ (x, ȳ) valid for all allowable θ, and is a finite number. Such an upper bound can be
computed as M = (C

√
dc + 1)2, by considering the constraint ‖θ‖2 ≤ c and the fact that for all d

features 0 ≤ φi(x,y) ≤C.
Second, we will show that the expectation of L RRU

θ (x, ȳ) over (x, ȳ) is approximately upper
bounded by its empirical expectation over the training set of size l. We will show that with proba-
bility at least 1−δ2 over the training set T of size `,

E(x,ȳ)

{
LRRU

θ (x, ȳ)
}
≤ Ê(x,ȳ)

{
LRRU

θ (x, ȳ)
}

+ R̂2 +3M

√
log(1/δ2)

2`
,

with R̂2(T) an empirical Rademacher complexity term, and with the same constant M.
Putting these two partial results together with δ1 = δ

2` and δ2 = δ
2 , we have shown the following

theorem:

Theorem 9 (Rademacher bound for SODA) With probability at least 1− δ2 − `δ1 = 1− δ over
the joint of the random sample T and the random samples from the output space for each (x, ȳ)∈ T ,
the following bound holds for any θ with squared norm smaller than c:

E(x,ȳ)

{
LRRU

θ (x, ȳ)
}

≤ Ê(x,ȳ)

{
L̂RRU

θ (x, ȳ)
}

+ Ê(x,ȳ)

{
R̂1,(x,ȳ)

}
+ R̂2

+ 3M

√
log(2`/δ)

2n
+3M

√
log(2/δ)

2`
.

The first term on the right hand side of the inequality is the empirical risk, which is minimized
on the training set. The next two terms are Rademacher complexity terms, and we will see below
that these decrease to zero with increasing ` and n. Also the last two terms decrease to zero with
increasing ` and n, as long as n is chosen to increase faster than log(`).

Both these partial results can be derived by using the generalization error bound in Bartlett and
Mendelson (2002, Theorem 2) and applying the McDiarmid’s concentration inequality (McDiarmid,
1989). In the following we show how to compute upper bounds on the empirical Rademacher
complexities R̂1,(x,ȳ) and R̂2.

C.1 Rademacher Bound for the Relative Rank of a Single Pair

Given a training pair (x, ȳ) and a set {y1,y2, . . . ,yn} of n randomly sampled values for y correspond-
ing to x. For notational convenience, let us denote ϕ j = φ(x, ȳ)−φ(x,y j). Then we can write the
empirical estimate of the loss as

L̂RRU
θ (x, ȳ) =

1
n

n

∑
j=1

(
θT ϕ j −1

)2
.

Using this notation, and with σ a vector of length n containing the independently distributed
Rademacher variables σ j being uniformly distributed over 1 and −1, the Rademacher complex-
ity term R̂1,(x,ȳ) can be written and bounded as:

R̂1,(x,ȳ) = Eσ

{
max

θ

∣∣∣∣∣
2
n

n

∑
j=1

σ j
(
θT ϕ j −1

)2

∣∣∣∣∣

}

2839

RICCI, DE BIE AND CRISTIANINI

= Eσ

{
max

θ

∣∣∣∣∣
2
n

n

∑
j=1

σ j
(
(θT ϕ j)

2 −2(θT ϕ j)+1
)
∣∣∣∣∣

}

≤ Eσ

{
max

θ

2
n

(∣∣∣∣∣
n

∑
j=1

σ j(θT ϕ j)
2

∣∣∣∣∣+
∣∣∣∣∣

n

∑
j=1

2σ j(θT ϕ j)

∣∣∣∣∣+
∣∣∣∣∣

n

∑
j=1

σ j

∣∣∣∣∣

)}
. (12)

The first equality is the definition of the empirical Rademacher complexity, and the second equality
is a trivial rewriting. The first inequality holds since the absolute value of the sum is smaller than
or equal to the sum of absolute values. We now first use the fact that the maximum of a sum of
functions is smaller than or equal to the sum of their maxima to show that:

(12) ≤ 2
n

Eσ

{
max

θ

∣∣∣∣∣
n

∑
j=1

σ j(θT ϕ j)
2

∣∣∣∣∣+max
θ

∣∣∣∣∣
n

∑
j=1

2σ j(θT ϕ j)

∣∣∣∣∣+max
θ

∣∣∣∣∣
n

∑
j=1

σ j

∣∣∣∣∣

}

=
2
n

Eσ





√√√√max
θ

(
n

∑
j=1

σ j(θT ϕ j)
2

)2




+
2
n

Eσ





√√√√max
θ

(
n

∑
j=1

2σ j(θT ϕ j)

)2




+
2
n

Eσ





√√√√max
θ

(
n

∑
j=1

σ j

)2




. (13)

Here we used the fact that the absolute value is the square root of the square, and that the square
root of a positive function is maximized when that function itself is maximized. We proceed by
rewriting this expression using bracket notation, 〈a,b〉 denoting the inner product between vectors
(or matrices) a and b. Furthermore, we use the fact that the maximum of a sum (or expectation)
is smaller than or equal to the sum (or expectation) of the maxima of the individual sums, to show
that:

(13) ≤ 2
n

√√√√Eσ

{
max

θ

n

∑
j,k=1

σ jσk〈θθT ,ϕ jϕT
j 〉〈θθT ,ϕkϕT

k 〉
}

+
2
n

√√√√Eσ

{
max

θ

n

∑
j,k=1

4σ jσk〈θ,ϕ j〉〈θ,ϕk〉
}

+
2
n

√√√√Eσ

{
n

∑
j,k=1

σ jσk

}
. (14)

We now invoke the Cauchy-Schwartz inequality, and use the fact that ‖θ‖2 ≤ c and hence ‖θθT‖2 ≤
c2, to show that:

(14) ≤ 2
n

√√√√Eσ

{
n

∑
j,k=1

σ jσkc2‖ϕ j‖2‖ϕk‖2

}

+
2
n

√√√√Eσ

{
n

∑
j,k=1

4cσ jσk‖ϕ j‖‖ϕk‖
}

+
2
n

√√√√Eσ

{
n

∑
j,k=1

σ jσk

}
. (15)

2840

MAGIC MOMENTS FOR STRUCTURED OUTPUT PREDICTION

Since for i 6= k, there holds that Eσ
{

σ jσk
}

= 0 and Eσ

{
σ2

j

}
= 1, we can finally write that:

(15) =
2√
n

(
c

√
1
n

n

∑
j=1

‖ϕ j‖4 +2
√

c

√
1
n

n

∑
j=1

‖ϕ j‖2 +1

)
.

In summary, we have found the following upper bound on the first empirical Rademacher com-
plexity:

Proposition 10 (Rademacher complexity R̂1,(x,ȳ)) The Rademacher complexity term R̂1,(x,ȳ) can
be bounded as:

R̂1,(x,ȳ) ≤
2√
n

(
c

√
1
n

n

∑
j=1

‖ϕ j‖4 +2
√

c

√
1
n

n

∑
j=1

‖ϕ j‖2 +1

)
,

which, given the boundedness of ‖ϕ j‖, decreases to zero as n increases to infinity, as required.

C.2 Rademacher Complexity for the Empirical Expectation of the Loss

Given a randomly sampled training set T = {(x1, ȳ1),(x2, ȳ2), . . . ,(x`, ȳ`)}. The empirical expecta-
tion of the loss can be written as:

Ê(x,ȳ)

{
LRRU

θ (x, ȳ)
}

=
1
`

`

∑
i=1

LRRU
θ (xi, ȳi)

=
1
`

`

∑
i=1

(
1
Ni

Ni

∑
j=1

(θT ϕi
j −1)2

)
,

where ϕi
j = φ(xi,yi

j)−φ(xi, ȳi) and Ni is the cardinality of the output space corresponding to xi.

For notational convenience, let us introduce the matrix Φi containing all vectors ϕi
j
T as its rows.

Then we can rewrite the expected loss function in a more compact form as:

Ê(x,ȳ)

{
LRRU

θ (x, ȳ)
}

=
1
`

`

∑
i=1

‖Φiθ−1‖2

Ni

=
1
`

`

∑
i=1

〈θθT ,ΦiT Φi〉−2〈θ,ΦiT 1〉+ 〈1,1〉
Ni

.

We have rewritten this in a form that contains a term linear in θθT , a term linear in θ, and a constant
term. It is exactly this decomposition of the empirical expectation of the loss that has allowed us to
derive a bound on the Rademacher term R̂1,(x,ȳ), so we can follow the same principles here. We
omit the details here, and just state the result:

Proposition 11 (Rademacher complexity R̂2) The Rademacher complexity term R̂2 can be bounded
as:

R̂2 ≤
2√
`


c

√√√√1
`

`

∑
i=1

(
∑Ni

j,k=1(ϕ
i
j
T ϕi

k)
2

N2
i

)
+2

√
c

√√√√1
`

`

∑
i=1

∥∥∥∥∥
∑Ni

j=1 ϕi
j

Ni

∥∥∥∥∥

2

+1


 ,

which again decreases to zero as ` increases to infinity.

2841

RICCI, DE BIE AND CRISTIANINI

Appendix D. Proof of the PAC Bound

This section contains the proof of the PAC bound stated in subsection 6.2.

D.1 Bounding the Effective Cardinality of the Hypothesis Space

The number of possible functions mapping the input space on the output space is potentially huge:
|Y ||X | for an observation space of size |X | and an output space of size |Y |. To make this more

concrete, for the HMM prediction problem discussed earlier, this is equal to
(
nm

h

)nm
o = nmnm

o
h , which

is doubly exponential in the length of the sequences m.
It would clearly be impossible to achieve learning if we had to consider all of these possible

functions mapping observations onto outputs. However, we will show that the hypothesis class of
prediction functions defined above contains only a very small subset of these functions. This means
that, while the cardinality of functions hθ is infinite (one such function for each θ∈R

d), the effective
cardinality is low, since many of these functions are equivalent. We will subsequently use this upper
bound on the effective cardinality to obtain a PAC bound on the generalization.

To upper bound the effective cardinality of the hypothesis space H , we borrow and reformulate
the so-called few inference functions theorem by Elizalde (to appear) in the terminology of the
present paper:

Theorem 12 (Elizalde) Let d and C be fixed positive integers. Let φ : X ×Y →{0,1, . . . ,C}d be a
fixed function (called the feature map). Then the hypothesis space H defined as H ={

hθ|hθ(x,y) = argmaxy θT φ(x,y)|θ ∈ R
d
}

has an effective cardinality of at most

K =
2d2−d+1

(d −2)!
Cd(d−1).

that is, the number of different prediction functions in H is at most K.

D.2 A PAC Bound for Learning Prediction Functions

Based on the effective cardinality of the hypothesis space we can now derive a PAC bound on the
expected risk. Let us derive the bound for the case where the empirical risk is equal to zero. Deriving
a PAC bound in the case of nonzero empirical risk is a well-known variation (Vapnik, 1998), and
we will not discuss it in the current paper.

The probability of classifying all the ` training examples correctly with any fixed prediction
function is:

P(all ` correct |p) ≤ (1− p)` ≤ exp(−`p)

where p is the expected risk for this prediction function. However in general, the prediction function
is chosen from the hypothesis space H . The probability over the sample that any of K prediction
functions with an expected error rate of at least p faultlessly performs on all training examples is
bounded by

P(all ` correct, for any prediction function ∈ H |p) ≤ K exp(−`p),

where K is the effective cardinality of H . Hence, the probability to get a zero training set error,
for any of the prediction functions and thus for any of the parameter values, is at most K exp(−`p),

2842

MAGIC MOMENTS FOR STRUCTURED OUTPUT PREDICTION

where p is the minimal error probability. Thus, we found an upper bound which holds with confi-
dence at least δ for the expected error rate p as:

p ≤ log(K)− log(δ)

`

As we have seen in Theorem 12, the effective cardinality of H is upper bounded by K =
2d2−d+1

(d−2)! Cd(d−1), and thus (using log(n!) ≤ n log(n)−n), we have proven the Theorem 8.

Appendix E. Algorithms

This section contains additional formulas that can be used for moments computation respectively in
case of sequence labeling (Algorithm 4) and of sequence alignment (Algorithm 5).

Algorithm 4 Extra formulas for sequence labeling
11: if z = i then M := 1
12: µt

pz(i, j) := ∑i µt
pz(i, j−1)π(i, j−1)+Mπ(p, j−1)

π(i, j)

5: if q = x1 ∧ p = i then ve
pq(i,1) := 1

11: if q = x j ∧ p = i then M := 1

12: ve
pq(i, j) := ∑i(v

e
pq(i, j−1)+2Mµe

pq(i, j−1)+M)π(i, j−1)

π(i, j)

11: if q′ = x j ∧ p′ = i then M1 := 1
if q = x j ∧ p = i then M2 := 1

12: ve
pqp′q′(i, j) :=

∑i(v
e
pqp′q′ (i, j−1)+M1µe

pq(i, j−1)+M2µe
p′q′ (i, j−1))π(i, j−1)

π(i, j)

5: if p = i then vt
pz(i,2) = 1

11: if p = i then M := 1

12: vt
pz(i, j) := ∑i(v

t
pz(i, j−1)π(i, j−1))+(2Mµt

pz(p, j−1)+M)π(p, j−1)

π(i, j)

11: if p′ = j then M1 := 1
if p = j then M2 := 1

12: vt
pzp′z′(i, j) :=

(∑i vt
pzp′z′ (i, j−1)π(i, j−1)+M1µt

pz(p′, j−1)π(p′, j−1)+M2µt
p′z′ (p, j−1)π(p, j−1))

π(i, j)

11: if z′ = i then M1 := 1
if q = x j ∧ p = i then M2 := 1

12: vet
pqp′z(i, j) :=

(∑i vet
pqp′z(i, j−1)π(i, j−1)+M1µe

pq(p′, j−1)π(p′, j−1)+M2µt
p′z′ (p, j)π(p, j))

π(i, j)

References

Y. Altun, T. Hofmann, and M. Johnson. Discriminative learning for label sequences via boosting. In
Advances in Neural Information Processing Systems (NIPS), pages 977-984, Vancouver, British
Columbia, 2003.

2843

RICCI, DE BIE AND CRISTIANINI

Algorithm 5 Extra formulas for affine gap penalties

µe(i, j) := 1
π(i, j)(µe(i−1, j)π(i−1, j)+π(i−2, j)+µe(i, j−1)π(i, j−1)

+π(i, j−2)+µe(i−1, j−1)π(i−1, j−1))

µo(i, j) := 1
π(i, j)(µo(i−1, j)π(i−1, j)+π(i−1, j)−π(i−2, j)+

µo(i, j−1)π(i, j−1)+π(i, j−1)−π(i, j−2)+µo(i−1, j−1)π(i−1, j−1))

voo(i, j) := 1
π(i, j)(voo(i−1, j−1)π(i−1, j−1)+ voo(i−1, j)π(i−1, j)

+2(µo(i−1, j)π(i−1, j)−µo(i−2, j)π(i−2, j)−π(i−2, j)+π(i−3, j))
+π(i−1, j)−π(i−2, j)+ voo(i, j−1)π(i, j−1)+2(µo(i, j−1)π(i, j−1)
−µo(i, j−2)π(i, j−2)−π(i, j−2)+π(i, j−3))+π(i, j−1)−π(i, j−2)

vee(i, j) := 1
π(i, j)(vee(i−1, j−1)π(i−1, j−1)+ vee(i−1, j)π(i−1, j)

+2µe(i−2, j)π(i−2, j)+2π(i−3, j)+π(i−2, j)+ vee(i, j−1)π(i, j−1)
+2µe(i, j−2)π(i, j−2)+2π(i, j−3)+π(i, j−2))

vmo(i, j) := 1
π(i, j)((vmo(i−1, j)+µm(i−1, j))π(i−1, j)−µm(i−2, j)π(i−2, j)

+(vmo(i, j−1)+µm(i, j−1))π(i, j−1)−µm(i, j−2)π(i, j−2)
+(vmo(i−1, j−1)+Mµo(i−1, j−1))π(i−1, j−1))

vme(i, j) := 1
π(i, j)((vme(i−1, j−1)+Mµe(i−1, j−1))π(i−1, j−1)

+vme(i−1, j)π(i−1, j)+µm(i−2, j)π(i−2, j)+ vme(i, j−1)π(i, j−1)
+µe(i, j−2)π(i, j−2))

veo(i, j) := 1
π(i, j)(veo(i−1, j−1)π(i−1, j−1)+ veo(i, j−1)π(i, j−1)

+µo(i, j−2)π(i, j−2)+π(i, j−2)−2π(i, j−3)+µe(i, j−1)π(i, j−1)
−µe(i, j−2)π(i, j−2)+ veo(i−1, j)π(i−1, j)+µo(i−2, j)π(i−2, j)
+π(i−2, j)−2π(i−3, j)+µe(i−1, j)π(i−1, j)−µe(i−2, j)π(i−2, j))

Y. Altun, T. Hofmann, and A. J. Smola. Gaussian process classification for segmenting and annotat-
ing sequences. In Proceedings of the Twenty-first International Conference on Machine Learning
(ICML), Banff, Alberta, Canada, 2004.

Y. Altun, I. Tsochantaridis, T. Hofmann. Hidden Markov support vector machines. In Proceedings of
the Twentieth International Conference on Machine Learning (ICML), pages 3-10, Washington,
DC, USA, 2003.

P. L. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: Risk bounds and structural
results. Journal of Machine Learning Research, 3:463-482, 2002.

H.S. Booth, J.H. Maindonald, S.R. Wilson, and J.E. Gready. An efficient Z-score algorithm for
assessing sequence alignments. Journal of Computational Biology, 11(4):616-25, 2004.

2844

MAGIC MOMENTS FOR STRUCTURED OUTPUT PREDICTION

M. Collins. Discriminative training methods for hidden Markov models: Theory and experiments
with perceptron algorithms. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1-8, 2002.

M. Collins. Ranking algorithms for named-entity extraction: boosting and the voted perceptron.
In Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL),
pages 489-496, 2002.

C. B. Do, D. A. Woods, and S. Batzoglou. CONTRAfold: RNA secondary structure prediction
without physics-based models. Bioinformatics, 22:e90-8, 2006.

R.F. Doolittle. Similar amino acid sequences: chance or common ancestry. Science, 214:149-159,
1981.

R. D. Dowell and S. R. Eddy. Evaluation of several lightweight stochastic context-free grammars
for RNA secondary structure prediction. BMC Bioinformatics, 5(71):1-14, 2004.

S. Elizalde and K. Woods. Bounds on the number of inference functions of a graphical model.
Statistica Sinica, 17:1395-1415, 2007.

Y. Freund, R. D. Iyer, R. E. Schapire, and Y. Singer. An efficient boosting algorithm for combin-
ing preferences. In Proceedings of the Fifteenth International Conference on Machine Learning
(ICML), pages 170-178, Madison, Wisconson, USA, 1998.

S. Griffiths-Jones, A. Bateman, M. Marshall, A. Khanna, and S.R. Eddy. Rfam: an RNA family
database. Nucleic Acids Research, 31(1):439-441, 2003.

D. Gusfield, K. Balasubramanian, and D. Naor. Parametric optimization of sequence alignment.
Algorithmica, 12:312-326, 1994.

D. Gusfield and P. Stelling. Parametric and inverse-parametric sequence alignment with XPARAL.
Methods in Enzymology, 266:481-494, 1996.

T. Joachims, T. Galor, and R. Elber, Learning to align sequences: a maximum-margin approach, In
New Algorithms for Macromolecular Simulation, B. Leimkuhler, LNCS Vol. 49, Springer, 2005.

J. Kececioglu and E. Kim, Simple and fast inverse alignment, In Proceedings of the Tenth ACM Con-
ference on Research in Computational Molecular Biology (RECOMB), pages 441-455, Venice,
Italy, 2006.

T. Kudo. CRF++: Yet another CRF toolkit, 2005. [http://crfpp.sourceforge.net].

J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: probabilistic models for seg-
menting and labeling data. In Proceedings of the Eighteenth International Conference on Machine
Learning (ICML), pages 282-289, Williamstown, MA, USA, 2001.

J. Lafferty, X. Zhu, and Y. Liu. Kernel conditional random fields: representation and clique selec-
tion. In Proceedings of the Twenty-first International Conference on Machine Learning (ICML),
pages 64-71, Banff, Alberta, Canada, 2004.

2845

RICCI, DE BIE AND CRISTIANINI

C. D. Manning and H. Schuetze. Foundations of Statistical Natural Language Processing. MIT
Press, Cambridge, MA, 1999.

D. McAllester. Generalization bounds and consistency for structured labeling in predicting struc-
tured data. Predicting Structured Data, edited by G. Bakir, T. Hofmann, B. Scholkopf, A. Smola,
B. Taskar, and S. V. N. Vishwanathan, MIT Press, 2007.

A. McCallum, D. Freitag, and F. Pereira. Maximum entropy Markov models for information extrac-
tion and segmentation. In Proceedings of the Seventeenth International Conference on Machine
Learning, pages 591-598, Stanford, CA, USA, 2000.

C. McDiarmid. On the method of bounded differences, London Mathematical Society Lecture Note
Series, 141:148-188, 1989.

S. B. Needleman and C. D. Wunsch. A general method applicable to the search for similarities in
the amino acid sequence of two proteins. Journal of Molecular Biology, 48:443-453, 1970.

L. Pachter and B. Sturmfels. Parametric inference for biological sequence analysis. In Proceedings
of the National Academy of Sciences USA, 101(46):16138-16143, 2004.

L. R. Rabiner. A tutorial on hidden Markov models and selected applications in speech recognition.
Proceedings of the IEEE, 77(2):257-286, 1989.

E. Ricci, T. De Bie, and N. Cristianini. Learning to align: a statistical approach. In Proceedings of
the Seventh International Symposium on Intelligent Data Analysis (IDA), pages 25-36, Ljubljana,
Slovenia, 2007.

K. Sato and Y. Sakakibara. RNA secondary structural alignment with conditional random fields.
Bioinformatics, 21(Suppl 2):ii237-ii242, 2005.

R. Schapire and Y. Singer. Improved boosting algorithms using confidencerated predictions. Ma-
chine Learning, 37(3):297-336, 1999.

F. Sun, D. Fernandez-Baca, and W. Yu. Inverse parametric sequence alignment. Journal of Algo-
rithms, 53(1):36-54, 2004.

B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov networks. In In Advances in Neural In-
formation Processing Systems (NIPS), Vancouver and Whistler, British Columbia, Canada, 2003.

B. Taskar, D. Klein, M. Collins, D. Koller, and C. Manning. Max-margin parsing. In Proceedings
of the Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1-8,
Barcelona, Spain, 2004.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and
interdependent output variables, Journal of Machine Learning Research, 6(9):1453-1484, 2005.

V. N. Vapnik. Statistical Learning Theory. Wiley & Sons, Inc., 1998.

D. H. Younger. Recognition and parsing of context-free languages in time n3. Information and
Control, 2(10):189-208, 1967.

2846

