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Abstract
The success of support vector machines in binary classification relies on the fact that hinge loss
employed in the risk minimization targets the Bayes rule. Recent research explores some extensions
of this large margin based method to the multicategory case. We show a moment bound for the so-
called multi-hinge loss minimizers based on two kinds of complexity constraints: entropy with
bracketing and empirical entropy. Obtaining such a result based on the latter is harder than finding
one based on the former. We obtain fast rates of convergence that adapt to the unknown margin.
Keywords: multi-hinge classification, all-at-once, moment bound, fast rate, entropy

1. Introduction

We consider multicategory classification with equal cost. Let Y ∈ {1, . . . ,m} denote one of the m
possible categories, and let X ∈ � d be a feature. We study the classification problem, where the
goal is to predict Y given X with small error. Let {(Xi,Yi)}n

i=1 be an independent and identically
distributed sample from (X ,Y ). In the binary case (m = 2) a classifier f :

� d → �
can be obtained

by minimizing the empirical hinge loss

1
n

n

∑
i=1

(1−Yi f (Xi))+ (1)

over a given class of candidate classifiers f ∈ F , where (1−Y f (X))+ := max(0,1−Y f (X)) with
Y ∈ {±1}. Hinge loss in combination with a reproducing kernel Hilbert space (RKHS) regular-
ization penalty is called the support vector machine (SVM). See, for example, Evgeniou, Pontil,
and Poggio (2000). In this paper, we examine the generalization of (1) to the multicategory case
(m > 2). We refer to this classifier as the multi-hinge, although, instead of RKHS-regularization we
will assume a given model class F satisfying a complexity constraint. We show a moment bound
for the excess multi-hinge risk based on two kinds of complexity constraints: entropy with brack-
eting and empirical entropy. Obtaining such a result based on the latter is harder than finding one
based on the former. We obtain fast rates of convergence that adapt to the unknown margin.

There are two strategies to generalize the binary SVM to the multicategory SVM. One strategy
is by solving a series of binary problems; the other is by considering all of the categories at once.
For the first strategy, some popular methods are the one-versus-rest method and the one-versus-one
method. The one-versus-rest method constructs m binary SVM classifiers. The j-th classifier f j

is trained taking the examples from class j as positive and the examples from all other categories
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as negative. A new example x is assigned to the category with the largest values of f j(x). The
one-versus-one method constructs one binary SVM classifier for every pair of distinct categories,
that is, all together m(m−1)/2 binary SVM classifiers are constructed. The classifier f i j is trained
taking the examples from category i as positive and the examples from category j as negative. For
a new example x, if fi j classifies x into category i then the vote for category i is increased by one.
Otherwise the vote for category j is increased by one. After each of the m(m− 1)/2 classifiers
makes its vote, x is assigned to the category with the largest number of votes. See Duan and Keerthi
(2005) and the references therein for an empirical study of the performance of these methods and
its variants.

An all-at-once strategy for SVM loss has been proposed by some authors. For examples, see
Vapnik (2000), Weston and Watkins (1999), Crammer and Singer (2000, 2001), and Guermeur
(2002). Roughly speaking, the idea is similar to the one-versus-rest approach but all the m classifiers
are obtained by solving one problem. (See Hsu and Lin, 2002, for details of the formulations.) Lee,
Lin, and Wahba (2004) (see also Lee, 2002) show that the relationship of the formulations of the
approaches above to the Bayes’ rule is not clear from the literature and that they do not always
implement the Bayes’ rule. They propose a new approach that has good theoretical properties. That
is, the defined loss is Bayes consistent and it provides a unifying framework for both equal and
unequal misclassification costs.

We consider the equal misclassification cost where a correct classification costs 0 and an incor-
rect classification costs 1. The target function f :

� d → � m is defined as an m-tuple of separating
functions with zero-sum constraint ∑m

j=1 f j(x) = 0, for any x ∈ � d . Hence, the classifier induced by
f (·) is

g(·) = arg max
j=1,...,m

f j(·) . (2)

Analogous to the binary case, when applying RKHS-regularization, each component f j(x) is con-

sidered as an element of a RKHS H K = {1}+ HK , for all j = 1, . . . ,m. That is, f j(x) is expressed

as h j(x)+b j with h j ∈ HK and b j some constant. To find f (·) = ( f1(·), . . . , fm(·)) ∈ Πm
j=1H K with

the zero-sum constraint, the extension of SVM methodology is to minimize

1
n

n

∑
i=1

m

∑
j=1, j 6=Yi

( f j(Xi)+
1

m−1
)+ +

λ
2

m

∑
j=1

||h j||2HK
. (3)

Based on (3), the multi-hinge loss is now defined as

l(Y, f (X)) :=
m

∑
j=1, j 6=Y

( f j(X)+
1

m−1
)+ . (4)

The binary SVM loss (1) is a special case by taking m = 2. When Y = 1, l(1, f (X)) = ( f2(X)+
1)+ = (1− f1(X))+. Similarly, when Y = −1, l(−1, f (X)) = (1 + f1(X))+. Thus, (4) is identical
with the binary SVM loss (1−Y f (X))+, where f1 plays the same role as f .

Using a classifier g defined as in (2), a misclassification occurs whenever g(X) 6= Y . Let P be
the unknown underlying measure of (X ,Y ). The prediction error of g is P(g(X) 6= Y ). Let p j(x)
denote the conditional probability of category j given x ∈ � d , j = 1, . . . ,m. The prediction error
is minimized by the Bayes classifier g∗ = argmax j=1,...,m p j, and the smallest prediction error is
P(g∗(X) 6= Y ).
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The theoretical multi-hinge risk is the expectation of the empirical multi-hinge loss with respect
to the measure P and is denoted by

R( f ) :=
Z

l(y, f (x)) dP(x,y) , (5)

with l(Y, f (X)) defined as in (4). In this setting, Bayes’ rule f ∗ is then an m-tuple separating func-
tions with 1 in the kth coordinate and −1/(m− 1) elsewhere, whenever k = argmax j=1,...,m p j(x),
x ∈ � d . Lemma 1 below shows that multi-hinge loss (4) is Bayes consistent. That is, f ∗ minimizes
multi-hinge risk (5) over all possible classifiers. We write R∗ = R( f ∗), the smallest possible multi-
hinge risk. Lemma 1 is an extension of Bayes consistency of the binary SVM that has been shown
by, for example, Lin (2002), Zhang (2004a) and Bartlett, Jordan, and McAuliffe (2006).

Lemma 1. Bayes classifier f ∗ minimizes the multi-hinge risk R( f ).

This lemma can be found in Lee, Lin, and Wahba (2004), Zhang (2004b,c), Tewari and Bartlett
(2005) and Zou, Zhu, and Hastie (2006). We give a self-contained proof in Appendix for com-
pleteness. They establish the conditions needed to achieve the consistency for a general fam-
ily of multicategory loss functions extended from various large margin binary classifiers. They
also show that the SVM-type losses proposed by Weston and Watkins (1999) and Crammer and
Singer (2001) are not Bayes consistent. Tewari and Bartlett (2005) and Zhang (2004b,c) also
show that the convergence to zero (in probability) of the excess multi-hinge risk R( f )−R∗ im-
plies the convergence to zero with the same rate (in probability) of the excess prediction error
P(g( f (X)) 6= Y )−P(g( f ∗(X)) 6= Y ).

The RKHS-regularization (3) has attracted some interest. For example, Lee and Cui (2006)
study an algorithm of fitting the entire regularization path and Wang and Shen (2007) study the use
of l1 penalty in place of the l2 penalty. In this paper, we will not study the RKHS-regularization but
we take the minimization of the empirical multi-hinge loss over a given class of candidate classifiers
F satisfying a complexity constraint. That is, we do not invoke a penalization technique.

Let F be a model class of candidate classifiers. For j = 1, . . . ,m, we assume that each f j is a
member of the same class Fo = {h :

� d → �
,h∈ L2(Q)}, with Q the unknown marginal distribution

of X . That is,

F = { f = ( f1, . . . , fm) :
m

∑
j=1

f j = 0, f j ∈ Fo} . (6)

Let Pn be the empirical distribution of (X ,Y ) based on the observations {(Xi,Yi)}n
i=1 and Qn the

corresponding empirical distribution of X based on X1, . . . ,Xn. We endow F with the following
squared semi-metrics

‖ f − f̃‖2
2,Q :=

m

∑
j=1

Z

| f j − f̃ j|2 dQ , and

‖ f − f̃‖2
2,Qn

:=
m

∑
j=1

1
n

n

∑
i=1

| f j(Xi)− f̃ j(Xi)|2 ,

for all f , f̃ ∈ F . We impose a complexity constraint on the class Fo in term of either the entropy
with bracketing or the empirical entropy. Below we give the definitions of the entropies.
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Definition of entropy. Let G be a subset of a metric space (Λ,d). Let

H(ε,G ,d) := logN(ε,G ,d) , for all ε > 0 ,

where N(ε,G ,d) is the smallest value of N for which there exist functions g1, . . . ,gN in G , such that
for each g ∈ G , there is a j = j(g) ∈ {1, . . . ,N}, such that

d(g,g j) ≤ ε .

Then N(ε,G ,d) is called the ε-covering number of G and H(ε,G ,d) is called the ε-entropy of G
(for the d-metric).

Definition of entropy with bracketing. Let G be a subset of a metric space (Λ,d) of real-valued
functions. Let

HB(ε,G ,d) := logNB(ε,G ,d) , for all ε > 0 ,

where NB(ε,G ,d) is the smallest value of N for which there exist pairs of functions
{[gL

1 ,g
U
1 ], . . . , [gL

N ,gU
N ]} such that d(gL

j ,g
U
j ) ≤ ε for all j = 1, . . . ,N, and such that for each g ∈ G ,

there is a j = j(g) ∈ {1, . . . ,N} such that

gL
j ≤ g ≤ gU

j .

Then NB(ε,G ,d) is called the ε-covering number with bracketing of G and HB(ε,G ,d) is called the
ε-entropy with bracketing of G (for the d-metric).

Let HB(ε,Fo,L2(Q)) and H(ε,Fo,L2(Qn)) denote the ε-entropy with bracketing and the empiri-
cal ε-entropy of the class Fo, respectively. The complexity of a model class can be summarized in a
complexity parameter ρ ∈ (0,1). Let A be some positive constant. We consider classes Fo satisfying
one of the following complexity constraints:

HB(ε,Fo,L2(Q)) ≤ Aε−2ρ , for all ε > 0 , or

H(ε,Fo,L2(Qn)) ≤ Aε−2ρ , for all ε > 0 , a.s. for all n ≥ 1 .

It is straightforward to show that for all ε > 0:

HB(ε,F ,‖ · ‖2,Q) ≤ (m−1) HB(ε(m−1)−1/2, Fo, L2(Q)) ,

H(ε,F ,‖ · ‖2,Qn) ≤ (m−1) H(ε(2(m−1))−1/2, Fo, L2(Qn)) .

We define the minimizer of the empirical multi-hinge loss (without penalty)

f̂n := argmin
f∈F

1
n

n

∑
i=1

m

∑
j=1, j 6=Yi

( f j(Xi)+
1

m−1
)+ , (7)

where the model class F defined as in (6) satisfies either an entropy with bracketing constraint or
an empirical entropy constraint described above.

Besides the model class complexity, the rate of convergence also depends on the so-called mar-
gin condition (see Condition A below) that quantifies the identifiability of the Bayes rule and is
summarized in a margin parameter (or noise level) κ ≥ 1. In Tarigan and van de Geer (2006), a
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probability inequality has been obtained for l1-penalized excess hinge risk in the binary case that
adapts to the unknown parameters. In this paper, we show a moment bound for the excess multi-
hinge risk R( f̂n)−R∗ of f̂n over the model class F with rate of convergence n−κ/(2κ−1+ρ), which is
faster than n−1/2.

In Section 2 we present our main result based on the margin and complexity conditions. The
proof of the main result is given in Section 3, together with our supporting lemmas. For the sake
of completeness and to avoid distraction, we place the proof of some supporting lemmas in the
Appendix.

2. A Moment Bound for Multi-hinge Classifiers

We first state the margin and the complexity conditions.

Condition A (Margin condition). There exist constants σ > 0 and κ ≥ 1 such that for all f ∈ F ,

R( f )−R∗ ≥ 1
σκ

( m

∑
j=1

Z

| f j − f ∗j | dQ
)κ

.

Condition B1 (Complexity constraint under ε-entropy with bracketing). Let 0 < ρ < 1 and let A
be a positive constant. The ε-entropy with bracketing satisfies the inequality

HB(ε,Fo,L2(Q)) ≤ Aε−2ρ , for all ε > 0 .

Condition B2 (Complexity constraint under empirical ε-entropy). Let 0 < ρ < 1 and let A be a
positive constant. The empirical ε-entropy, almost surely for all n ≥ 1, satisfies the inequality

H(ε,Fo,L2(Qn)) ≤ Aε−2ρ , for all ε > 0 .

Now we come to the main result.

Theorem 2. Assume Condition A is met and that | f j − f ∗j | ≤ M for all j = 1, . . . ,m, and all f =

( f1, . . . , fm) ∈ F . Let f̂n be the multi-hinge loss minimizer defined in (7). Suppose that either
Condition B1 or Condition B2 holds. Then for small values of δ > 0,

�
[R( f̂n)−R∗] ≤ 1+δ

1−δ
inf

{

R( f )−R∗ +C0 n−
κ

2κ−1+ρ : f ∈ F
}

with C0 some constant depending only on m, M, κ, σ, A and ρ.

Condition A follows from the condition on the behaviour of the conditional probabilities p j.
We formulate this in Condition AA below. We require that, for a fixed x ∈ � d , there is no pair of
categories having the same conditional probabilities each of which stays away from 1. Originally
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the terminology “margin condition” comes from the binary case of the prediction error considered
in the work of Mammen and Tsybakov (1999) and Tsybakov (2004), where the behaviour of p1,
the conditional probability of category 1, is restricted near {x : p1(x) = 1/2}. The “margin” set
{x : p1(x) = 1/2} identifies the Bayes predictor which assigns a new x to class 1 if p1(x) > 1/2
and class 2 otherwise. The margin condition is also called the condition on the noise level, and it is
summarized in a margin parameter κ. Boucheron, Bousquet, and Lugosi (2005, Section 5.2) discuss
the noise condition and its equivalent variants, corresponding to the fast rates of convergence, in the
binary case. Thus, Condition AA is a natural extension for the multicategory case wrt. hinge loss.
Lemma 3 below gives the connection between Condition A and Condition AA. We provide the
proof in the Appendix. For x ∈ X , let pk(x) = max j∈{1,...,m} p j(x) and define

τ(x) := min
j 6=k

{|p j(x)− pk(x)|,1− pk(x)} , (8)

where j and k take values in {1,2, . . . ,m}.

Condition AA. Let τ be defined in (8). There exist constants C ≥ 1 and γ ≥ 0 such that ∀z > 0,

Q({τ ≤ z}) ≤ (Cz)1/γ .

[Here we use the convention (Cz)1/γ = � {z ≥ 1/C} for γ = 0.]

Lemma 3. Suppose Condition AA is met. Then for all f ∈ F with | f j − f ∗j | ≤ M for all j = 1, . . . ,m,

R( f )−R∗ ≥ 1
σM

( m

∑
j=1

Z

| f j − f ∗j | dQ
)1+γ

,

where σM = C (mM(1/γ+1))γ (1+ γ). That is, Condition A holds with σ = (σM)1/κ and κ = 1+ γ.

Remark. In the definition of τ we have the extra piece 1− pk. It is needed for technical reason.
It forces that nowhere in the input space one class can clearly dominate. We refer to the work of
Bartlett and Wegkamp (2006, Section 4) and Tarigan and van de Geer (2006, Section 3.3.1) for
some ideas how to get around this difficulty.

The complexity constraints B1 and B2 cover some interesting classes, including
Vapnik-Chervonenkis (VC) subgraph classes and VC convex hull classes. See, for example, van der
Vaart and Wellner (1996, Section 2.7), van de Geer (2000, Sections 2.4, 3.7, 7.4, 10.1 and 10.3) and
Song and Wellner (2002). In the situation when the approximation error inf f∈F R( f )−R∗ is zero
(the model class F contains the Bayes classifier), Steinwart and Scovel (2005) obtain the same rate
of convergence for the excess hinge risk under the margin condition A and the complexity condition
B2. They consider the RKHS-regularization setting for the binary case instead.

We do not explore the behaviour of the approximation error inf f∈F R( f )−R∗. This problem is
still open and very hard to solve even in the binary case.

3. Proof of Theorem 2

Let f o := argmin f∈F R( f ), the minimizer of the theoretical risk in the model class F . As shorthand
notation we write for the loss l f = l f (X ,Y ) = l(Y, f (X)). We also write νn(l f ) =

√
n (Rn( f )−R( f )).
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Since Rn( f̂n)−Rn( f ) ≤ 0 for all f ∈ F , we have

R( f̂n)−R∗ ≤ −[Rn( f̂n)−R( f̂n)]+ [Rn( f o)−R( f o)]+R( f o)−R∗

≤ |νn(l f̂n
)−νn(l f o)|/

√
n+R( f o)−R∗ . (9)

We call inequality (9) a basic-inequality, following van de Geer (2000). This upper bound enables
us to work with the increments of the empirical process {νn(l f )−νn(l f o) : l f ∈ L} indexed by the
multi-hinge loss l f ∈ L , where L = {l f : f ∈ F }.

The procedure of the proof is based on the proof of Lemma 2.1 in del Barrio et al. (2007), page
206. We write

Zn(l f ) :=
|νn(l f )−νn(l f o)|

(

‖l f − l f o‖2,P ∨n−
1

2+2ρ
)1−ρ , l f ∈ L ,

where (a∨b) := max{a,b}, ‖l f ‖2
2,P :=

R

l2
f (x,y) dP(x,y) and ρ is from either Condition B1 or B2.

For short hand of notation, we also write Zn = Zn(l f̂n
). Then

R( f̂n)−R∗ ≤ (Zn/
√

n) ( ‖l f̂n
− l f o‖1−ρ

2,P ∨n−
1−ρ
2+2ρ ) + R( f o)−R∗ . (10)

Applying the triangular inequality and Lemma 4 below gives

‖l f̂n
− l f o‖1−ρ

2,P ≤ (m−1)(1−ρ)/2 (

‖ f̂n − f ∗‖1−ρ
2,Q +‖ f o − f ∗‖1−ρ

2,Q

)

.

Observe that for any f ∈ F with | f j − f ∗j | ≤ M, and for all j, Condition A gives ‖ f − f ∗‖2
2,Q ≤

Mσ (R( f )−R∗)1/κ. Thus,

‖l f̂n
− l f o‖1−ρ

2,P ≤C1

{

[R( f̂n)−R∗](1−ρ)/2κ +[R( f o)−R∗](1−ρ)/2κ
}

,

with C1 = ((m− 1)Mσ)(1−ρ)/2. Denote by R the right hand side of the above inequality. Hence,
from (10) we have

R( f̂n)−R∗ ≤ (Zn/
√

n) (R ∨n−
1−ρ
2+2ρ )+R( f o)−R∗ .

We consider first the case (R ∨n−
1−ρ
2+2ρ ) = R . That is,

R( f̂n)−R∗ ≤ Zn√
n

C1

{

[R( f̂n)−R∗](1−ρ)/2κ +[R( f o)−R( f ∗)](1−ρ)/2κ
}

+R( f o)−R∗ .

Two applications of Lemma 5 below yield for all 0 < δ < 1,

R( f̂n)−R∗ ≤ δ(R( f̂n)−R∗)+(1+δ)(R( f o)−R∗)+2
(

C1 Zn/
√

n
)

2κ
2κ−1+ρ δ−

1−ρ
2κ−1+ρ

≤ δ(R( f̂n)−R∗) +(1+δ)
(

R( f o)−R∗ +C2 Zr
n n−

κ
2κ−1+ρ

)

,

with C2 = 2 Cr
1 δ−

1−ρ
2κ−1+ρ and r = 2κ/(2κ−1+ρ). Now it is left to show that

�
[Zr

n] is bounded, say
by some constant C3. Then, C0 = C2C3 in Theorem 2.

To show that
�

[Zr
n] is bounded, we use an exponential tail probability of the supremum of the

weighted empirical process
{Zn(l f ) : l f ∈ L} . (11)
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We recall that HB(ε,F ,‖ · ‖2,Q) ≤ (m−1)HB(ε(m−1)−1/2,Fo,L2(Q)). A key observation is that

HB(ε,L ,L2(P)) ≤ (m−1) HB(ε(m−1)−1/2,F ,‖ · ‖2,Q) ,

by Lemma 4. It gives an upper bound for the ε-entropy with bracketing of the model class L :
HB(ε,L ,L2(P)) ≤ Aoε−2ρ, for all ε > 0, with Ao = A(m− 1)2+2ρ. Under Condition B1, an ap-
plication of Lemma 5.14 in van de Geer (2000), presented below in Lemma 6, gives the desired
exponential tail probability. Hence, for some positive constant c,

�
[Zr

n] =
Z c

0

�
(Zn ≥ t1/r) dt +

Z ∞

c

�
(Zn ≥ t1/r) dt

≤ c +
Z ∞

0
c exp(− t1/r

c2 ) dt = c+ rc2r+1Γ(r) .

For the case R ≤ n−(1−ρ)/(2+2ρ), we have

R( f̂n)−R∗ ≤ Zn n−1/(1+ρ) + R( f o)−R∗ .

We conclude by noting that n−1/(1+ρ) ≤ n−κ/(2κ−1+ρ), where κ ≥ 1 and 0 < ρ < 1.
Now we consider the case where Condition B2 holds instead of B1. By virtue of the proof

above, we need only to verify an exponential probability of the supremum of the process (11) under
Condition B2 instead of B1. This is done by employing Lemmas 7–9 below. Again, a key observa-
tion is that Lemma 4 and Condition B2 give us H(ε,L ,L2(Pn)) ≤ A(m−1)2+2ρε−2ρ. �

Lemma 4 gives an upper bound of the squared L2(P)-metric of the excess loss in terms of
‖ · ‖2,Q-metric.

Lemma 4.
�

[(l f (X ,Y )− l f ∗(X ,Y ))2] ≤ (m−1)∑m
j=1

R | f j − f ∗j |2 dQ .

Proof. We write ∆( f , f ∗) =
�

Y |X [(l f (X ,Y )− l f ∗(X ,Y ))2|X = x] and recall that p j(x) = P(Y = j|X =

x), for all j = 1, . . . ,m. We fix an arbitrary x ∈ � d . Definition of the loss gives

∆( f , f ∗) =
m

∑
j=1

p j

(

∑
i6= j

( fi +
1

m−1
)+− ( f ∗i +

1
m−1

)+

)2

=
m

∑
j=1

p j

(

∑
i∈I+( j)

( fi − f ∗i )+ ∑
i∈I−( j)

(− 1
m−1

− f ∗i )
)2

,

where I+( j) = {i 6= j : fi ≥ −1/(m− 1), i = 1, . . . ,m} and I−( j) = {i 6= j : fi < −1/(m−
1), i = 1, . . . ,m}. Use the facts that (∑n

i=1 ai)
2 ≤ n∑n

i=1 a2
i for all n ∈ � and ai ∈

�
, and that

max{|I+( j)|, |I−( j)|} ≤ m−1, to obtain

∆( f , f ∗) ≤ (m−1)
m

∑
j=1

p j

(

∑
i∈I+( j)

( fi − f ∗i )2 + ∑
i∈I−( j)

(− 1
m−1

− f ∗i )2
)

.

Clearly, |−1/(m−1)− f ∗i | ≤ | fi − f ∗i | for all i ∈ I−( j). Hence,

∆( f , f ∗) ≤ (m−1)
m

∑
j=1

p j (∑
i6= j

| fi − f ∗i |2) = (m−1)
m

∑
j=1

(1− p j)| f j − f ∗j |2 ,
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where the last equality is obtained using ∑m
j=1 p j = 1. We conclude the proof by bounding 1− p j

with 1 for all j and integrating over all x ∈ � d wrt. the marginal distribution Q. �

The technical lemma below is an immediate consequence of Young’s inequality (see, for ex-
ample, Hardy, Littlewood, and Pólya, 1988, Chapter 8.3), using some straightforward bounds to
simplify the expressions.

Lemma 5 (Technical Lemma). For all positive ν, t, δ and κ > β:

νtβ/κ ≤ δt + ν
κ

κ−β δ
−β

κ−β .

To ease the exposition, throughout Lemma 6 and Lemma 7 we write ‖ · ‖ = ‖ · ‖2,Q and ‖ · ‖n =
‖ · ‖2,Qn for the L2(Q)-norm and the L2(Qn)-norm, respectively.

Lemma 6 (van de Geer, 2000, Lemma 5.14). For a probability measure Q, let H be a class of
uniformly bounded functions h in L2(Q), say suph∈H |h−ho|∞ < 1, where ho is a fixed but arbitrary
function in H . Suppose that

HB(ε,H ,L2(Q)) ≤ Aoε−2ρ , for all ε > 0 ,

with 0 < ρ < 1 and Ao > 0. Then for some positive constants c and no depending only on ρ and Ao,

� (

sup
h∈H

|νn(h)−νn(ho)|
(

‖h−ho‖∨n−
1

2+2ρ
)1−ρ ≥ t

)

≤ c exp(−t/c2) ,

for all t > c and n > no.

Lemma 7. For a probability measure Q on (Z,A), let H be a class of uniformly bounded functions
h in L2(Q), say suph∈H |h−ho|∞ < 1, where ho is a fixed but arbitrary element in H . Suppose that

H(ε,H ,L2(Qn)) ≤ Aoε−2ρ , for all ε > 0 ,

with 0 < ρ < 1 and Ao > 0. Then for some positive constants c and no depending on ρ and Ao,

� (

sup
h∈H

|νn(h)−νn(ho)|
(

‖h−ho‖∨n−
1

2+2ρ
)1−ρ ≥ t

)

≤ c exp(−t/c2) ,

for all t > c and n > no.

Proof. For n≥ (t2/8)1+ρ/(1−ρ), Chebyshev’s inequality and a symmetrization technique (see, for ex-
ample, van de Geer, 2000, page 32) give

�
(

sup
h∈H

|νn(h)−νn(ho)|
(

‖h−ho‖∨n−1/(2+2ρ)
)1−ρ ≥ t

)
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≤ 4
�

(

sup
h∈H

|νε
n(h)−νε

n(h
o)|

(

‖h−ho‖n ∨n−1/(2+2ρ)
)1−ρ ≥

√
t/4

)

(12)

+ 4
�

(

sup
h∈H

‖h−ho‖1−ρ
n

(

‖h−ho‖∨n−1/(2+2ρ)
)1−ρ ≥

√
t/4

)

, (13)

where νε
n(h) is the symmetrized version of the νn(h). That is, νε

n(h) = (1/
√

n)∑n
i=1 εih(Zi), where

{εi}n
i=1 are independent random variables, independent of {Zi}n

i=1, with
�

(εi = 1) =
�

(εi = −1) =
1/2 for all i = 1, . . . ,n.

To handle (12), we divide the class H into two disjoint classes where the empirical distance
‖h− ho‖n is smaller or larger than n−1/(2+2ρ). Write Hn = {h ∈ H : ‖h− ho‖n ≤ n−1/(2+2ρ)}. By
Lemma 5.1 in van de Geer (2000), stated below in Lemma 8, for some positive constant c1,

� (

sup
h∈Hn

|νε
n(h)−νε

n(h
o)|

n−(1−ρ)/(2+2ρ)
≥
√

t/4
)

≤ c1 exp
(

− t n1/(1+ρ)

64 c2
1

)

.

Let J = min{ j > 1 : 2− j < n−1/(2+2ρ)}. We apply the peeling device on the set {h ∈ H : 2− j ≤
‖h−ho‖n ≤ 2− j+1, j = 1, . . . ,J} to obtain that, for all t > 1,

� (

sup
h∈H c

n

|νε
n(h)−νε

n(h
o)|

‖h−ho‖1−ρ
n

≥
√

t/4
∣

∣

∣
Z1, . . . ,Zn

)

≤
J

∑
j=1

� (

sup
h∈H

‖h−ho‖n≤2− j+1

|νε
n(h)−νε

n(h
o)| ≥

√
t

4
2− j(1−ρ) | Z1, . . . ,Zn

)

≤
J

∑
j=1

c2 exp(− t 22ρ j

216 c2
2

) ≤ c exp(−t/c2) .

To handle (13), we use a modification of Lemma 5.6 in van de Geer (2000), stated below in
Lemma 9, where we take t such that (

√
t/4)1/(1−ρ) ≥ 14u. �

Lemma 8 (van de Geer, 2000, Lemma 5.1). Let Z1, . . . ,Zn, . . . be i.i.d. with distribution Q on
(Z,A). Let {εi}n

i=1 be independent random variables, independent of {Zi}n
i=1, with

�
(εi = 1) =�

(εi = −1) = 1/2 for all i = 1, . . . ,n. Let H ⊂ L2(Q) be a class of functions on Z. Write νε
n(h) :=

1√
n ∑n

i=1 εih(Zi), with h ∈ H . Let

H (δ) := {h ∈ H : ‖h−ho‖2,Q ≤ δ} , δ̂n := sup
h∈H (δ)

‖h−ho‖2,Qn ,

where ho is a fixed but arbitrary function in H and Qn is the corresponding empirical distribution

of Z based on {Zi}n
i=1. For a ≥ 8C

(

R δ̂n
a/(32

√
n)

H1/2(u,H ,Qn)du ∨ δ̂n

)

, where C is some positive

constant, we have

�
(

sup
h∈H (δ)

|νε
n(h)−νε

n(h
o)| ≥ a

4

∣

∣

∣

∣

Z1, . . . ,Zn

)

≤C exp(− a2

64C2δ̂2
n

) .
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The following lemma is a modification of Lemma 5.6 in van de Geer (2000).

Lemma 9. For a probability measure S on (Z,A), let H be a class of uniformly bounded functions
independent of n with suph∈H |h|∞ ≤ 1. Suppose that almost surely for all n ≥ 1,

H(ε,H ,L2(Sn)) ≤ Aoε−2ρ, for all ε > 0 ,

with 0 < ρ < 1 and Ao > 0. Then, for all n,

� (

sup
h∈H

‖h‖2,Sn

‖h‖2,S ∨n−
1

2+2ρ
≥ 14u

)

≤ 4 exp(−u2 n
ρ

1+ρ ) ,

for all u ≥ 1.

Proof. Let {δn} be a sequence with δn → 0, nδ2
n → ∞, nδ2

n ≥ 2AoH(δn) for all n with H(δn) = δ−2ρ
n .

We apply the randomization device in Pollard (1984, page 32), as follows. Let Zn+1, . . . ,Z2n be
an independent copy of Z1, . . . ,Zn. Let ω1, . . . ,ωn be independent random variables, independent
of Z1, . . . ,Z2n, with

�
(ωi = 1) =

�
(ωi = 0) = 1/2 for all i = 1, . . . ,n. Set Zi

′ = Z2i−1+ωi and
Zi

′′ = Z2i−ωi , i = 1, . . . ,n, and Sn
′ = (1/n)∑n

i=1 δZi
′ , Sn

′′ = (1/n)∑n
i=1 δZi

′′ , and S̄2n = (Sn
′ +Sn

′′)/2.
Since the class is uniformly bounded by 1, an application of Chebyshev’s inequality gives that for
each h in H ,

� ( ‖h‖2,Sn

‖h‖2,S ∨δn
≤ 2u

)

≥ 1− 1
4u2 ≥ 3/4,

for all u≥ 1. Use a symmetrization lemma of Pollard (1984, Lemma II.3.8), see Appendix, to obtain

� (

sup
h∈H

‖h‖2,Sn

‖h‖2,S ∨δn
≥ 14u

)

≤ 2
� (

sup
h∈H

|‖h‖2,Sn
′ −‖h‖2,Sn

′′ |
‖h‖2,S ∨δn

≥ 12u
)

.

The peeling device on the set

{h ∈ H : (2u) j−1δn ≤ ‖h‖2,S ≤ (2u) jδn , j = 1,2, . . .}

and the inequality in Pollard (1984, page 33) give

� (

sup
h∈H

|‖h‖2,Sn
′ −‖h‖2,Sn

′′ |
‖h‖2,S ∨δn

≥ 12u

∣

∣

∣

∣

Z1, . . . ,Zn

)

≤
∞

∑
j=1

� (

sup
h∈H

‖h‖2,S≤(2u) jδn

|‖h‖Sn
′ −‖h‖Sn

′′ | ≥ 6(2u) jδn | Z1, . . . ,Zn

)

≤
∞

∑
j=1

2exp
(

H(
√

2(2u) jδn,H , S̄2n)−2n(2u)2 jδ2
n

)

≤
∞

∑
j=1

2exp
(

H((2u) jδn,H ,Sn
′)+H((2u) jδn,H ,Sn

′′)−2n(2u)2 jδ2
n

)
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≤
∞

∑
j=1

2exp
(

−n(2u)2 jδ2
n

)

, (14)

where the last inequality is obtained using that since nδ2
n ≥ 2AoH(δn), also nt2 ≥ 2AoH(t) for all

t ≥ δn (here t = (2u) jδn). Observe that, since (2u)2 j ≥ (2u)2 j > u2 j for all u ≥ 1 and j ≥ 1, we
have

∞

∑
j=1

exp(−n(2u)2 jδ2
n) ≤ 2exp(−u2nδ2

n) , (15)

whenever nδ2
n > log2. We finish the proof by combining (14) and (15), and taking δn = n−

1
2+2ρ . �

Appendix A.

Proof of Lemma 1. We write L( f (x)) =
�

Y |X [l(Y, f (X))|X = x] and recall that p j(x) = P(Y =
j|X = x) for all j = 1, . . . ,m, and that f = ( f1, . . . , fm) with ∑m

j=1 f j = 0. Definition (4) of the loss
and the fact that ∑m

j=1 p j = 1 give

L( f ) =
m

∑
j=1

p j(
m

∑
k=1, k 6= j

( fk +
1

m−1
)+) =

m

∑
j=1

(1− p j)( f j +
1

m−1
)+ .

Let pk = max j∈{1,...,m} p j. Here f ∗j = −1/(m− 1) for all j 6= k, and f ∗k = 1. Let J+(k) = { j 6=
k : f j ≥−1/(m−1) , j = 1, . . . ,m} and J−(k) = { j 6= k : f j <−1/(m−1) , j = 1, . . . ,m}. Write

∆( f ) := L( f )−L( f ∗)

= ∑
j 6=k

(1− p j)( f j +
1

m−1
)+ + (1− pk)( fk +

1
m−1

)+ − (1− pk)(1+
1

m−1
) .

We first consider the case fk ≥−1/(m−1). Here,

∆( f ) = (1− pk)( fk −1) + ∑
j 6=k

(1− p j)( f j +
1

m−1
)+ .

The zero-sum constraint ∑m
j=1 f j = 0 simply implies fk − 1 = −∑ j 6=k( f j +

1
m−1). Divide the sum

into the sets J+(k) and J−(k) to obtain

∆( f ) = ∑
j∈J+(k)

(pk − p j) ( f j +
1

m−1
) + (1− pk) ∑

j∈J−(k)

| f j +
1

m−1
| .

For the case fk < −1/(m−1), observe that

m
m−1

= ∑
j 6=k

( f j +
1

m−1
)+ fk +

1
m−1

< ∑
j 6=k

( f j +
1

m−1
)

to obtain

∆( f ) = (1− pk) (− m
m−1

)+ ∑
j 6=k

(1− p j)( f j +
1

m−1
)+

> (pk −1) ∑
j 6=k

( f j +
1

m−1
)+ ∑

j 6=k

(1− p j)( f j +
1

m−1
)+

= ∑
j∈J+(k)

(pk − p j) ( f j +
1

m−1
) + (1− pk) ∑

j∈J−(k)

| f j +
1

m−1
| .
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In both cases clearly L( f )−L( f ∗) is always non-negative since pk− p j is non-negative for all j 6= k.
It follows that

R( f )−R( f ∗) =
m

∑
k=1

Z

(L( f )−L( f ∗)) � (pk = max
j=1,...,m

p j) dQ

is always non-negative, with Q the unknown marginal distribution of X . �

Proof of Lemma 3. Let τ be defined as in (8). We write L( f (x)) =
�

Y |X [l(Y, f (X))|X = x] and
recall that p j(x) = P(Y = j|X = x) for all j = 1, . . . ,m, and that f = ( f1, . . . , fm) with ∑m

j=1 f j = 0.
From the proof of Lemma 1, clearly

(L( f )−L( f ∗)) � (pk = max
j=1,...,m

p j) ≥ τ ∑
j 6=k

| f j − f ∗j | ≥
τ
2

m

∑
j=1

| f j − f ∗j | ,

where the second inequality is obtained from the fact that | fk − f ∗k | ≤ ∑ j 6=k | f j − f ∗j |. That is, the
excess risk is lower bounded by

1
2

m

∑
j=1

Z

τ| f j − f ∗j |dQ .

It implies that, for all z > 0,

R( f )−R∗ ≥ z
2

m

∑
j=1

[

Z

| f j − f ∗j |dQ−
Z

τ≤z
| f j − f ∗j |dQ

]

.

Since | f j − f ∗j | ≤ M for all j, and by Condition AA, the second integral in the inequality above can

be upper bounded by M(Cz)1/γ. Thus, for all z > 0,

R( f )−R∗ ≥ z
2

m

∑
j=1

Z

| f j − f ∗j |dQ − z
2

mM(Cz)1/γ .

We take z =
(

∑m
j=1

R | f j − f ∗j |dQ
)γ

/
(

mMC1/γ(1+ γ−1)
)γ

when γ > 0, and z ↑ 1/C when γ = 0. �

Symmetrization lemma (Pollard, 1984, Lemma II.3.8). Let {Z(t) : t ∈ T} and {Z ′(t) : t ∈ T} be
independent stochastic process sharing an index set T . Suppose there exist constants β > 0 and
α > 0 such that

�
(|Z(t)| ≤ α) ≥ β for every t ∈ T . Then

� (

sup
t
|Z(t)| > ε

)

≤ β−1 � (

sup
t

|Z(t)−Z′(t)| > ε−α
)

.
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