Home Page

Papers

Submissions

News

Editorial Board

Open Source Software

Proceedings (PMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

Confidence Intervals and Hypothesis Testing for High-Dimensional Regression

Adel Javanmard, Andrea Montanari; 15(82):2869−2909, 2014.

Abstract

Fitting high-dimensional statistical models often requires the use of non-linear parameter estimation procedures. As a consequence, it is generally impossible to obtain an exact characterization of the probability distribution of the parameter estimates. This in turn implies that it is extremely challenging to quantify the uncertainty associated with a certain parameter estimate. Concretely, no commonly accepted procedure exists for computing classical measures of uncertainty and statistical significance as confidence intervals or $p$-values for these models.

We consider here high- dimensional linear regression problem, and propose an efficient algorithm for constructing confidence intervals and $p$-values. The resulting confidence intervals have nearly optimal size. When testing for the null hypothesis that a certain parameter is vanishing, our method has nearly optimal power.

Our approach is based on constructing a `de-biased' version of regularized M-estimators. The new construction improves over recent work in the field in that it does not assume a special structure on the design matrix. We test our method on synthetic data and a high- throughput genomic data set about riboflavin production rate, made publicly available by Bühlmann et al. (2014).

[abs][pdf][bib]       
© JMLR 2014. (edit, beta)