Processing math: 100%



Home Page

Papers

Submissions

News

Editorial Board

Open Source Software

Proceedings (PMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

Discrete Reproducing Kernel Hilbert Spaces: Sampling and Distribution of Dirac-masses

Palle Jorgensen, Feng Tian; 16(96):3079−3114, 2015.

Abstract

We study reproducing kernels, and associated reproducing kernel Hilbert spaces (RKHSs) H over infinite, discrete and countable sets V. In this setting we analyze in detail the distributions of the corresponding Dirac point-masses of V. Illustrations include certain models from neural networks: An Extreme Learning Machine (ELM) is a neural network-configuration in which a hidden layer of weights are randomly sampled, and where the object is then to compute resulting output. For RKHSs H of functions defined on a prescribed countable infinite discrete set V, we characterize those which contain the Dirac masses δx for all points x in V. Further examples and applications where this question plays an important role are: (i) discrete Brownian motion-Hilbert spaces, i.e., discrete versions of the Cameron-Martin Hilbert space; (ii) energy-Hilbert spaces corresponding to graph-Laplacians where the set V of vertices is then equipped with a resistance metric; and finally (iii) the study of Gaussian free fields.

[abs][pdf][bib]       
© JMLR 2015. (edit, beta)