Home Page

Papers

Submissions

News

Editorial Board

Open Source Software

Proceedings (PMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

Harmonic Mean Iteratively Reweighted Least Squares for Low-Rank Matrix Recovery

Christian Kümmerle, Juliane Sigl; 19(47):1−49, 2018.

Abstract

We propose a new iteratively reweighted least squares (IRLS) algorithm for the recovery of a matrix $X \in \mathbb{C}^{d_1\times d_2}$ of rank $r \ll\min(d_1,d_2)$ from incomplete linear observations, solving a sequence of low complexity linear problems. The easily implementable algorithm, which we call harmonic mean iteratively reweighted least squares (HM-IRLS), optimizes a non-convex Schatten-$p$ quasi-norm penalization to promote low-rankness and carries three major strengths, in particular for the matrix completion setting. First, we observe a remarkable {global convergence behavior} of the algorithm's iterates to the low-rank matrix for relevant, interesting cases, for which any other state-of-the-art optimization approach fails the recovery. Secondly, HM-IRLS exhibits an empirical recovery probability close to $1$ even for a number of measurements very close to the theoretical lower bound $r (d_1 +d_2 -r)$, i.e., already for significantly fewer linear observations than any other tractable approach in the literature. Thirdly, HM-IRLS exhibits a locally superlinear rate of convergence (of order $2-p$) if the linear observations fulfill a suitable null space property. While for the first two properties we have so far only strong empirical evidence, we prove the third property as our main theoretical result.

[abs][pdf][bib]        [github.com]
© JMLR 2018. (edit, beta)