Home Page

Papers

Submissions

News

Editorial Board

Announcements

Proceedings

Open Source Software

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

GraKeL: A Graph Kernel Library in Python

Giannis Siglidis, Giannis Nikolentzos, Stratis Limnios, Christos Giatsidis, Konstantinos Skianis, Michalis Vazirgiannis; 21(54):1−5, 2020.

Abstract

The problem of accurately measuring the similarity between graphs is at the core of many applications in a variety of disciplines. Graph kernels have recently emerged as a promising approach to this problem. There are now many kernels, each focusing on different structural aspects of graphs. Here, we present GraKeL, a library that unifies several graph kernels into a common framework. The library is written in Python and adheres to the scikit-learn interface. It is simple to use and can be naturally combined with scikit-learn's modules to build a complete machine learning pipeline for tasks such as graph classification and clustering. The code is BSD licensed and is available at: https://github.com/ysig/GraKeL.

[abs][pdf][bib]        [code]
© JMLR 2020. (edit, beta)