Home Page

Papers

Submissions

News

Editorial Board

Announcements

Proceedings

Open Source Software

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

Optimal Bipartite Network Clustering

Zhixin Zhou, Arash A. Amini; 21(40):1−68, 2020.

Abstract

We study bipartite community detection in networks, or more generally the network biclustering problem. We present a fast two-stage procedure based on spectral initialization followed by the application of a pseudo-likelihood classifier twice. Under mild regularity conditions, we establish the weak consistency of the procedure (i.e., the convergence of the misclassification rate to zero) under a general bipartite stochastic block model. We show that the procedure is optimal in the sense that it achieves the optimal convergence rate that is achievable by a biclustering oracle, adaptively over the whole class, up to constants. This is further formalized by deriving a minimax lower bound over a class of biclustering problems. The optimal rate we obtain sharpens some of the existing results and generalizes others to a wide regime of average degree growth, from sparse networks with average degrees growing arbitrarily slowly to fairly dense networks with average degrees of order $\sqrt{n}$. As a special case, we recover the known exact recovery threshold in the $\log n$ regime of sparsity. To obtain the consistency result, as part of the provable version of the algorithm, we introduce a sub-block partitioning scheme that is also computationally attractive, allowing for distributed implementation of the algorithm without sacrificing optimality. The provable algorithm is derived from a general class of pseudo-likelihood biclustering algorithms that employ simple EM type updates. We show the effectiveness of this general class by numerical simulations.

[abs][pdf][bib]       
© JMLR 2020. (edit, beta)