Home Page

Papers

Submissions

News

Editorial Board

Open Source Software

Proceedings (PMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

Path Length Bounds for Gradient Descent and Flow

Chirag Gupta, Sivaraman Balakrishnan, Aaditya Ramdas; 22(68):1−63, 2021.

Abstract

We derive bounds on the path length $\zeta$ of gradient descent (GD) and gradient flow (GF) curves for various classes of smooth convex and nonconvex functions. Among other results, we prove that: (a) if the iterates are linearly convergent with factor $(1-c)$, then $\zeta$ is at most $\mathcal{O}(1/c)$; (b) under the Polyak-Kurdyka-\L ojasiewicz (PKL) condition, $\zeta$ is at most $\mathcal{O}(\sqrt{\kappa})$, where $\kappa$ is the condition number, and at least $\widetilde\Omega(\sqrt{d} \wedge \kappa^{1/4})$; (c) for quadratics, $\zeta$ is $\Theta(\min\{\sqrt{d},\sqrt{\log \kappa}\})$ and in some cases can be independent of $\kappa$; (d) assuming just convexity, $\zeta$ can be at most $2^{4d\log d}$; (e) for separable quasiconvex functions, $\zeta$ is ${\Theta}(\sqrt{d})$. Thus, we advance current understanding of the properties of GD and GF curves beyond rates of convergence. We expect our techniques to facilitate future studies for other algorithms.

[abs][pdf][bib]        [blog]
© JMLR 2021. (edit, beta)