Home Page

Papers

Submissions

News

Editorial Board

Proceedings

Open Source Software

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

Determining the Number of Communities in Degree-corrected Stochastic Block Models

Shujie Ma, Liangjun Su, Yichong Zhang; 22(69):1−63, 2021.

Abstract

We propose to estimate the number of communities in degree-corrected stochastic block models based on a pseudo likelihood ratio statistic. To this end, we introduce a method that combines spectral clustering with binary segmentation. This approach guarantees an upper bound for the pseudo likelihood ratio statistic when the model is over-fitted. We also derive its limiting distribution when the model is under-fitted. Based on these properties, we establish the consistency of our estimator for the true number of communities. Developing these theoretical properties require a mild condition on the average degrees - growing at a rate no slower than log(n), where n is the number of nodes. Our proposed method is further illustrated by simulation studies and analysis of real-world networks. The numerical results show that our approach has satisfactory performance when the network is semi-dense.

[abs][pdf][bib]       
© JMLR 2021. (edit, beta)