Home Page

Papers

Submissions

News

Editorial Board

Open Source Software

Proceedings (PMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

JMLR Volume 10

Exploring Strategies for Training Deep Neural Networks
Hugo Larochelle, Yoshua Bengio, Jérôme Louradour, Pascal Lamblin; (1):1−40, 2009.
[abs][pdf][bib]

Markov Properties for Linear Causal Models with Correlated Errors
Changsung Kang, Jin Tian; (2):41−70, 2009.
[abs][pdf][bib]

An Analysis of Convex Relaxations for MAP Estimation of Discrete MRFs
M. Pawan Kumar, Vladimir Kolmogorov, Philip H.S. Torr; (3):71−106, 2009.
[abs][pdf][bib]

Refinement of Reproducing Kernels
Yuesheng Xu, Haizhang Zhang; (4):107−140, 2009.
[abs][pdf][bib]

Subgroup Analysis via Recursive Partitioning
Xiaogang Su, Chih-Ling Tsai, Hansheng Wang, David M. Nickerson, Bogong Li; (5):141−158, 2009.
[abs][pdf][bib]

Python Environment for Bayesian Learning: Inferring the Structure of Bayesian Networks from Knowledge and Data
Abhik Shah, Peter Woolf; (6):159−162, 2009.
[abs][pdf][bib]

On The Power of Membership Queries in Agnostic Learning
Vitaly Feldman; (7):163−182, 2009.
[abs][pdf][bib]

Using Local Dependencies within Batches to Improve Large Margin Classifiers
Volkan Vural, Glenn Fung, Balaji Krishnapuram, Jennifer G. Dy, Bharat Rao; (8):183−206, 2009.
[abs][pdf][bib]

Distance Metric Learning for Large Margin Nearest Neighbor Classification
Kilian Q. Weinberger, Lawrence K. Saul; (9):207−244, 2009.
[abs][pdf][bib]

Data-driven Calibration of Penalties for Least-Squares Regression
Sylvain Arlot, Pascal Massart; (10):245−279, 2009.
[abs][pdf][bib]

Analysis of Perceptron-Based Active Learning
Sanjoy Dasgupta, Adam Tauman Kalai, Claire Monteleoni; (11):281−299, 2009.
[abs][pdf][bib]

Improving the Reliability of Causal Discovery from Small Data Sets Using Argumentation
Facundo Bromberg, Dimitris Margaritis; (12):301−340, 2009.
[abs][pdf][bib]

Low-Rank Kernel Learning with Bregman Matrix Divergences
Brian Kulis, Mátyás A. Sustik, Inderjit S. Dhillon; (13):341−376, 2009.
[abs][pdf][bib]

Supervised Descriptive Rule Discovery: A Unifying Survey of Contrast Set, Emerging Pattern and Subgroup Mining
Petra Kralj Novak, Nada Lavrač, Geoffrey I. Webb; (14):377−403, 2009.
[abs][pdf][bib]

Particle Swarm Model Selection
Hugo Jair Escalante, Manuel Montes, Luis Enrique Sucar; (15):405−440, 2009.
[abs][pdf][bib]

Generalization Bounds for Ranking Algorithms via Algorithmic Stability
Shivani Agarwal, Partha Niyogi; (16):441−474, 2009.
[abs][pdf][bib]

Controlling the False Discovery Rate of the Association/Causality Structure Learned with the PC Algorithm
Junning Li, Z. Jane Wang; (17):475−514, 2009.
[abs][pdf][bib]

Identification of Recurrent Neural Networks by Bayesian Interrogation Techniques
Barnabás Póczos, András Loőrincz; (18):515−554, 2009.
[abs][pdf][bib]

On the Consistency of Feature Selection using Greedy Least Squares Regression
Tong Zhang; (19):555−568, 2009.
[abs][pdf][bib]

Online Learning with Sample Path Constraints
Shie Mannor, John N. Tsitsiklis, Jia Yuan Yu; (20):569−590, 2009.
[abs][pdf][bib]

NEUROSVM: An Architecture to Reduce the Effect of the Choice of Kernel on the Performance of SVM
Pradip Ghanty, Samrat Paul, Nikhil R. Pal; (21):591−622, 2009.
[abs][pdf][bib]

Scalable Collaborative Filtering Approaches for Large Recommender Systems
Gábor Takács, István Pilászy, Bottyán Németh, Domonkos Tikk; (22):623−656, 2009.
[abs][pdf][bib]

Nearest Neighbor Clustering: A Baseline Method for Consistent Clustering with Arbitrary Objective Functions
Sébastien Bubeck, Ulrike von Luxburg; (23):657−698, 2009.
[abs][pdf][bib]

Properties of Monotonic Effects on Directed Acyclic Graphs
Tyler J. VanderWeele, James M. Robins; (24):699−718, 2009.
[abs][pdf][bib]

On Efficient Large Margin Semisupervised Learning: Method and Theory
Junhui Wang, Xiaotong Shen, Wei Pan; (25):719−742, 2009.
[abs][pdf][bib]

Nieme: Large-Scale Energy-Based Models
Francis Maes; (26):743−746, 2009.
[abs][pdf][bib]

Similarity-based Classification: Concepts and Algorithms
Yihua Chen, Eric K. Garcia, Maya R. Gupta, Ali Rahimi, Luca Cazzanti; (27):747−776, 2009.
[abs][pdf][bib]

Sparse Online Learning via Truncated Gradient
John Langford, Lihong Li, Tong Zhang; (28):777−801, 2009.
[abs][pdf][bib]

A New Approach to Collaborative Filtering: Operator Estimation with Spectral Regularization
Jacob Abernethy, Francis Bach, Theodoros Evgeniou, Jean-Philippe Vert; (29):803−826, 2009.
[abs][pdf][bib]

Consistency and Localizability
Alon Zakai, Ya'acov Ritov; (30):827−856, 2009.
[abs][pdf][bib]

Stable and Efficient Gaussian Process Calculations
Leslie Foster, Alex Waagen, Nabeela Aijaz, Michael Hurley, Apolonio Luis, Joel Rinsky, Chandrika Satyavolu, Michael J. Way, Paul Gazis, Ashok Srivastava; (31):857−882, 2009.
[abs][pdf][bib]

Estimation of Sparse Binary Pairwise Markov Networks using Pseudo-likelihoods
Holger Höfling, Robert Tibshirani; (32):883−906, 2009.
[abs][pdf][bib]

Polynomial-Delay Enumeration of Monotonic Graph Classes
Jan Ramon, Siegfried Nijssen; (33):907−929, 2009.
[abs][pdf][bib]

Java-ML: A Machine Learning Library
Thomas Abeel, Yves Van de Peer, Yvan Saeys; (34):931−934, 2009.
[abs][pdf][bib]

Nonextensive Information Theoretic Kernels on Measures
André F. T. Martins, Noah A. Smith, Eric P. Xing, Pedro M. Q. Aguiar, Mário A. T. Figueiredo; (35):935−975, 2009.
[abs][pdf][bib]

On Uniform Deviations of General Empirical Risks with Unboundedness, Dependence, and High Dimensionality
Wenxin Jiang; (36):977−996, 2009.
[abs][pdf][bib]

Fourier Theoretic Probabilistic Inference over Permutations
Jonathan Huang, Carlos Guestrin, Leonidas Guibas; (37):997−1070, 2009.
[abs][pdf][bib]

An Algorithm for Reading Dependencies from the Minimal Undirected Independence Map of a Graphoid that Satisfies Weak Transitivity
Jose M. Peña, Roland Nilsson, Johan Björkegren, Jesper Tegnér; (38):1071−1094, 2009.
[abs][pdf][bib]

Universal Kernel-Based Learning with Applications to Regular Languages
Leonid (Aryeh) Kontorovich, Boaz Nadler; (39):1095−1129, 2009.
[abs][pdf][bib]

Multi-task Reinforcement Learning in Partially Observable Stochastic Environments
Hui Li, Xuejun Liao, Lawrence Carin; (40):1131−1186, 2009.
[abs][pdf][bib]

The Hidden Life of Latent Variables: Bayesian Learning with Mixed Graph Models
Ricardo Silva, Zoubin Ghahramani; (41):1187−1238, 2009.
[abs][pdf][bib]

Incorporating Functional Knowledge in Neural Networks
Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, René Garcia; (42):1239−1262, 2009.
[abs][pdf][bib]

Perturbation Corrections in Approximate Inference: Mixture Modelling Applications
Ulrich Paquet, Ole Winther, Manfred Opper; (43):1263−1304, 2009.
[abs][pdf][bib]

Robust Process Discovery with Artificial Negative Events
Stijn Goedertier, David Martens, Jan Vanthienen, Bart Baesens; (44):1305−1340, 2009.
[abs][pdf][bib]

Feature Selection with Ensembles, Artificial Variables, and Redundancy Elimination
Eugene Tuv, Alexander Borisov, George Runger, Kari Torkkola; (45):1341−1366, 2009.
[abs][pdf][bib]

A Parameter-Free Classification Method for Large Scale Learning
Marc Boullé; (46):1367−1385, 2009.
[abs][pdf][bib]

Model Monitor (M2): Evaluating, Comparing, and Monitoring Models
Troy Raeder, Nitesh V. Chawla; (47):1387−1390, 2009.
[abs][pdf][bib]

A Least-squares Approach to Direct Importance Estimation
Takafumi Kanamori, Shohei Hido, Masashi Sugiyama; (48):1391−1445, 2009.
[abs][pdf][bib]

Classification with Gaussians and Convex Loss
Dao-Hong Xiang, Ding-Xuan Zhou; (49):1447−1468, 2009.
[abs][pdf][bib]

Entropy Inference and the James-Stein Estimator, with Application to Nonlinear Gene Association Networks
Jean Hausser, Korbinian Strimmer; (50):1469−1484, 2009.
[abs][pdf][bib]

Robustness and Regularization of Support Vector Machines
Huan Xu, Constantine Caramanis, Shie Mannor; (51):1485−1510, 2009.
[abs][pdf][bib]

Strong Limit Theorems for the Bayesian Scoring Criterion in Bayesian Networks
Nikolai Slobodianik, Dmitry Zaporozhets, Neal Madras; (52):1511−1526, 2009.
[abs][pdf][bib]

Bayesian Network Structure Learning by Recursive Autonomy Identification
Raanan Yehezkel, Boaz Lerner; (53):1527−1570, 2009.
[abs][pdf][bib]

Learning Linear Ranking Functions for Beam Search with Application to Planning
Yuehua Xu, Alan Fern, Sungwook Yoon; (54):1571−1610, 2009.
[abs][pdf][bib]

Marginal Likelihood Integrals for Mixtures of Independence Models
Shaowei Lin, Bernd Sturmfels, Zhiqiang Xu; (55):1611−1631, 2009.
[abs][pdf][bib]

Transfer Learning for Reinforcement Learning Domains: A Survey
Matthew E. Taylor, Peter Stone; (56):1633−1685, 2009.
[abs][pdf][bib]

Application of Non Parametric Empirical Bayes Estimation to High Dimensional Classification
Eitan Greenshtein, Junyong Park; (57):1687−1704, 2009.
[abs][pdf][bib]

Learning Permutations with Exponential Weights
David P. Helmbold, Manfred K. Warmuth; (58):1705−1736, 2009.
[abs][pdf][bib]

SGD-QN: Careful Quasi-Newton Stochastic Gradient Descent
Antoine Bordes, Léon Bottou, Patrick Gallinari; (59):1737−1754, 2009.
[abs][pdf][bib]

Dlib-ml: A Machine Learning Toolkit
Davis E. King; (60):1755−1758, 2009.
[abs][pdf][bib]

Settable Systems: An Extension of Pearl's Causal Model with Optimization, Equilibrium, and Learning
Halbert White, Karim Chalak; (61):1759−1799, 2009.
[abs][pdf][bib]

Distributed Algorithms for Topic Models
David Newman, Arthur Asuncion, Padhraic Smyth, Max Welling; (62):1801−1828, 2009.
[abs][pdf][bib]

Nonlinear Models Using Dirichlet Process Mixtures
Babak Shahbaba, Radford Neal; (63):1829−1850, 2009.
[abs][pdf][bib]

CarpeDiem: Optimizing the Viterbi Algorithm and Applications to Supervised Sequential Learning
Roberto Esposito, Daniele P. Radicioni; (64):1851−1880, 2009.
[abs][pdf][bib]

Learning Acyclic Probabilistic Circuits Using Test Paths
Dana Angluin, James Aspnes, Jiang Chen, David Eisenstat, Lev Reyzin; (65):1881−1911, 2009.
[abs][pdf][bib]

Learning Approximate Sequential Patterns for Classification
Zeeshan Syed, Piotr Indyk, John Guttag; (66):1913−1936, 2009.
[abs][pdf][bib]

Hybrid MPI/OpenMP Parallel Linear Support Vector Machine Training
Kristian Woodsend, Jacek Gondzio; (67):1937−1953, 2009.
[abs][pdf][bib]

Provably Efficient Learning with Typed Parametric Models
Emma Brunskill, Bethany R. Leffler, Lihong Li, Michael L. Littman, Nicholas Roy; (68):1955−1988, 2009.
[abs][pdf][bib]

Fast Approximate kNN Graph Construction for High Dimensional Data via Recursive Lanczos Bisection
Jie Chen, Haw-ren Fang, Yousef Saad; (69):1989−2012, 2009.
[abs][pdf][bib]

Ultrahigh Dimensional Feature Selection: Beyond The Linear Model
Jianqing Fan, Richard Samworth, Yichao Wu; (70):2013−2038, 2009.
[abs][pdf][bib]

Evolutionary Model Type Selection for Global Surrogate Modeling
Dirk Gorissen, Tom Dhaene, Filip De Turck; (71):2039−2078, 2009.
[abs][pdf][bib]

An Anticorrelation Kernel for Subsystem Training in Multiple Classifier Systems
Luciana Ferrer, Kemal Sönmez, Elizabeth Shriberg; (72):2079−2114, 2009.
[abs][pdf][bib]

Deterministic Error Analysis of Support Vector Regression and Related Regularized Kernel Methods
Christian Rieger, Barbara Zwicknagl; (73):2115−2132, 2009.
[abs][pdf][bib]

RL-Glue: Language-Independent Software for Reinforcement-Learning Experiments
Brian Tanner, Adam White; (74):2133−2136, 2009.
[abs][pdf][bib]

Discriminative Learning Under Covariate Shift
Steffen Bickel, Michael Brückner, Tobias Scheffer; (75):2137−2155, 2009.
[abs][pdf][bib]

Optimized Cutting Plane Algorithm for Large-Scale Risk Minimization
Vojtěch Franc, Sören Sonnenburg; (76):2157−2192, 2009.
[abs][pdf][bib]

Margin-based Ranking and an Equivalence between AdaBoost and RankBoost
Cynthia Rudin, Robert E. Schapire; (77):2193−2232, 2009.
[abs][pdf][bib]

The P-Norm Push: A Simple Convex Ranking Algorithm that Concentrates at the Top of the List
Cynthia Rudin; (78):2233−2271, 2009.
[abs][pdf][bib]

Learning Nondeterministic Classifiers
Juan José del Coz, Jorge Díez, Antonio Bahamonde; (79):2273−2293, 2009.
[abs][pdf][bib]

The Nonparanormal: Semiparametric Estimation of High Dimensional Undirected Graphs
Han Liu, John Lafferty, Larry Wasserman; (80):2295−2328, 2009.
[abs][pdf][bib]

Computing Maximum Likelihood Estimates in Recursive Linear Models with Correlated Errors
Mathias Drton, Michael Eichler, Thomas S. Richardson; (81):2329−2348, 2009.
[abs][pdf][bib]

Estimating Labels from Label Proportions
Novi Quadrianto, Alex J. Smola, Tibério S. Caetano, Quoc V. Le; (82):2349−2374, 2009.
[abs][pdf][bib]

Exploiting Product Distributions to Identify Relevant Variables of Correlation Immune Functions
Lisa Hellerstein, Bernard Rosell, Eric Bach, Soumya Ray, David Page; (83):2375−2411, 2009.
[abs][pdf][bib]

Reinforcement Learning in Finite MDPs: PAC Analysis
Alexander L. Strehl, Lihong Li, Michael L. Littman; (84):2413−2444, 2009.
[abs][pdf][bib]

Prediction With Expert Advice For The Brier Game
Vladimir Vovk, Fedor Zhdanov; (85):2445−2471, 2009.
[abs][pdf][bib]

Bi-Level Path Following for Cross Validated Solution of Kernel Quantile Regression
Saharon Rosset; (86):2473−2505, 2009.
[abs][pdf][bib]

When Is There a Representer Theorem? Vector Versus Matrix Regularizers
Andreas Argyriou, Charles A. Micchelli, Massimiliano Pontil; (87):2507−2529, 2009.
[abs][pdf][bib]

Maximum Entropy Discrimination Markov Networks
Jun Zhu, Eric P. Xing; (88):2531−2569, 2009.
[abs][pdf][bib]

Learning When Concepts Abound
Omid Madani, Michael Connor, Wiley Greiner; (89):2571−2613, 2009.
[abs][pdf][bib]

Hash Kernels for Structured Data
Qinfeng Shi, James Petterson, Gideon Dror, John Langford, Alex Smola, S.V.N. Vishwanathan; (90):2615−2637, 2009.
[abs][pdf][bib]

DL-Learner: Learning Concepts in Description Logics
Jens Lehmann; (91):2639−2642, 2009.
[abs][pdf][bib]

Bounded Kernel-Based Online Learning
Francesco Orabona, Joseph Keshet, Barbara Caputo; (92):2643−2666, 2009.
[abs][pdf][bib]

Structure Spaces
Brijnesh J. Jain, Klaus Obermayer; (93):2667−2714, 2009.
[abs][pdf][bib]

Learning Halfspaces with Malicious Noise
Adam R. Klivans, Philip M. Long, Rocco A. Servedio; (94):2715−2740, 2009.
[abs][pdf][bib]

Reproducing Kernel Banach Spaces for Machine Learning
Haizhang Zhang, Yuesheng Xu, Jun Zhang; (95):2741−2775, 2009.
[abs][pdf][bib]

Cautious Collective Classification
Luke K. McDowell, Kalyan Moy Gupta, David W. Aha; (96):2777−2836, 2009.
[abs][pdf][bib]

Adaptive False Discovery Rate Control under Independence and Dependence
Gilles Blanchard, Étienne Roquain; (97):2837−2871, 2009.
[abs][pdf][bib]

Online Learning with Samples Drawn from Non-identical Distributions
Ting Hu, Ding-Xuan Zhou; (98):2873−2898, 2009.
[abs][pdf][bib]

Efficient Online and Batch Learning Using Forward Backward Splitting
John Duchi, Yoram Singer; (99):2899−2934, 2009.
[abs][pdf][bib]

A Survey of Accuracy Evaluation Metrics of Recommendation Tasks
Asela Gunawardana, Guy Shani; (100):2935−2962, 2009.
[abs][pdf][bib]

© JMLR .