Home Page

Papers

Submissions

News

Editorial Board

Open Source Software

Proceedings (PMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

JMLR Volume 6

Asymptotic Model Selection for Naive Bayesian Networks
Dmitry Rusakov, Dan Geiger; (1):1−35, 2005.
[abs][pdf][bib]

Dimension Reduction in Text Classification with Support Vector Machines
Hyunsoo Kim, Peg Howland, Haesun Park; (2):37−53, 2005.
[abs][pdf][bib]

Stability of Randomized Learning Algorithms
Andre Elisseeff, Theodoros Evgeniou, Massimiliano Pontil; (3):55−79, 2005.
[abs][pdf][bib]

Learning Hidden Variable Networks: The Information Bottleneck Approach
Gal Elidan, Nir Friedman; (4):81−127, 2005.
[abs][pdf][bib]

Diffusion Kernels on Statistical Manifolds
John Lafferty, Guy Lebanon; (5):129−163, 2005.
[abs][pdf][bib]

Information Bottleneck for Gaussian Variables
Gal Chechik, Amir Globerson, Naftali Tishby, Yair Weiss; (6):165−188, 2005.
[abs][pdf][bib]

Multiclass Boosting for Weak Classifiers
Günther Eibl, Karl-Peter Pfeiffer; (7):189−210, 2005.
[abs][pdf][bib]

A Classification Framework for Anomaly Detection
Ingo Steinwart, Don Hush, Clint Scovel; (8):211−232, 2005.
[abs][pdf][bib]

Denoising Source Separation
Jaakko Särelä, Harri Valpola; (9):233−272, 2005.
[abs][pdf][bib]

Tutorial on Practical Prediction Theory for Classification
John Langford; (10):273−306, 2005.
[abs][pdf][bib]

Generalization Bounds and Complexities Based on Sparsity and Clustering for Convex Combinations of Functions from Random Classes
Savina Andonova Jaeger; (11):307−340, 2005.
[abs][pdf][bib]

A Modified Finite Newton Method for Fast Solution of Large Scale Linear SVMs
S. Sathiya Keerthi, Dennis DeCoste; (12):341−361, 2005.
[abs][pdf][bib]

Core Vector Machines: Fast SVM Training on Very Large Data Sets
Ivor W. Tsang, James T. Kwok, Pak-Ming Cheung; (13):363−392, 2005.
[abs][pdf][bib]

Generalization Bounds for the Area Under the ROC Curve
Shivani Agarwal, Thore Graepel, Ralf Herbrich, Sariel Har-Peled, Dan Roth; (14):393−425, 2005.
[abs][pdf][bib]

Learning with Decision Lists of Data-Dependent Features
Mario Marchand, Marina Sokolova; (15):427−451, 2005.
[abs][pdf][bib]

Estimating Functions for Blind Separation When Sources Have Variance Dependencies
Motoaki Kawanabe, Klaus-Robert Müller; (16):453−482, 2005.
[abs][pdf][bib]

Characterization of a Family of Algorithms for Generalized Discriminant Analysis on Undersampled Problems
Jieping Ye; (17):483−502, 2005.
[abs][pdf][bib]

Tree-Based Batch Mode Reinforcement Learning
Damien Ernst, Pierre Geurts, Louis Wehenkel; (18):503−556, 2005.
[abs][pdf][bib]

Learning Module Networks
Eran Segal, Dana Pe'er, Aviv Regev, Daphne Koller, Nir Friedman; (19):557−588, 2005.
[abs][pdf][bib]

Active Learning to Recognize Multiple Types of Plankton
Tong Luo, Kurt Kramer, Dmitry B. Goldgof, Lawrence O. Hall, Scott Samson, Andrew Remsen, Thomas Hopkins; (20):589−613, 2005.
[abs][pdf][bib]

Learning Multiple Tasks with Kernel Methods
Theodoros Evgeniou, Charles A. Micchelli, Massimiliano Pontil; (21):615−637, 2005.
[abs][pdf][bib]

Adaptive Online Prediction by Following the Perturbed Leader
Marcus Hutter, Jan Poland; (22):639−660, 2005.
[abs][pdf][bib]

Variational Message Passing
John Winn, Christopher M. Bishop; (23):661−694, 2005.
[abs][pdf][bib]

Estimation of Non-Normalized Statistical Models by Score Matching
Aapo Hyvärinen; (24):695−709, 2005.
[abs][pdf][bib]

Smooth ε-Insensitive Regression by Loss Symmetrization
Ofer Dekel, Shai Shalev-Shwartz, Yoram Singer; (25):711−741, 2005.
[abs][pdf][bib]

Quasi-Geodesic Neural Learning Algorithms Over the Orthogonal Group: A Tutorial
Simone Fiori; (26):743−781, 2005.
[abs][pdf][bib]

Machine Learning Methods for Predicting Failures in Hard Drives: A Multiple-Instance Application
Joseph F. Murray, Gordon F. Hughes, Kenneth Kreutz-Delgado; (27):783−816, 2005.
[abs][pdf][bib]

Multiclass Classification with Multi-Prototype Support Vector Machines
Fabio Aiolli, Alessandro Sperduti; (28):817−850, 2005.
[abs][pdf][bib]

Prioritization Methods for Accelerating MDP Solvers
David Wingate, Kevin D. Seppi; (29):851−881, 2005.
[abs][pdf][bib]

Learning from Examples as an Inverse Problem
Ernesto De Vito, Lorenzo Rosasco, Andrea Caponnetto, Umberto De Giovannini, Francesca Odone; (30):883−904, 2005.
[abs][pdf][bib]

Loopy Belief Propagation: Convergence and Effects of Message Errors
Alexander T. Ihler, John W. Fisher III, Alan S. Willsky; (31):905−936, 2005.
[abs][pdf][bib]

Learning a Mahalanobis Metric from Equivalence Constraints
Aharon Bar-Hillel, Tomer Hertz, Noam Shental, Daphna Weinshall; (32):937−965, 2005.
[abs][pdf][bib]

Algorithmic Stability and Meta-Learning
Andreas Maurer; (33):967−994, 2005.
[abs][pdf][bib]

Matrix Exponentiated Gradient Updates for On-line Learning and Bregman Projection
Koji Tsuda, Gunnar Rätsch, Manfred K. Warmuth; (34):995−1018, 2005.
[abs][pdf][bib]

Gaussian Processes for Ordinal Regression
Wei Chu, Zoubin Ghahramani; (35):1019−1041, 2005.
[abs][pdf][bib]

Learning the Kernel with Hyperkernels
Cheng Soon Ong, Alexander J. Smola, Robert C. Williamson; (36):1043−1071, 2005.
[abs][pdf][bib]

A Generalization Error for Q-Learning
Susan A. Murphy; (37):1073−1097, 2005.
[abs][pdf][bib]

Learning the Kernel Function via Regularization
Charles A. Micchelli, Massimiliano Pontil; (38):1099−1125, 2005.
[abs][pdf][bib]

Analysis of Variance of Cross-Validation Estimators of the Generalization Error
Marianthi Markatou, Hong Tian, Shameek Biswas, George Hripcsak; (39):1127−1168, 2005.
[abs][pdf][bib]

Semigroup Kernels on Measures
Marco Cuturi, Kenji Fukumizu, Jean-Philippe Vert; (40):1169−1198, 2005.
[abs][pdf][bib]

Separating a Real-Life Nonlinear Image Mixture
Luís B. Almeida; (41):1199−1229, 2005.
[abs][pdf][bib]

Concentration Bounds for Unigram Language Models
Evgeny Drukh, Yishay Mansour; (42):1231−1264, 2005.
[abs][pdf][bib]

An MDP-Based Recommender System
Guy Shani, David Heckerman, Ronen I. Brafman; (43):1265−1295, 2005.
[abs][pdf][bib]

Universal Algorithms for Learning Theory Part I : Piecewise Constant Functions
Peter Binev, Albert Cohen, Wolfgang Dahmen, Ronald DeVore, Vladimir Temlyakov; (44):1297−1321, 2005.
[abs][pdf][bib]

Efficient Computation of Gapped Substring Kernels on Large Alphabets
Juho Rousu, John Shawe-Taylor; (45):1323−1344, 2005.
[abs][pdf][bib]

Clustering on the Unit Hypersphere using von Mises-Fisher Distributions
Arindam Banerjee, Inderjit S. Dhillon, Joydeep Ghosh, Suvrit Sra; (46):1345−1382, 2005.
[abs][pdf][bib]

Inner Product Spaces for Bayesian Networks
Atsuyoshi Nakamura, Michael Schmitt, Niels Schmitt, Hans Ulrich Simon; (47):1383−1403, 2005.
[abs][pdf][bib]

Maximum Margin Algorithms with Boolean Kernels
Roni Khardon, Rocco A. Servedio; (48):1405−1429, 2005.
[abs][pdf][bib]

A Bayes Optimal Approach for Partitioning the Values of Categorical Attributes
Marc Boullé; (49):1431−1452, 2005.
[abs][pdf][bib]

Large Margin Methods for Structured and Interdependent Output Variables
Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, Yasemin Altun; (50):1453−1484, 2005.
[abs][pdf][bib]

Frames, Reproducing Kernels, Regularization and Learning
Alain Rakotomamonjy, Stéphane Canu; (51):1485−1515, 2005.
[abs][pdf][bib]

Local Propagation in Conditional Gaussian Bayesian Networks
Robert G. Cowell; (52):1517−1550, 2005.
[abs][pdf][bib]

A Bayesian Model for Supervised Clustering with the Dirichlet Process Prior
Hal Daumé III, Daniel Marcu; (53):1551−1577, 2005.
[abs][pdf][bib]

Fast Kernel Classifiers with Online and Active Learning
Antoine Bordes, Seyda Ertekin, Jason Weston, Léon Bottou; (54):1579−1619, 2005.
[abs][pdf][bib]

Managing Diversity in Regression Ensembles
Gavin Brown, Jeremy L. Wyatt, Peter Tiňo; (55):1621−1650, 2005.
[abs][pdf][bib]

Active Coevolutionary Learning of Deterministic Finite Automata
Josh Bongard, Hod Lipson; (56):1651−1678, 2005.
[abs][pdf][bib]

Assessing Approximate Inference for Binary Gaussian Process Classification
Malte Kuss, Carl Edward Rasmussen; (57):1679−1704, 2005.
[abs][pdf][bib]

Clustering with Bregman Divergences
Arindam Banerjee, Srujana Merugu, Inderjit S. Dhillon, Joydeep Ghosh; (58):1705−1749, 2005.
[abs][pdf][bib]

Combining Information Extraction Systems Using Voting and Stacked Generalization
Georgios Sigletos, Georgios Paliouras, Constantine D. Spyropoulos, Michalis Hatzopoulos; (59):1751−1782, 2005.
[abs][pdf][bib]

Probabilistic Non-linear Principal Component Analysis with Gaussian Process Latent Variable Models
Neil Lawrence; (60):1783−1816, 2005.
[abs][pdf][bib]

A Framework for Learning Predictive Structures from Multiple Tasks and Unlabeled Data
Rie Kubota Ando, Tong Zhang; (61):1817−1853, 2005.
[abs][pdf][bib]

Feature Selection for Unsupervised and Supervised Inference: The Emergence of Sparsity in a Weight-Based Approach
Lior Wolf, Amnon Shashua; (62):1855−1887, 2005.
[abs][pdf][bib]

Working Set Selection Using Second Order Information for Training Support Vector Machines
Rong-En Fan, Pai-Hsuen Chen, Chih-Jen Lin; (63):1889−1918, 2005.
[abs][pdf][bib]

New Horn Revision Algorithms
Judy Goldsmith, Robert H. Sloan; (64):1919−1938, 2005.
[abs][pdf][bib]

A Unifying View of Sparse Approximate Gaussian Process Regression
Joaquin Quiñonero-Candela, Carl Edward Rasmussen; (65):1939−1959, 2005.
[abs][pdf][bib]

What's Strange About Recent Events (WSARE): An Algorithm for the Early Detection of Disease Outbreaks
Weng-Keen Wong, Andrew Moore, Gregory Cooper, Michael Wagner; (66):1961−1998, 2005.
[abs][pdf][bib]

Change Point Problems in Linear Dynamical Systems
Onno Zoeter, Tom Heskes; (67):1999−2026, 2005.
[abs][pdf][bib]

Asymptotics in Empirical Risk Minimization
Leila Mohammadi, Sara van de Geer; (68):2027−2047, 2005.
[abs][pdf][bib]

Convergence Theorems for Generalized Alternating Minimization Procedures
Asela Gunawardana, William Byrne; (69):2049−2073, 2005.
[abs][pdf][bib]

Kernel Methods for Measuring Independence
Arthur Gretton, Ralf Herbrich, Alexander Smola, Olivier Bousquet, Bernhard Schölkopf; (70):2075−2129, 2005.
[abs][pdf][bib]

Efficient Margin Maximizing with Boosting
Gunnar Rätsch, Manfred K. Warmuth; (71):2131−2152, 2005.
[abs][pdf][bib]

On the Nystrom Method for Approximating a Gram Matrix for Improved Kernel-Based Learning
Petros Drineas, Michael W. Mahoney; (72):2153−2175, 2005.
[abs][pdf][bib]

Expectation Consistent Approximate Inference
Manfred Opper, Ole Winther; (73):2177−2204, 2005.
[abs][pdf][bib]

© JMLR .