Home Page

Papers

Submissions

News

Editorial Board

Open Source Software

Proceedings (PMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

JMLR Volume 18

Averaged Collapsed Variational Bayes Inference
Katsuhiko Ishiguro, Issei Sato, Naonori Ueda; (1):1−29, 2017.
[abs][pdf][bib]

Scalable Influence Maximization for Multiple Products in Continuous-Time Diffusion Networks
Nan Du, Yingyu Liang, Maria-Florina Balcan, Manuel Gomez-Rodriguez, Hongyuan Zha, Le Song; (2):1−45, 2017.
[abs][pdf][bib]

Local algorithms for interactive clustering
Pranjal Awasthi, Maria Florina Balcan, Konstantin Voevodski; (3):1−35, 2017.
[abs][pdf][bib]

SnapVX: A Network-Based Convex Optimization Solver
David Hallac, Christopher Wong, Steven Diamond, Abhijit Sharang, Rok Sosič, Stephen Boyd, Jure Leskovec; (4):1−5, 2017. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code] [stanford.edu]

Communication-efficient Sparse Regression
Jason D. Lee, Qiang Liu, Yuekai Sun, Jonathan E. Taylor; (5):1−30, 2017.
[abs][pdf][bib]

Improving Variational Methods via Pairwise Linear Response Identities
Jack Raymond, Federico Ricci-Tersenghi; (6):1−36, 2017.
[abs][pdf][bib]

Distributed Sequence Memory of Multidimensional Inputs in Recurrent Networks
Adam S. Charles, Dong Yin, Christopher J. Rozell; (7):1−37, 2017.
[abs][pdf][bib]

Persistence Images: A Stable Vector Representation of Persistent Homology
Henry Adams, Tegan Emerson, Michael Kirby, Rachel Neville, Chris Peterson, Patrick Shipman, Sofya Chepushtanova, Eric Hanson, Francis Motta, Lori Ziegelmeier; (8):1−35, 2017.
[abs][pdf][bib]      [erratum]

Spectral Clustering Based on Local PCA
Ery Arias-Castro, Gilad Lerman, Teng Zhang; (9):1−57, 2017.
[abs][pdf][bib]

On Perturbed Proximal Gradient Algorithms
Yves F. Atchadé, Gersende Fort, Eric Moulines; (10):1−33, 2017.
[abs][pdf][bib]

Differential Privacy for Bayesian Inference through Posterior Sampling
Christos Dimitrakakis, Blaine Nelson, Zuhe Zhang, Aikaterini Mitrokotsa, Benjamin I. P. Rubinstein; (11):1−39, 2017.
[abs][pdf][bib]

Refinery: An Open Source Topic Modeling Web Platform
Daeil Kim, Benjamin F. Swanson, Michael C. Hughes, Erik B. Sudderth; (12):1−5, 2017. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code] [webpage]

Using Conceptors to Manage Neural Long-Term Memories for Temporal Patterns
Herbert Jaeger; (13):1−43, 2017.
[abs][pdf][bib]      [supplementary]

Automatic Differentiation Variational Inference
Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew Gelman, David M. Blei; (14):1−45, 2017.
[abs][pdf][bib]

Empirical Evaluation of Resampling Procedures for Optimising SVM Hyperparameters
Jacques Wainer, Gavin Cawley; (15):1−35, 2017.
[abs][pdf][bib]

A Unified Formulation and Fast Accelerated Proximal Gradient Method for Classification
Naoki Ito, Akiko Takeda, Kim-Chuan Toh; (16):1−49, 2017.
[abs][pdf][bib]

Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning
Guillaume Lemaître, Fernando Nogueira, Christos K. Aridas; (17):1−5, 2017. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code] [webpage]

Information-Geometric Optimization Algorithms: A Unifying Picture via Invariance Principles
Yann Ollivier, Ludovic Arnold, Anne Auger, Nikolaus Hansen; (18):1−65, 2017.
[abs][pdf][bib]

Breaking the Curse of Dimensionality with Convex Neural Networks
Francis Bach; (19):1−53, 2017.
[abs][pdf][bib]

Memory Efficient Kernel Approximation
Si Si, Cho-Jui Hsieh, Inderjit S. Dhillon; (20):1−32, 2017.
[abs][pdf][bib]

On the Equivalence between Kernel Quadrature Rules and Random Feature Expansions
Francis Bach; (21):1−38, 2017.
[abs][pdf][bib]

Analyzing Tensor Power Method Dynamics in Overcomplete Regime
Animashree An, kumar, Rong Ge, Majid Janzamin; (22):1−40, 2017.
[abs][pdf][bib]

JSAT: Java Statistical Analysis Tool, a Library for Machine Learning
Edward Raff; (23):1−5, 2017. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code] [webpage]

Identifying a Minimal Class of Models for High--dimensional Data
Daniel Nevo, Ya'acov Ritov; (24):1−29, 2017.
[abs][pdf][bib]

Auto-WEKA 2.0: Automatic model selection and hyperparameter optimization in WEKA
Lars Kotthoff, Chris Thornton, Holger H. Hoos, Frank Hutter, Kevin Leyton-Brown; (25):1−5, 2017. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code] [webpage]

POMDPs.jl: A Framework for Sequential Decision Making under Uncertainty
Maxim Egorov, Zachary N. Sunberg, Edward Balaban, Tim A. Wheeler, Jayesh K. Gupta, Mykel J. Kochenderfer; (26):1−5, 2017. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code] [webpage]

Generalized P{\'o}lya Urn for Time-Varying Pitman-Yor Processes
François Caron, Willie Neiswanger, Frank Wood, Arnaud Doucet, Manuel Davy; (27):1−32, 2017.
[abs][pdf][bib]

Particle Gibbs Split-Merge Sampling for Bayesian Inference in Mixture Models
Alexandre Bouchard-Côté, Arnaud Doucet, Andrew Roth; (28):1−39, 2017.
[abs][pdf][bib]

Certifiably Optimal Low Rank Factor Analysis
Dimitris Bertsimas, Martin S. Copenhaver, Rahul Mazumder; (29):1−53, 2017.
[abs][pdf][bib]

Group Sparse Optimization via lp,q Regularization
Yaohua Hu, Chong Li, Kaiwen Meng, Jing Qin, Xiaoqi Yang; (30):1−52, 2017.
[abs][pdf][bib]

Preference-based Teaching
Ziyuan Gao, Christoph Ries, Hans U. Simon, S, ra Zilles; (31):1−32, 2017.
[abs][pdf][bib]

Nonparametric Risk Bounds for Time-Series Forecasting
Daniel J. McDonald, Cosma Rohilla Shalizi, Mark Schervish; (32):1−40, 2017.
[abs][pdf][bib]

Online Bayesian Passive-Aggressive Learning
Tianlin Shi, Jun Zhu; (33):1−39, 2017.
[abs][pdf][bib]

Asymptotic Analysis of Objectives Based on Fisher Information in Active Learning
Jamshid Sourati, Murat Akcakaya, Todd K. Leen, Deniz Erdogmus, Jennifer G. Dy; (34):1−41, 2017.
[abs][pdf][bib]

A Spectral Algorithm for Inference in Hidden semi-Markov Models
Igor Melnyk, Arindam Banerjee; (35):1−39, 2017.
[abs][pdf][bib]

Simplifying Probabilistic Expressions in Causal Inference
Santtu Tikka, Juha Karvanen; (36):1−30, 2017.
[abs][pdf][bib]

Nearly optimal classification for semimetrics
Lee-Ad Gottlieb, Aryeh Kontorovich, Pinhas Nisnevitch; (37):1−22, 2017.
[abs][pdf][bib]

Bridging Supervised Learning and Test-Based Co-optimization
Elena Popovici; (38):1−39, 2017.
[abs][pdf][bib]      [appendix]

GFA: Exploratory Analysis of Multiple Data Sources with Group Factor Analysis
Eemeli Leppäaho, Muhammad Ammad-ud-din, Samuel Kaski; (39):1−5, 2017. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code] [r-project.org]

GPflow: A Gaussian Process Library using TensorFlow
Alexander G. de G. Matthews, Mark van der Wilk, Tom Nickson, Keisuke Fujii, Alexis Boukouvalas, Pablo Le{\'o}n-Villagr{\'a}, Zoubin Ghahramani, James Hensman; (40):1−6, 2017. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code] [webpage]

COEVOLVE: A Joint Point Process Model for Information Diffusion and Network Evolution
Mehrdad Farajtabar, Yichen Wang, Manuel Gomez-Rodriguez, Shuang Li, Hongyuan Zha, Le Song; (41):1−49, 2017.
[abs][pdf][bib]

Learning Local Dependence In Ordered Data
Guo Yu, Jacob Bien; (42):1−60, 2017.
[abs][pdf][bib]

Bayesian Learning of Dynamic Multilayer Networks
Daniele Durante, Nabanita Mukherjee, Rebecca C. Steorts; (43):1−29, 2017.
[abs][pdf][bib]

Time-Accuracy Tradeoffs in Kernel Prediction: Controlling Prediction Quality
Samory Kpotufe, Nakul Verma; (44):1−29, 2017.
[abs][pdf][bib]

Asymptotic behavior of Support Vector Machine for spiked population model
Hanwen Huang; (45):1−21, 2017.
[abs][pdf][bib]

Distributed Semi-supervised Learning with Kernel Ridge Regression
Xiangyu Chang, Shao-Bo Lin, Ding-Xuan Zhou; (46):1−22, 2017.
[abs][pdf][bib]

On Markov chain Monte Carlo methods for tall data
Rémi Bardenet, Arnaud Doucet, Chris Holmes; (47):1−43, 2017.
[abs][pdf][bib]

Explaining the Success of AdaBoost and Random Forests as Interpolating Classifiers
Abraham J. Wyner, Matthew Olson, Justin Bleich, David Mease; (48):1−33, 2017.
[abs][pdf][bib]

Clustering from General Pairwise Observations with Applications to Time-varying Graphs
Shiau Hong Lim, Yudong Chen, Huan Xu; (49):1−47, 2017.
[abs][pdf][bib]

Uniform Hypergraph Partitioning: Provable Tensor Methods and Sampling Techniques
Debarghya Ghoshdastidar, Ambedkar Dukkipati; (50):1−41, 2017.
[abs][pdf][bib]

Reconstructing Undirected Graphs from Eigenspaces
Yohann De Castro, Thibault Espinasse, Paul Rochet; (51):1−24, 2017.
[abs][pdf][bib]

An Optimal Algorithm for Bandit and Zero-Order Convex Optimization with Two-Point Feedback
Ohad Shamir; (52):1−11, 2017.
[abs][pdf][bib]

Perishability of Data: Dynamic Pricing under Varying-Coefficient Models
Adel Javanmard; (53):1−31, 2017.
[abs][pdf][bib]

Two New Approaches to Compressed Sensing Exhibiting Both Robust Sparse Recovery and the Grouping Effect
Mehmet Eren Ahsen, Niharika Challapalli, Mathukumalli Vidyasagar; (54):1−24, 2017.
[abs][pdf][bib]

On the Consistency of Ordinal Regression Methods
Fabian Pedregosa, Francis Bach, Alexandre Gramfort; (55):1−35, 2017.
[abs][pdf][bib]

Statistical Inference with Unnormalized Discrete Models and Localized Homogeneous Divergences
Takashi Takenouchi, Takafumi Kanamori; (56):1−26, 2017.
[abs][pdf][bib]

Density Estimation in Infinite Dimensional Exponential Families
Bharath Sriperumbudur, Kenji Fukumizu, Arthur Gretton, Aapo Hyv\"{a}rinen, Revant Kumar; (57):1−59, 2017.
[abs][pdf][bib]

Lens Depth Function and k-Relative Neighborhood Graph: Versatile Tools for Ordinal Data Analysis
Matthäus Kleindessner, Ulrike von Luxburg; (58):1−52, 2017.
[abs][pdf][bib]

Joint Label Inference in Networks
Deepayan Chakrabarti, Stanislav Funiak, Jonathan Chang, Sofus A. Macskassy; (59):1−39, 2017.
[abs][pdf][bib]

Achieving Optimal Misclassification Proportion in Stochastic Block Models
Chao Gao, Zongming Ma, Anderson Y. Zhang, Harrison H. Zhou; (60):1−45, 2017.
[abs][pdf][bib]

On the Propagation of Low-Rate Measurement Error to Subgraph Counts in Large Networks
Prakash Balach, ran, Eric D. Kolaczyk, Weston D. Viles; (61):1−33, 2017.
[abs][pdf][bib]

Dense Distributions from Sparse Samples: Improved Gibbs Sampling Parameter Estimators for LDA
Yannis Papanikolaou, James R. Foulds, Timothy N. Rubin, Grigorios Tsoumakas; (62):1−58, 2017.
[abs][pdf][bib]

Fundamental Conditions for Low-CP-Rank Tensor Completion
Morteza Ashraphijuo, Xiaodong Wang; (63):1−29, 2017.
[abs][pdf][bib]

Parallel Symmetric Class Expression Learning
An C. Tran, Jens Dietrich, Hans W. Guesgen, Stephen Marsl, ; (64):1−34, 2017.
[abs][pdf][bib]

Learning Partial Policies to Speedup MDP Tree Search via Reduction to I.I.D. Learning
Jervis Pinto, Alan Fern; (65):1−35, 2017.
[abs][pdf][bib]

Hierarchically Compositional Kernels for Scalable Nonparametric Learning
Jie Chen, Haim Avron, Vikas Sindhwani; (66):1−42, 2017.
[abs][pdf][bib]

Sharp Oracle Inequalities for Square Root Regularization
Benjamin Stucky, Sara van de Geer; (67):1−29, 2017.
[abs][pdf][bib]

Soft Margin Support Vector Classification as Buffered Probability Minimization
Matthew Norton, Alexander Mafusalov, Stan Uryasev; (68):1−43, 2017.
[abs][pdf][bib]

Variational Particle Approximations
Ardavan Saeedi, Tejas D. Kulkarni, Vikash K. Mansinghka, Samuel J. Gershman; (69):1−29, 2017.
[abs][pdf][bib]

A Bayesian Framework for Learning Rule Sets for Interpretable Classification
Tong Wang, Cynthia Rudin, Finale Doshi-Velez, Yimin Liu, Erica Klampfl, Perry MacNeille; (70):1−37, 2017.
[abs][pdf][bib]

A Robust-Equitable Measure for Feature Ranking and Selection
A. Adam Ding, Jennifer G. Dy, Yi Li, Yale Chang; (71):1−46, 2017.
[abs][pdf][bib]

Multiscale Strategies for Computing Optimal Transport
Samuel Gerber, Mauro Maggioni; (72):1−32, 2017.
[abs][pdf][bib]

Non-parametric Policy Search with Limited Information Loss
Herke van Hoof, Gerhard Neumann, Jan Peters; (73):1−46, 2017.
[abs][pdf][bib]

Tests of Mutual or Serial Independence of Random Vectors with Applications
Martin Bilodeau, Aurélien Guetsop Nangue; (74):1−40, 2017.
[abs][pdf][bib]      [supplementary]

Recovering PCA and Sparse PCA via Hybrid-(l1,l2) Sparse Sampling of Data Elements
Abhisek Kundu, Petros Drineas, Malik Magdon-Ismail; (75):1−34, 2017.
[abs][pdf][bib]

Quantifying the Informativeness of Similarity Measurements
Austin J. Brockmeier, Tingting Mu, Sophia Ananiadou, John Y. Goulermas; (76):1−61, 2017.
[abs][pdf][bib]

Time for a Change: a Tutorial for Comparing Multiple Classifiers Through Bayesian Analysis
Alessio Benavoli, Giorgio Corani, Janez Demšar, Marco Zaffalon; (77):1−36, 2017.
[abs][pdf][bib]

Relational Reinforcement Learning for Planning with Exogenous Effects
David Mart\'{i}nez, Guillem Aleny\`{a}, Tony Ribeiro, Katsumi Inoue, Carme Torras; (78):1−44, 2017.
[abs][pdf][bib]

Bayesian Tensor Regression
Rajarshi Guhaniyogi, Shaan Qamar, David B. Dunson; (79):1−31, 2017.
[abs][pdf][bib]

Robust Discriminative Clustering with Sparse Regularizers
Nicolas Flammarion, Balamurugan Palaniappan, Francis Bach; (80):1−50, 2017.
[abs][pdf][bib]

Making Decision Trees Feasible in Ultrahigh Feature and Label Dimensions
Weiwei Liu, Ivor W. Tsang; (81):1−36, 2017.
[abs][pdf][bib]

Learning Scalable Deep Kernels with Recurrent Structure
Maruan Al-Shedivat, Andrew Gordon Wilson, Yunus Saatchi, Zhiting Hu, Eric P. Xing; (82):1−37, 2017.
[abs][pdf][bib]

Convolutional Neural Networks Analyzed via Convolutional Sparse Coding
Vardan Papyan, Yaniv Romano, Michael Elad; (83):1−52, 2017.
[abs][pdf][bib]

Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization
Yuchen Zhang, Lin Xiao; (84):1−42, 2017.
[abs][pdf][bib]

Angle-based Multicategory Distance-weighted SVM
Hui Sun, Bruce A. Craig, Lingsong Zhang; (85):1−21, 2017.
[abs][pdf][bib]

Minimax Estimation of Kernel Mean Embeddings
Ilya Tolstikhin, Bharath K. Sriperumbudur, Krikamol Mu, et; (86):1−47, 2017.
[abs][pdf][bib]

The Impact of Random Models on Clustering Similarity
Alexander J. Gates, Yong-Yeol Ahn; (87):1−28, 2017.
[abs][pdf][bib]

Hierarchical Clustering via Spreading Metrics
Aurko Roy, Sebastian Pokutta; (88):1−35, 2017.
[abs][pdf][bib]

The MADP Toolbox: An Open Source Library for Planning and Learning in (Multi-)Agent Systems
Frans A. Oliehoek, Matthijs T. J. Spaan, Bas Terwijn, Philipp Robbel, Jo\~{a}o V. Messias; (89):1−5, 2017. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

A survey of Algorithms and Analysis for Adaptive Online Learning
H. Brendan McMahan; (90):1−50, 2017.
[abs][pdf][bib]

A distributed block coordinate descent method for training l1 regularized linear classifiers
Dhruv Mahajan, S. Sathiya Keerthi, S. Sundararajan; (91):1−35, 2017.
[abs][pdf][bib]

Distributed Learning with Regularized Least Squares
Shao-Bo Lin, Xin Guo, Ding-Xuan Zhou; (92):1−31, 2017.
[abs][pdf][bib]

Identifying Unreliable and Adversarial Workers in Crowdsourced Labeling Tasks
Srikanth Jagabathula, Lakshminarayanan Subramanian, Ashwin Venkataraman; (93):1−67, 2017.
[abs][pdf][bib]

An Easy-to-hard Learning Paradigm for Multiple Classes and Multiple Labels
Weiwei Liu, Ivor W. Tsang, Klaus-Robert M\"{u}ller; (94):1−38, 2017.
[abs][pdf][bib]

Fisher Consistency for Prior Probability Shift
Dirk Tasche; (95):1−32, 2017.
[abs][pdf][bib]

openXBOW -- Introducing the Passau Open-Source Crossmodal Bag-of-Words Toolkit
Maximilian Schmitt, Björn Schuller; (96):1−5, 2017. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

Optimal Rates for Multi-pass Stochastic Gradient Methods
Junhong Lin, Lorenzo Rosasco; (97):1−47, 2017.
[abs][pdf][bib]

Rank Determination for Low-Rank Data Completion
Morteza Ashraphijuo, Xiaodong Wang, Vaneet Aggarwal; (98):1−29, 2017.
[abs][pdf][bib]

Bayesian Network Learning via Topological Order
Young Woong Park, Diego Klabjan; (99):1−32, 2017.
[abs][pdf][bib]

Stability of Controllers for Gaussian Process Dynamics
Julia Vinogradska, Bastian Bischoff, Duy Nguyen-Tuong, Jan Peters; (100):1−37, 2017.
[abs][pdf][bib]

Harder, Better, Faster, Stronger Convergence Rates for Least-Squares Regression
Aymeric Dieuleveut, Nicolas Flammarion, Francis Bach; (101):1−51, 2017.
[abs][pdf][bib]

Confidence Sets with Expected Sizes for Multiclass Classification
Christophe Denis, Mohamed Hebiri; (102):1−28, 2017.
[abs][pdf][bib]

Online Learning to Rank with Top-k Feedback
Sougata Chaudhuri, Ambuj Tewari; (103):1−50, 2017.
[abs][pdf][bib]

A Unifying Framework for Gaussian Process Pseudo-Point Approximations using Power Expectation Propagation
Thang D. Bui, Josiah Yan, Richard E. Turner; (104):1−72, 2017.
[abs][pdf][bib]

Accelerating Stochastic Composition Optimization
Mengdi Wang, Ji Liu, Ethan X. Fang; (105):1−23, 2017.
[abs][pdf][bib]

Distributed Bayesian Learning with Stochastic Natural Gradient Expectation Propagation and the Posterior Server
Leonard Hasenclever, Stefan Webb, Thibaut Lienart, Sebastian Vollmer, Balaji Lakshminarayanan, Charles Blundell, Yee Whye Teh; (106):1−37, 2017.
[abs][pdf][bib]

Optimal Dictionary for Least Squares Representation
Mohammed Rayyan Sheriff, Debasish Chatterjee; (107):1−28, 2017.
[abs][pdf][bib]

Computational Limits of A Distributed Algorithm for Smoothing Spline
Zuofeng Shang, Guang Cheng; (108):1−37, 2017.
[abs][pdf][bib]

Hinge-Loss Markov Random Fields and Probabilistic Soft Logic
Stephen H. Bach, Matthias Broecheler, Bert Huang, Lise Getoor; (109):1−67, 2017.
[abs][pdf][bib]

Clustering with Hidden Markov Model on Variable Blocks
Lin Lin, Jia Li; (110):1−49, 2017.
[abs][pdf][bib]

Approximation Vector Machines for Large-scale Online Learning
Trung Le, Tu Dinh Nguyen, Vu Nguyen, Dinh Phung; (111):1−55, 2017.
[abs][pdf][bib]

Efficient Sampling from Time-Varying Log-Concave Distributions
Hariharan Narayanan, Alexer Rakhlin; (112):1−29, 2017.
[abs][pdf][bib]

Document Neural Autoregressive Distribution Estimation
Stanislas Lauly, Yin Zheng, Alex, re Allauzen, Hugo Larochelle; (113):1−24, 2017.
[abs][pdf][bib]

Target Curricula via Selection of Minimum Feature Sets: a Case Study in Boolean Networks
Shannon Fenn, Pablo Moscato; (114):1−26, 2017.
[abs][pdf][bib]

A General Distributed Dual Coordinate Optimization Framework for Regularized Loss Minimization
Shun Zheng, Jialei Wang, Fen Xia, Wei Xu, Tong Zhang; (115):1−52, 2017.
[abs][pdf][bib]

Second-Order Stochastic Optimization for Machine Learning in Linear Time
Naman Agarwal, Brian Bullins, Elad Hazan; (116):1−40, 2017.
[abs][pdf][bib]      [erratum]

Regularized Estimation and Testing for High-Dimensional Multi-Block Vector-Autoregressive Models
Jiahe Lin, George Michailidis; (117):1−49, 2017.
[abs][pdf][bib]

Learning Theory of Distributed Regression with Bias Corrected Regularization Kernel Network
Zheng-Chu Guo, Lei Shi, Qiang Wu; (118):1−25, 2017.
[abs][pdf][bib]

Probabilistic Line Searches for Stochastic Optimization
Maren Mahsereci, Philipp Hennig; (119):1−59, 2017.
[abs][pdf][bib]

Learning Instrumental Variables with Structural and Non-Gaussianity Assumptions
Ricardo Silva, Shohei Shimizu; (120):1−49, 2017.
[abs][pdf][bib]

Classification of Time Sequences using Graphs of Temporal Constraints
Mathieu Guillame-Bert, Artur Dubrawski; (121):1−34, 2017.
[abs][pdf][bib]

Distributed Stochastic Variance Reduced Gradient Methods by Sampling Extra Data with Replacement
Jason D. Lee, Qihang Lin, Tengyu Ma, Tianbao Yang; (122):1−43, 2017.
[abs][pdf][bib]

Kernel Partial Least Squares for Stationary Data
Marco Singer, Tatyana Krivobokova, Axel Munk; (123):1−41, 2017.
[abs][pdf][bib]

Robust and Scalable Bayes via a Median of Subset Posterior Measures
Stanislav Minsker, Sanvesh Srivastava, Lizhen Lin, David B. Dunson; (124):1−40, 2017.
[abs][pdf][bib]

Statistical and Computational Guarantees for the Baum-Welch Algorithm
Fanny Yang, Sivaraman Balakrishnan, Martin J. Wainwright; (125):1−53, 2017.
[abs][pdf][bib]

Online but Accurate Inference for Latent Variable Models with Local Gibbs Sampling
Christophe Dupuy, Francis Bach; (126):1−45, 2017.
[abs][pdf][bib]

Poisson Random Fields for Dynamic Feature Models
Valerio Perrone, Paul A. Jenkins, Dario Spanò, Yee Whye Teh; (127):1−45, 2017.
[abs][pdf][bib]

Gap Safe Screening Rules for Sparsity Enforcing Penalties
Eugene Ndiaye, Olivier Fercoq, Alex, re Gramfort, Joseph Salmon; (128):1−33, 2017.
[abs][pdf][bib]

Minimax Filter: Learning to Preserve Privacy from Inference Attacks
Jihun Hamm; (129):1−31, 2017.
[abs][pdf][bib]

Knowledge Graph Completion via Complex Tensor Factorization
Théo Trouillon, Christopher R. Dance, Éric Gaussier, Johannes Welbl, Sebastian Riedel, Guillaume Bouchard; (130):1−38, 2017.
[abs][pdf][bib]

Stabilized Sparse Online Learning for Sparse Data
Yuting Ma, Tian Zheng; (131):1−36, 2017.
[abs][pdf][bib]

Active-set Methods for Submodular Minimization Problems
K. S. Sesh Kumar, Francis Bach; (132):1−31, 2017.
[abs][pdf][bib]

A Bayesian Mixed-Effects Model to Learn Trajectories of Changes from Repeated Manifold-Valued Observations
Jean-Baptiste Schiratti, Stéphanie Allassonnière, Olivier Colliot, Stanley Durrleman; (133):1−33, 2017.
[abs][pdf][bib]

Stochastic Gradient Descent as Approximate Bayesian Inference
Stephan M, t, Matthew D. Hoffman, David M. Blei; (134):1−35, 2017.
[abs][pdf][bib]

STORE: Sparse Tensor Response Regression and Neuroimaging Analysis
Will Wei Sun, Lexin Li; (135):1−37, 2017.
[abs][pdf][bib]

A Survey of Preference-Based Reinforcement Learning Methods
Christian Wirth, Riad Akrour, Gerhard Neumann, Johannes Fürnkranz; (136):1−46, 2017.
[abs][pdf][bib]

Generalized SURE for optimal shrinkage of singular values in low-rank matrix denoising
Jérémie Bigot, Charles Deledalle, Delphine Féral; (137):1−50, 2017.
[abs][pdf][bib]

Dimension Estimation Using Random Connection Models
Paulo Serra, Michel M, jes; (138):1−35, 2017.
[abs][pdf][bib]

Bayesian Inference for Spatio-temporal Spike-and-Slab Priors
Michael Riis Andersen, Aki Vehtari, Ole Winther, Lars Kai Hansen; (139):1−58, 2017.
[abs][pdf][bib]

Adaptive Randomized Dimension Reduction on Massive Data
Gregory Darnell, Stoyan Georgiev, Sayan Mukherjee, Barbara E Engelhardt; (140):1−30, 2017.
[abs][pdf][bib]

A Nonconvex Approach for Phase Retrieval: Reshaped Wirtinger Flow and Incremental Algorithms
Huishuai Zhang, Yingbin Liang, Yuejie Chi; (141):1−35, 2017.
[abs][pdf][bib]

Consistency, Breakdown Robustness, and Algorithms for Robust Improper Maximum Likelihood Clustering
Pietro Coretto, Christian Hennig; (142):1−39, 2017.
[abs][pdf][bib]

On Computationally Tractable Selection of Experiments in Measurement-Constrained Regression Models
Yining Wang, Adams Wei Yu, Aarti Singh; (143):1−41, 2017.
[abs][pdf][bib]

Generalized Conditional Gradient for Sparse Estimation
Yaoliang Yu, Xinhua Zhang, Dale Schuurmans; (144):1−46, 2017.
[abs][pdf][bib]

Following the Leader and Fast Rates in Online Linear Prediction: Curved Constraint Sets and Other Regularities
Ruitong Huang, Tor Lattimore, András György, Csaba Szepesvári; (145):1−31, 2017.
[abs][pdf][bib]

Regularization and the small-ball method II: complexity dependent error rates
Guillaume Lecué, Shahar Mendelson; (146):1−48, 2017.
[abs][pdf][bib]

Matrix Completion with Noisy Entries and Outliers
Raymond K. W. Wong, Thomas C. M. Lee; (147):1−25, 2017.
[abs][pdf][bib]

Faithfulness of Probability Distributions and Graphs
Kayvan Sadeghi; (148):1−29, 2017.
[abs][pdf][bib]

Community Extraction in Multilayer Networks with Heterogeneous Community Structure
James D. Wilson, John Palowitch, Shankar Bhamidi, Andrew B. Nobel; (149):1−49, 2017.
[abs][pdf][bib]

On Binary Embedding using Circulant Matrices
Felix X. Yu, Aditya Bhaskara, Sanjiv Kumar, Yunchao Gong, Shih-Fu Chang; (150):1−30, 2018.
[abs][pdf][bib]

Variational Fourier Features for Gaussian Processes
James Hensman, Nicolas Durrande, Arno Solin; (151):1−52, 2018.
[abs][pdf][bib]

HyperTools: a Python Toolbox for Gaining Geometric Insights into High-Dimensional Data
Andrew C. Heusser, Kirsten Ziman, Lucy L. W. Owen, Jeremy R. Manning; (152):1−6, 2018. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code] [webpage]

Automatic Differentiation in Machine Learning: a Survey
Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, Jeffrey Mark Siskind; (153):1−43, 2018.
[abs][pdf][bib]

Normal Bandits of Unknown Means and Variances
Wesley Cowan, Junya Honda, Michael N. Katehakis; (154):1−28, 2018.
[abs][pdf][bib]

Cost-Sensitive Learning with Noisy Labels
Nagarajan Natarajan, Inderjit S. Dhillon, Pradeep Ravikumar, Ambuj Tewari; (155):1−33, 2018.
[abs][pdf][bib]

Provably Correct Algorithms for Matrix Column Subset Selection with Selectively Sampled Data
Yining Wang, Aarti Singh; (156):1−42, 2018.
[abs][pdf][bib]

A Study of the Classification of Low-Dimensional Data with Supervised Manifold Learning
Elif Vural, Christine Guillemot; (157):1−55, 2018.
[abs][pdf][bib]

Probabilistic preference learning with the Mallows rank model
Valeria Vitelli, Øystein Sørensen, Marta Crispino, Arnoldo Frigessi, Elja Arjas; (158):1−49, 2018.
[abs][pdf][bib]

Robust Topological Inference: Distance To a Measure and Kernel Distance
Fr{\'e}d{\'e}ric Chazal, Brittany Fasy, Fabrizio Lecci, Bertr, Michel, Aless, ro Rinaldo, Larry Wasserman; (159):1−40, 2018.
[abs][pdf][bib]

Training Gaussian Mixture Models at Scale via Coresets
Mario Lucic, Matthew Faulkner, Andreas Krause, Dan Feldman; (160):1−25, 2018.
[abs][pdf][bib]

Gradient Estimation with Simultaneous Perturbation and Compressive Sensing
Vivek S. Borkar, Vikranth R. Dwaracherla, Neeraja Sahasrabudhe; (161):1−27, 2018.
[abs][pdf][bib]

Principled Selection of Hyperparameters in the Latent Dirichlet Allocation Model
Clint P. George, Hani Doss; (162):1−38, 2018.
[abs][pdf][bib]

Deep Learning the Ising Model Near Criticality
Alan Morningstar, Roger G. Melko; (163):1−17, 2018.
[abs][pdf][bib]

pomegranate: Fast and Flexible Probabilistic Modeling in Python
Jacob Schreiber; (164):1−6, 2018.
[abs][pdf][bib]

Maximum Principle Based Algorithms for Deep Learning
Qianxiao Li, Long Chen, Cheng Tai, Weinan E; (165):1−29, 2018.
[abs][pdf][bib]

Gradient Hard Thresholding Pursuit
Xiao-Tong Yuan, Ping Li, Tong Zhang; (166):1−43, 2018.
[abs][pdf][bib]

Risk-Constrained Reinforcement Learning with Percentile Risk Criteria
Yinlam Chow, Mohammad Ghavamzadeh, Lucas Janson, Marco Pavone; (167):1−51, 2018.
[abs][pdf][bib]

Local Identifiability of $\ell_1$-minimization Dictionary Learning: a Sufficient and Almost Necessary Condition
Siqi Wu, Bin Yu; (168):1−56, 2018.
[abs][pdf][bib]

In Search of Coherence and Consensus: Measuring the Interpretability of Statistical Topics
Fred Morstatter, Huan Liu; (169):1−32, 2018.
[abs][pdf][bib]

On the Behavior of Intrinsically High-Dimensional Spaces: Distances, Direct and Reverse Nearest Neighbors, and Hubness
Fabrizio Angiulli; (170):1−60, 2018.
[abs][pdf][bib]

Convergence of Unregularized Online Learning Algorithms
Yunwen Lei, Lei Shi, Zheng-Chu Guo; (171):1−33, 2018.
[abs][pdf][bib]

Convergence Analysis of Distributed Inference with Vector-Valued Gaussian Belief Propagation
Jian Du, Shaodan Ma, Yik-Chung Wu, Soummya Kar, José M. F. Moura; (172):1−38, 2018.
[abs][pdf][bib]

auDeep: Unsupervised Learning of Representations from Audio with Deep Recurrent Neural Networks
Michael Freitag, Shahin Amiriparian, Sergey Pugachevskiy, Nicholas Cummins, Bj\"{o}rn Schuller; (173):1−5, 2018.
[abs][pdf][bib]

On the Stability of Feature Selection Algorithms
Sarah Nogueira, Konstantinos Sechidis, Gavin Brown; (174):1−54, 2018.
[abs][pdf][bib]

Maximum Likelihood Estimation for Mixtures of Spherical Gaussians is NP-hard
Christopher Tosh, Sanjoy Dasgupta; (175):1−11, 2018.
[abs][pdf][bib]

The DFS Fused Lasso: Linear-Time Denoising over General Graphs
Oscar Hernan Madrid Padilla, James Sharpnack, James G. Scott, Ryan J. Tibshirani; (176):1−36, 2018.
[abs][pdf][bib]

Community Detection and Stochastic Block Models: Recent Developments
Emmanuel Abbe; (177):1−86, 2018.
[abs][pdf][bib]

On $b$-bit Min-wise Hashing for Large-scale Regression and Classification with Sparse Data
Rajen D. Shah, Nicolai Meinshausen; (178):1−42, 2018.
[abs][pdf][bib]

Efficient Learning with a Family of Nonconvex Regularizers by Redistributing Nonconvexity
Quanming Yao, James T. Kwok; (179):1−52, 2018.
[abs][pdf][bib]

Mode-Seeking Clustering and Density Ridge Estimation via Direct Estimation of Density-Derivative-Ratios
Hiroaki Sasaki, Takafumi Kanamori, Aapo Hyvärinen, Gang Niu, Masashi Sugiyama; (180):1−47, 2018.
[abs][pdf][bib]

To Tune or Not to Tune the Number of Trees in Random Forest
Philipp Probst, Anne-Laure Boulesteix; (181):1−18, 2018.
[abs][pdf][bib]

Divide-and-Conquer for Debiased $l_1$-norm Support Vector Machine in Ultra-high Dimensions
Heng Lian, Zengyan Fan; (182):1−26, 2018.
[abs][pdf][bib]

Beyond the Hazard Rate: More Perturbation Algorithms for Adversarial Multi-armed Bandits
Zifan Li, Ambuj Tewari; (183):1−24, 2018.
[abs][pdf][bib]

On Faster Convergence of Cyclic Block Coordinate Descent-type Methods for Strongly Convex Minimization
Xingguo Li, Tuo Zhao, Raman Arora, Han Liu, Mingyi Hong; (184):1−24, 2018.
[abs][pdf][bib]

Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization
Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, Ameet Talwalkar; (185):1−52, 2018.
[abs][pdf][bib]

Submatrix localization via message passing
Bruce Hajek, Yihong Wu, Jiaming Xu; (186):1−52, 2018.
[abs][pdf][bib]

Quantized Neural Networks: Training Neural Networks with Low Precision Weights and Activations
Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, Yoshua Bengio; (187):1−30, 2018.
[abs][pdf][bib]

Significance-based community detection in weighted networks
John Palowitch, Shankar Bhamidi, Andrew B. Nobel; (188):1−48, 2018.
[abs][pdf][bib]

Kernel Method for Persistence Diagrams via Kernel Embedding and Weight Factor
Genki Kusano, Kenji Fukumizu, Yasuaki Hiraoka; (189):1−41, 2018.
[abs][pdf][bib]

Pycobra: A Python Toolbox for Ensemble Learning and Visualisation
Benjamin Guedj, Bhargav Srinivasa Desikan; (190):1−5, 2018. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code] [webpage]

KELP: a Kernel-based Learning Platform
Simone Filice, Giuseppe Castellucci, Giovanni Da San Martino, Aless, ro Moschitti, Danilo Croce, Roberto Basili; (191):1−5, 2018. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code] [webpage]

Uncovering Causality from Multivariate Hawkes Integrated Cumulants
Massil Achab, Emmanuel Bacry, Stéphane Gaïffas, Iacopo Mastromatteo, Jean-François Muzy; (192):1−28, 2018.
[abs][pdf][bib]

Making Better Use of the Crowd: How Crowdsourcing Can Advance Machine Learning Research
Jennifer Wortman Vaughan; (193):1−46, 2018.
[abs][pdf][bib]

Enhancing Identification of Causal Effects by Pruning
Santtu Tikka, Juha Karvanen; (194):1−23, 2018.
[abs][pdf][bib]

Active Nearest-Neighbor Learning in Metric Spaces
Aryeh Kontorovich, Sivan Sabato, Ruth Urner; (195):1−38, 2018.
[abs][pdf][bib]

From Predictive Methods to Missing Data Imputation: An Optimization Approach
Dimitris Bertsimas, Colin Pawlowski, Ying Daisy Zhuo; (196):1−39, 2018.
[abs][pdf][bib]

Saturating Splines and Feature Selection
Nicholas Boyd, Trevor Hastie, Stephen Boyd, Benjamin Recht, Michael I. Jordan; (197):1−32, 2018.
[abs][pdf][bib]

Nonasymptotic convergence of stochastic proximal point methods for constrained convex optimization
Andrei Patrascu, Ion Necoara; (198):1−42, 2018.
[abs][pdf][bib]

Simple, Robust and Optimal Ranking from Pairwise Comparisons
Nihar B. Shah, Martin J. Wainwright; (199):1−38, 2018.
[abs][pdf][bib]

Surprising properties of dropout in deep networks
David P. Helmbold, Philip M. Long; (200):1−28, 2018.
[abs][pdf][bib]

Exact Learning of Lightweight Description Logic Ontologies
Boris Konev, Carsten Lutz, Ana Ozaki, Frank Wolter; (201):1−63, 2018.
[abs][pdf][bib]

Sparse Concordance-assisted Learning for Optimal Treatment Decision
Shuhan Liang, Wenbin Lu, Rui Song, Lan Wang; (202):1−26, 2018.
[abs][pdf][bib]

Post-Regularization Inference for Time-Varying Nonparanormal Graphical Models
Junwei Lu, Mladen Kolar, Han Liu; (203):1−78, 2018.
[abs][pdf][bib]

Permuted and Augmented Stick-Breaking Bayesian Multinomial Regression
Quan Zhang, Mingyuan Zhou; (204):1−33, 2018.
[abs][pdf][bib]

Steering Social Activity: A Stochastic Optimal Control Point Of View
Ali Zarezade, Abir De, Utkarsh Upadhyay, Hamid R. Rabiee, Manuel Gomez-Rodriguez; (205):1−35, 2018.
[abs][pdf][bib]

The Search Problem in Mixture Models
Avik Ray, Joe Neeman, Sujay Sanghavi, Sanjay Shakkottai; (206):1−61, 2018.
[abs][pdf][bib]

An $\ell_{\infty}$ Eigenvector Perturbation Bound and Its Application
Jianqing Fan, Weichen Wang, Yiqiao Zhong; (207):1−42, 2018.
[abs][pdf][bib]

A Tight Bound of Hard Thresholding
Jie Shen, Ping Li; (208):1−42, 2018.
[abs][pdf][bib]

Estimation of Graphical Models through Structured Norm Minimization
Davoud Ataee Tarzanagh, George Michailidis; (209):1−48, 2018.
[abs][pdf][bib]

Sparse Exchangeable Graphs and Their Limits via Graphon Processes
Christian Borgs, Jennifer T. Chayes, Henry Cohn, Nina Holden; (210):1−71, 2018.
[abs][pdf][bib]

Weighted SGD for $\ell_p$ Regression with Randomized Preconditioning
Jiyan Yang, Yin-Lam Chow, Christopher Ré, Michael W. Mahoney; (211):1−43, 2018.
[abs][pdf][bib]

Catalyst Acceleration for First-order Convex Optimization: from Theory to Practice
Hongzhou Lin, Julien Mairal, Zaid Harchaoui; (212):1−54, 2018.
[abs][pdf][bib]

Gaussian Lower Bound for the Information Bottleneck Limit
Amichai Painsky, Naftali Tishby; (213):1−29, 2018.
[abs][pdf][bib]

tick: a Python Library for Statistical Learning, with an emphasis on Hawkes Processes and Time-Dependent Models
Emmanuel Bacry, Martin Bompaire, Philip Deegan, Stéphane Gaïffas, Søren V. Poulsen; (214):1−5, 2018. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code] [webpage]

SGDLibrary: A MATLAB library for stochastic optimization algorithms
Hiroyuki Kasai; (215):1−5, 2018. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

Reward Maximization Under Uncertainty: Leveraging Side-Observations on Networks
Swapna Buccapatnam, Fang Liu, Atilla Eryilmaz, Ness B. Shroff; (216):1−34, 2018.
[abs][pdf][bib]

Simultaneous Clustering and Estimation of Heterogeneous Graphical Models
Botao Hao, Will Wei Sun, Yufeng Liu, Guang Cheng; (217):1−58, 2018.
[abs][pdf][bib]

Sketched Ridge Regression: Optimization Perspective, Statistical Perspective, and Model Averaging
Shusen Wang, Alex Gittens, Michael W. Mahoney; (218):1−50, 2018.
[abs][pdf][bib]

Compact Convex Projections
Steffen Grünewälder; (219):1−43, 2018.
[abs][pdf][bib]

Complete Graphical Characterization and Construction of Adjustment Sets in Markov Equivalence Classes of Ancestral Graphs
Emilija Perkovi\'c, Johannes Textor, Markus Kalisch, Marloes H. Maathuis; (220):1−62, 2018.
[abs][pdf][bib]

Katyusha: The First Direct Acceleration of Stochastic Gradient Methods
Zeyuan Allen-Zhu; (221):1−51, 2018.
[abs][pdf][bib]

Average Stability is Invariant to Data Preconditioning. Implications to Exp-concave Empirical Risk Minimization
Alon Gonen, Shai Shalev-Shwartz; (222):1−13, 2018.
[abs][pdf][bib]

Parallelizing Stochastic Gradient Descent for Least Squares Regression: Mini-batching, Averaging, and Model Misspecification
Prateek Jain, Sham M. Kakade, Rahul Kidambi, Praneeth Netrapalli, Aaron Sidford; (223):1−42, 2018.
[abs][pdf][bib]

Learning Quadratic Variance Function (QVF) DAG Models via OverDispersion Scoring (ODS)
Gunwoong Park, Garvesh Raskutti; (224):1−44, 2018.
[abs][pdf][bib]

Improved spectral community detection in large heterogeneous networks
Hafiz TIOMOKO ALI, Romain COUILLET; (225):1−49, 2018.
[abs][pdf][bib]

Statistical Inference on Random Dot Product Graphs: a Survey
Avanti Athreya, Donniell E. Fishkind, Minh Tang, Carey E. Priebe, Youngser Park, Joshua T. Vogelstein, Keith Levin, Vince Lyzinski, Yichen Qin, Daniel L Sussman; (226):1−92, 2018.
[abs][pdf][bib]

Rate of Convergence of $k$-Nearest-Neighbor Classification Rule
Maik Döring, László Györfi, Harro Walk; (227):1−16, 2018.
[abs][pdf][bib]

A Theory of Learning with Corrupted Labels
Brendan van Rooyen, Robert C. Williamson; (228):1−50, 2018.
[abs][pdf][bib]

Interactive Algorithms: Pool, Stream and Precognitive Stream
Sivan Sabato, Tom Hess; (229):1−39, 2018.
[abs][pdf][bib]

CoCoA: A General Framework for Communication-Efficient Distributed Optimization
Virginia Smith, Simone Forte, Chenxin Ma, Martin Takáč, Michael I. Jordan, Martin Jaggi; (230):1−49, 2018.
[abs][pdf][bib]

Concentration inequalities for empirical processes of linear time series
Likai Chen, Wei Biao Wu; (231):1−46, 2018.
[abs][pdf][bib]

A Cluster Elastic Net for Multivariate Regression
Bradley S. Price, Ben Sherwood; (232):1−39, 2018.
[abs][pdf][bib]

Characteristic and Universal Tensor Product Kernels
Zoltán Szabó, Bharath K. Sriperumbudur; (233):1−29, 2018.
[abs][pdf][bib]

Learning Certifiably Optimal Rule Lists for Categorical Data
Elaine Angelino, Nicholas Larus-Stone, Daniel Alabi, Margo Seltzer, Cynthia Rudin; (234):1−78, 2018.
[abs][pdf][bib]

© JMLR .